sustainability Article Evaluation of the Life Cycle Greenhouse Gas Emissions from Different Biomass Feedstock Electricity Generation Systems AkhilKadiyala1,RaghavaKommalapati1,2,*andZiaulHuque1,3 1 CenterforEnergy&EnvironmentalSustainability,PrairieViewA&MUniversity, PrairieView,TX77446,USA;[email protected](A.K.);[email protected](Z.H.) 2 DepartmentofCivil&EnvironmentalEngineering,PrairieViewA&MUniversity, PrairieView,TX77446,USA 3 DepartmentofMechanicalEngineering,PrairieViewA&MUniversity,PrairieView,TX77446,USA * Correspondence:[email protected];Tel.:+1-936-261-1660 AcademicEditors:ArnulfJäger-WaldauandMarcA.Rosen Received:19August2016;Accepted:11November2016;Published:16November2016 Abstract: Thispaperevaluateslifecyclegreenhousegas(GHG)emissionsfromtheuseofdifferent biomass feedstock categories (agriculture residues, dedicated energy crops, forestry, industry, parks and gardens, wastes) independently on biomass-only (biomass as a standalone fuel) and cofiring (biomass used in combination with coal) electricity generation systems. The statistical evaluation of the life cycle GHG emissions (expressed in grams of carbon dioxide equivalent per kilowatt hour, gCO e/kWh) for biomass electricity generation systems was based on the 2 review of 19 life cycle assessment studies (representing 66 biomass cases). The mean life cycle GHG emissions resulting from the use of agriculture residues (N = 4), dedicated energy crops (N = 19), forestry (N = 6), industry (N = 4), and wastes (N = 2) in biomass-only electricity generationsystemsare291.25gCO e/kWh,208.41gCO e/kWh,43gCO e/kWh,45.93gCO e/kWh, 2 2 2 2 and1731.36gCO e/kWh,respectively. ThemeanlifecycleGHGemissionsforcofiringelectricity 2 generation systems using agriculture residues (N = 10), dedicated energy crops (N = 9), forestry (N=9),industry(N=2),andparksandgardens(N=1)are1039.92gCO e/kWh,1001.38gCO e/kWh, 2 2 961.45gCO e/kWh,926.1gCO e/kWh,and1065.92gCO e/kWh,respectively.Forestryandindustry 2 2 2 (avoidingtheimpactsofbiomassproductionandemissionsfromwastemanagement)contributethe leastamountofGHGs,irrespectiveofthebiomasselectricitygenerationsystem. Keywords:lifecycleassessment;greenhousegasemissions;biomass;biomass-only;cofiring;biomass feedstock;agricultureresidue;dedicatedenergycrop;forestry;industry;parksandgardens;waste 1. Introduction Biomass energy, also referred to as bioenergy, may be defined as the energy harnessed from plantsandtheirderivatives(e.g.,wood,foodcrops,residuesfromagricultureorforestry,oil-richalgae, andtheorganiccomponentofmunicipal/industrialwastes). Biomassisaproductofphotosynthesis, inwhichthesun’senergyconvertswaterandcarbondioxide(CO )inplantsintoorganicmaterial[1]. 2 The organic material stores sunlight in the form of chemical energy. The components of biomass includecellulose,hemicellulose,lignin,extractives,lipids,proteins,simplesugars,starches,water, hydrocarbons, ash, and other compounds. The composition of biomass varies among species. In general, lignin (~25%) and carbohydrates or sugars (~75%) are identified to be the dominant components [2–5]. The carbohydrate fraction contains many sugar molecules linked together in long chains or polymers. There are two distinguished categories of carbohydrates: cellulose and Sustainability2016,8,1181;doi:10.3390/su8111181 www.mdpi.com/journal/sustainability Sustainability2016,8,1181 2of12 hemicellulose. Theenergyvalueofbiomassisdependentonthemoisturecontent. Asthemoisture contentincreases,theenergycalorificvaluesofbiomassdecreases. Thedecreaseinenergycalorific valuesisaresultofthereductionincombustiontemperatures[6]. Biomasswithhighmoisturecontent mayleadtoincompletecombustion,therebyincreasingtheairemissions. Thetotalelectricitygenerationin2012acrosstheworldwasreportedtobe21.53trillionkilowatt hours(kWh)[7]. Theprojectedworldelectricitygenerationfor2040is39trillionkWh(anincreaseby 81%from2012)[8]. Therenewableenergysourceshavebeenprojectedtoaccountfor9.6trillionkWh (25%)oftheworld’stotalelectricitygenerationin2040. Withthecontinuingdepletionoftraditional nonrenewableenergysources,thenecessityforgeneratingelectricitythroughtheuseofrenewable energysources(hydro, wind,biomass,geothermal,solar)increasedmanifold. Biomassaccounted foronly0.384trillionkWh(2%)oftheworld’stotalelectricitygeneratedin2012despiteitsabundant availability across the world. Based on the 2012 statistics, biomass was identified to be the third largestrenewableenergysourceforelectricitygenerationafterhydro(3.646trillionkWh)andwind (0.52trillionkWh)[7]. Themajorityoftheglobalenergy-useprojectionstudiesanticipatebiomassto contributeabout10%–45%ofthetotalprimaryenergydemandinthecomingdecades[9]. One may adopt the use of the life cycle assessment (LCA) method to evaluate the net CO 2 equivalent (CO e) greenhouse gas (GHG) emissions from the use of biomass as a fuel. LCA is an 2 analyticalmethodthatprovidesanassessmentoftheenvironmentalimpactsoftheconsideredproducts andtechnologiesfroma“cradletograve”systemsperspective,utilizingthedetailedinputandoutput parametersthatoperatewithinthedesignatedsystemboundaries. DependingonthenetCO eGHGs 2 emittedacrosstheentirelifecycleprocessesconsidered,thebioenergyresourcesmaybeconsideredto becarbonneutral(noneteffectonGHGs),carbonnegative(netreductioninGHGs),orcarbonpositive (netincreaseinGHGs)[10]. Electricitygenerationfrombiomassonalargescaleisachievedthroughtheuseof(a)biomass-only fired power plants and (b) cofiring in existing coal power plants by replacing coal with biomass. Several studies have analyzed the LCA of biomass-only combustion [11–21] and biomass cofiring with coal [12,13,20,22–29]. The two distinct advantages of cofiring in existing coal power plants are the achievement of a higher net efficiency of biofuels conversion to electricity (the generally higherefficiencyofverylarge-scalepowerplantsoffsetsthelowerefficiencyofthecoalboiler)and a significant reduction in the investment costs. However, the option of cofiring requires higher pretreatment consumption to achieve complete biofuel conversion in the coal utility boiler and longertransportationcostsoftheresourcesassociatedwiththecoalpowerplantsnotbeingplacedin potentiallyimportantbiomassproductionareas[20].AmoredetaileddescriptionoftheLCAboundary conditions,GHGemissions,andsite-specificcharacteristicsassociatedwitheachoftheaforementioned biomasselectricitygenerationsystemstudiesareprovidedinthesectionstitled“ReviewofBiomass-Only LCAStudies”and“ReviewofBiomassCofiringwithCoalLCAStudies”. AllthepriorbiomassLCAstudiesfocusedonthedeterminationoflifecycleGHGemissionsfrom theuseofindividualbiomassfeedstockforelectricitygeneration. Noneoftheearlierstudiescompared thelifecycleGHGemissionsforbiomasselectricitygenerationsystemsacrosstheindividualdistinct feedstockcategories. Thisstudyaimstofillthisknowledgegapbyfollowingatwo-stepapproach; thestudyincludedareviewoftheliteratureonbiomassLCAstudiesfollowedbyastatisticalevaluation ofthelifecycleGHGemissionsfromfeedstock-basedbiomass-onlyandcofiringelectricitygeneration systemsseparately. AmajorityofthebiomassLCAstudiesnotedintheliteraturehavenotincluded specificdetailsonthetypeoffeedstockusedforelectricitygeneration. Resultantly,onlythebiomass LCAstudiesthatclearlydefinedthebiomassfeedstocktypeutilizedforelectricitygenerationwere consideredforthereview,classification,andstatisticalevaluationinthisstudy. Theperformanceofa comprehensivestatisticalevaluationofthelifecycleGHGemissionswillhelpunderstandthedegree ofconfidenceandvariabilityinGHGemissionsfromdifferentfeedstockcategoriesfortheconsidered biomasselectricitygenerationsystem. Thisstudywillassistenergypolicymakersandenvironmental professionalsinidentifyingandencouragingtheuseofenvironmental-friendlybiomassfeedstock optionstogenerateelectricitywithminimalGHGemissions. Sustainability2016,8,1181 3of12 2. Methodology Areviewofthebiomassliteratureshowedthattherearewide-rangingtypesofbiomassthatmay beutilizedingeneratingelectricity. Thenumeroustypesofbiomassmaybeclassifiedintodistinct categoriesdependingonthetypeoffeedstock. TheIdahoNationalLaboratoryReport[30]providedan extensiveclassificationoffeedstock-basedbiomassthatincludedsevendistinctcategoriesasfollows: • Agricultureresidues(AR):includesdrylignocellulosicagricultureresidues(straw,sugarbeet leaves)andlivestockwaste(solidmanure,liquidmanure) • Dedicatedenergycrops(DEC):includesdrylignocellulosicwoodenergycrops(smallroundwood (SRW)—willow,shortrotationcoppice(SRC)—poplar,eucalyptus),drylignocellulosicherbaceous energycrops(miscanthus,switchgrass,commonreed,reedcanarygrass,giantreed,cynaracardu, Indianshrub),oilenergycrops(sugarbeet,canebeet,sweetsorghum,Jerusalemartichoke,sugar millet),starchenergycrops(wheat,potatoes,maize,barley,triticae,corn,amaranth),andother energycrops(flax(Linum),hemp(Cannabis),tobaccostems,aquaticplants(lipidsfromalgae), cottonstalks,kenaf) • Forestry(F):includesforestrybyproducts(bark,woodblocks,woodchipsfromtopsandbranches, woodchipsfromthinning,logsfromthinning) • Industry (I): includes wood industry residues (industrial waste wood from sawmills/timber mills(bark,sawdust,woodchips,slabs,off-cuts)),foodindustryresidues(wetcellulosicmaterial (beetroottails),fats(usedcookingoils),tallow,yellowgrease,proteins(slaughterhousewaste)), and industrial products (pellets from sawdust and shavings, briquettes from sawdust and shavings,bio-oil(pyrolysisoil),ethanol,biodiesel) • Parksandgardens(P-G):includesherbaceous(grass)andwoody(pruning) • Wastes(W):includescontaminatedwastes(demolitionwood,biodegradable,municipalwaste, sewagesludge,landfillgas,sewagegas) • Others (O): includes roadside hay (grass/hay) and husks/shells (almond, olive, walnut, palmpit,cacao) Thisstudyadoptedthesameclassification(agricultureresidues,dedicatedenergycrops,forestry, industry,parksandgardens,wastes,others)asproposedbytheIdahoNationalLaboratoryReport[30] toevaluatethelifecycleGHGemissionsofbiomass-onlyandbiomasscofiringwithcoalelectricity generation systems utilizing different feedstock options. Each of the reviewed biomass-only and biomasscofiringLCAstudies(withspecificdetailsonthebiomassfeedstocktype)werefirstassigned a biomass category. Next, the feedstock-based GHG emissions from biomass-only and biomass cofiringelectricitygenerationsystemswereevaluatedusingstatisticalmetrics(samplesize,mean, standarddeviation,minimum,maximum,standarderrorofthemean,quartile1,quartile2ormedian, quartile 3) and graphical representations (error bars representing the mean with 95% confidence intervals, box plots representing the quartiles with outliers). The sample size is a measure that indicatesthetotalnumberofobservations. Themeanisameasurethatrepresentsthecentraltendency oftheobserveddata. Thestandarddeviationisameasureusedtoquantifythedegreeofvariation withinasetofobservationsfromasinglesample. Theminimumandmaximummeasuresdefinethe lowestobservationandthehighestobservationwithaconsideredsample,respectively. Thestandard errorofthemeanisameasurethatestimatesthevariabilitybetweensamplemeansobtainedbytaking multiplesamplesfromthesamepopulation. Thestandarderrorofthemeandeterminestheprecision betweenthemeanofthesampleestimatesandthepopulationmean. Thequartilestatisticsareaset ofthreemeasuresthatdividearankedsetofobserveddatavaluesintofourequalgroups,witheach groupcomprisingaquarterofthedata. Whiletheerrorbarsdemonstratethedegreeofconfidencein themeanGHGemissions,theboxplotsprovideinformationonthedegreeofvariationamongthe LCAstudiescharacterizedbydifferentbiomassfeedstockcategories. Sustainability2016,8,1181 4of12 3. ResultsandDiscussion 3.1. ReviewofBiomass-OnlyLCAStudies Several studies [11–21] evaluated the life cycle environmental impacts of using biomass as a standalone fuel for electricity generation. When performing an LCA, one needs to define the system boundary conditions (which includes details on the activities or processes to be considered in the analysis) and a functional unit of measure (which enables quantification of the netenvironmentalimpactsfromcarryingoutanactivityoraprocessasdefinedwithintheLCAsystem boundaryconditions). Themajorityoftheaforementionedstudies[13,17,18,21]thatperformedtheLCAofbiomass-only electricity generation systems defined the system boundary conditions to include activities such asbiomasscultivation,harvesting,processing,transportationtowarehousesandpowerplant,and combustion. Other studies [12,14,16] set up their LCA system boundary conditions by including the ash disposal activity in addition to the list of all activities associated with the majority of the studies. Sebastiánetal.[20]consideredtheLCAsystemboundariesthatincludedbiomasscultivation, harvesting,processing,transportationtowarehousesandpowerplant,constructionanddismantlingof powerstation,combustion,andashdisposal. Onemaynotethatalltheabove-mentionedactivitiesare associatedwiththeuseofdedicatedenergycropsandagricultureresiduesasfeedstockinbiomass-only electricitygenerationsystems. The Environment Agency Report [14] defined the LCA system boundaries to include wood cutting,transportation,storage,andcombustionforthecasescenarioofusingforestryasfeedstockfor biomass-onlyelectricitygeneration. Theactivityofashdisposalwasadditionallyconsideredtobe withintheLCAsystemboundariesbyanotherstudy[18]thatexaminedtheenvironmentallifecycle impactsofusingforestryasafeedstockforbiomass-onlyelectricitygeneration. Intinietal.[19]used industryresidueasfeedstockforbiomass-onlyelectricitygeneration,wherethesystemboundaries includedtheactivitiesofextractingvirginpomacefromanoliveoilmill,extractingdrypomaceby dryingvirginpomace,extractingdeoiledpomacefrompomaceoil,combustion,andelectricitytransfer tothegrid. Theremainingstudies[11,15]consideredtheLCAsystemboundariestoincludecollection, segregationandsorting,transportation,andincinerationusingwasteasfeedstockforbiomass-only electricitygeneration. Thecommonfunctionalunitofmeasureadoptedbyamajorityofthebiomass-onlyLCAstudies isgramsofCO eperkilowatthour(gCO e/kWh)ofelectricityproduced. Accordingly,thisstudyalso 2 2 adoptsthefunctionalunitofmeasureforGHGemissionstobegCO e/kWhofelectricityproduced. 2 Table1providesasummaryofthebiomassfeedstockcategorization(basedonthetypeofbiomass) andthecorrespondingGHGemissions(ingCO e/kWh)foreachbiomass-onlyelectricitygeneration 2 LCAstudy. Additionalsite-specificdetailsonthepowergenerationcapacity(PGC,inMW),thepower plantefficiency(η,in%),thepowergenerationmethod(PGM—directcombustion(DC),pyrolysis combustion(PC)),andthegeographicallocation(GL)forthebiomass-onlyelectricitygenerationsystem studiescanalsobeobtainedfromTable1.Basedonthereviewof11biomass-onlyelectricitygeneration LCAstudies(refertoTable1),onemaynotethatdedicatedenergycrops(N =19)feedstock-based biomass-only electricity generation systems were more in number compared to forestry (N = 6), agriculture residues (N = 4), industry (N = 4), and waste (N = 2) feedstock-based biomass-only electricity generation systems. There were no studies on the use of parks and gardens and other feedstock-basedbiomass-onlyelectricitygenerationapplications. In addition to computing the GHG emissions, one study [21] computed the acidification potential (expressed in grams of sulfur dioxide equivalent per kilowatt hour (gSO e/kWh)) and 2 the eutrophication potential (expressed in grams of phosphates per kilowatt hour (gPO e/kWh)) 4 fortheAR(ricestraw)biomassfeedstocktobe6.78gSO e/kWhand1.46gPO e/kWh,respectively. 2 4 AnotherstudynotedthattheuseoftheDEC(switchgrass)havinglowsulfurcontentproducedless SO emissionswhengeneratingelectricitythroughdirectcombustion[12]. 2 Sustainability2016,8,1181 5of12 Table1.Greenhousegas(GHG)emissionsforbiomass-onlyelectricitygenerationsystems. BiomassFeedstock GHGEmissions AdditionalFeatures Source Category(BiomassType) (gCO2e/kWh) PGC(MW),η(%),PGM,GL PGM=DC;GL=Germany Intergovernmental W(municipalsolidwaste (GHGemissionsarecomputedusing415kgCO2per PanelonClimate 922.22 tonofmunicipalsolidwasteandaveragedelectricity incineration) Change[11] generationpotentialof450kWhpertonofmunicipal solidwaste) Qinetal.[12] DEC(switchgrass) 68.5 η=17–25;PGM=DC;GL=USA Stylesand DEC(miscanthus) 131 PGC=100–150MW;PGM=DC;GL=Ireland Jones[13] DEC(willow) 132 PGC=100–150MW;PGM=DC;GL=Ireland F(UKforest 10 PGM=DC;GL=UK residues—chips) F(Balticforest 22 PGM=DC;GL=UK residues—chips) I(wastewood—chips) 7 PGM=DC;GL=UK DEC(SRC—chips) 17 PGM=DC;GL=UK DEC(miscanthus—chips) 18 PGM=DC;GL=UK Environment F(UKforest 38 PGM=DC;GL=UK Agency[14] residues—pellets) F(Balticforest 50 PGM=DC;GL=UK residues—pellets) I(wastewood—pellets) 51 PGM=DC;GL=UK I(Balticwaste 66 PGM=DC;GL=UK wood—pellets) DEC(SRC—pellets) 100 PGM=DC;GL=UK DEC 65 PGM=DC;GL=UK (miscanthus—pellets) AR(straw) 73 PGM=DC;GL=UK W(municipalsolidwaste Zaman[15] 2540.5 PGM=DC;GL=Sweden incineration) 90 PGC=10MW;η=25;PGM=DC;GL=Spain DEC(poplar) 95 PGC=25MW;η=28;PGM=DC;GL=Spain 100 PGC=50MW;η=30;PGM=DC;GL=Spain Butnaretal.[16] 250 PGC=10MW;η=25;PGM=DC;GL=Spain DEC(Ethiopianmustard) 260 PGC=25MW;η=28;PGM=DC;GL=Spain 260 PGC=50MW;η=30;PGM=DC;GL=Spain AR(ricehusk) 67 PGC=190MW;η=20;PGM=DC;GL=Thailand Siemers[17] AR(ricestraw) 180 PGC=1-60MW;η=18;PGM=DC;GL=Thailand 76 PGC=10MW;η=18;PGM=PC;GL=USA DEC(poplar) 50 PGC=10MW;η=25;PGM=PC;GL=USA 50 PGC=10MW;η=18;PGM=PC;GL=USA Fanetal.[18] DEC(willow) 35 PGC=10MW;η=25;PGM=PC;GL=USA 82 PGC=10MW;η=18;PGM=PC;GL=USA F(loggingresidues) 56 PGC=10MW;η=25;PGM=PC;GL=USA I(deoiledoliveoil Intinietal.[19] 59.7 PGC=12MW;PGM=DC;GL=Italy pomace,wastewood) Sebastián DEC(wheatstraw) 1076.39 PGC=100MW;η=25.8;PGM=DC;GL=Spain etal.[20] DEC(Brassicacarinata) 1085.94 PGC=100MW;η=25.8;PGM=DC;GL=Spain Shafieetal.[21] AR(ricestraw) 845 PGM=DC;GL=Malaysia 3.2. ReviewofBiomassCofiringwithCoalLCAStudies Therearenumerousstudies[12,13,20,22–29]thatevaluatedthelifecycleenvironmentalimpacts ofusingbiomassincombinationwithcoalfuelforelectricitygeneration. Sustainability2016,8,1181 6of12 Themajorityofthebiomasscofiringstudies[12,13,22,28,29]definedtheLCAboundaryconditions toincludeactivitiessuchasextractionoftherawmaterials(miningofcoal,cultivationandharvesting ofbiomass),processingoffuel(coalandbiomasstorrefaction/pelletization),transportanddistribution ofcoalandbiomass,combustioninpowerplant,andfinalwaste(ash)disposal. Inadditiontothese activities, some studies [20,25] also included the construction and dismantling of a power station withintheirsystemboundaries. Otherstudies[23,24,26,27]didnotconsiderashdisposalwithintheir systemboundaries. Paengjuntueketal.[29]evaluatedthelifecycleGHGemissionsforcofiringutilizinganintegrated biomassgasificationfuelcell(BGFC)thatcombinedtheuseofsolidoxidefuelcellwiththeintegrated gasificationcombinedcycle(IGCC)technologytoenhancetheenergyefficiency. TheIGCCtechnology enablestheconversionofcoalandbiomassfuelintoapressurizedgas(referredtoassynthesisgas (syngas))usingahigh-pressuregasifier. Theremaining10cofiringstudiesreviewedforthispaper wereperformedthoughdirectcombustionincoalpowerplants. Table 2 provides a summary of the biomass feedstock categorization (based on the type of biomass)andthecorrespondingGHGemissions(ingCO e/kWh)foreachbiomasscofiringelectricity 2 generationLCAstudy. Additionalsite-specificdetailsonthePGC(inMW),η(in%),PGM(DC,PC, gasification(G)),GL,andthebiomasscontributionlevelincofiringwithcoal(BCL)forthebiomass cofiringelectricitygenerationsystemstudiescanbeobtainedfromTable2. Basedonthereviewof 11biomass-cofiringelectricitygenerationLCAstudies(refertoTable2),onemaynotethatagriculture residue(N=10)feedstock-basedbiomass-cofiringelectricitygenerationsystemsweremoreinnumber comparedtodedicatedenergycrops(N=9),forestry(N=9),industry(N=2),andparksandgardens (N=1)feedstock-basedbiomasscofiringelectricitygenerationsystems. Therewerenostudiesonthe useofwasteandotherfeedstock-basedbiomass-cofiringelectricitygenerationapplications. Table2.GHGemissionsforbiomasscofiringelectricitygenerationsystems. BiomassFeedstockCategory GHGEmissions AdditionalFeatures Source (BiomassType) (gCO2e/kWh) PGC(MW),η(%),PGM,GL,BCL 935.1 PGC=100MW;η=34.13;PGM=DC;GL=USA;BCL=10% DEC(switchgrass) Qinetal.[12] 966 PGC=100MW;η=34.13;PGM=DC;GL=USA;BCL=5% 875.6 PGC=100MW;η=34.13;PGM=DC;GL=USA;BCL=20% Stylesand DEC(miscanthus) 1150 PGC=100-150MW;η=38.4;PGM=DC;GL=Ireland;BCL=30% Jones[13] DEC(willow) 990 PGC=915MW;η=37.5;PGM=DC;GL=Ireland;BCL=10% Sebastián DEC(wheatstraw) 1065.92 PGC=350MW;η=36.55;PGM=DC;GL=Spain;BCL=10% etal.[20] DEC(Brassicacarinata) 1072.79 PGC=350MW;η=36.55;PGM=DC;GL=Spain;BCL=10% I(woodresidue:cleanurban wastewood,millresidue, 849.3 PGC=350MW;η=31.1;PGM=DC;GL=USA;BCL=15% Mannand biomassgeneratedduring Spath[22] timberstandimprovements, someconstructionand 1002.9 PGC=354MW;η=31.5;PGM=DC;GL=USA;BCL=5% demolitionresidues,and industrialwoodresidues) Heller DEC(willow) 883 PGC=96MW;η=33.17;PGM=DC;GL=USA;BCL=10% etal.[23] F(forestresidue—torrefied 957 PGC=450MW;η=34;PGM=DC;GL=Canada;BCL=20.45% pellets) F(forestresidue—pellets) 1004 PGC=450MW;η=34;PGM=DC;GL=Canada;BCL=17.04% F(forestresidue—chips) 1003 PGC=450MW;η=33;PGM=DC;GL=Canada;BCL=16.54% Kabirand F(wholetree—torrefiedpellets) 967 PGC=450MW;η=34;PGM=DC;GL=Canada;BCL=20.45% Kumar[24] F(wholetree—pellets) 1014 PGC=450MW;η=34;PGM=DC;GL=Canada;BCL=17.04% F(wholetree—chips) 1013 PGC=450MW;η=33;PGM=DC;GL=Canada;BCL=16.54% AR(straw—torrefiedpellets) 1065 PGC=450MW;η=34;PGM=DC;GL=Canada;BCL=7.76% AR(straw—pellets) 1082.8 PGC=450MW;η=34;PGM=DC;GL=Canada;BCL=9.3% AR(straw—bale) 1083.4 PGC=450MW;η=33;PGM=DC;GL=Canada;BCL=7.53% Sustainability2016,8,1181 7of12 Table2.Cont. BiomassFeedstockCategory GHGEmissions AdditionalFeatures Source (BiomassType) (gCO2e/kWh) PGC(MW),η(%),PGM,GL,BCL AR(wheatstraw) 1059.95 PGC=350MW;η=36.55;PGM=DC;GL=Spain;BCL=10% P-G(fruittreepruning) 1065.92 PGC=350MW;η=36.55;PGM=DC;GL=Spain;BCL=10% Royoetal. [25] F(Spainforest) 1066.03 PGC=350MW;η=36.55;PGM=DC;GL=Spain;BCL=10% DEC(brassicacarinata) 1073.99 PGC=350MW;η=36.55;PGM=DC;GL=Spain;BCL=10% Huangetal. 1040 PGM=DC;GL=Taiwan;BCL=10% AR(ricestrawtorrefaction) [26] 990 PGM=DC;GL=Taiwan;BCL=20% 1181.7 PGM=DC;GL=USA;BCL=10% Kaliyanetal. AR(cornstover) 1071.2 PGM=DC;GL=USA;BCL=20% [27] 960.8 PGM=DC;GL=USA;BCL=30% Tsalidisetal. F(Dutchforestrymaterials) 811 PGC=500MW;η=40;PGM=DC;GL=TheNetherlands [28] F(Canadianforestrymaterials) 818 PGC=500MW;η=40;PGM=DC;GL=TheNetherlands Paengjuntuek AR(ricestraw) 864.3 PGC=0.65MW;PGM=G;GL=Thailand etal.[29] Some of the LCA studies [24,26,28,29] summarized in Table 2 computed the acidification and the eutrophication potentials for the corresponding biomass feedstocks considered in their respectivestudies. Onestudy[24]notedtheacidificationpotentialsforF(forestresidue—torrefied pellets,20.45%cofiring),F(forestresidue—pellets,17.04%cofiring),F(forestresidue—chips,16.54% cofiring),F(wholetree—torrefiedpellets,20.45%cofiring),F(wholetree—pellets,17.04%cofiring), F(wholetree—chips,16.54%cofiring),AR(ricestraw,7.76%cofiring),AR(ricestraw,9.3%cofiring), and AR (rice straw, 7.53% cofiring) biomass feedstocks to be 5.16 gSO e/kWh, 5.38 gSO e/kWh, 2 2 5.39 gSO e/kWh, 5.18 gSO e/kWh, 5.41 gSO e/kWh, 5.41 gSO e/kWh, 5.86 gSO e/kWh, 2 2 2 2 2 5.77gSO e/kWh,and5.93gSO e/kWh,respectively. Another[26]notedtheacidificationpotentialfor 2 2 theAR(ricestraw)biomassfeedstocktobe21.07gSO e/kWhunder10%cofiringoperatingconditions 2 and 22.04 gSO e/kWh with 20% cofiring operating conditions, while that of the eutrophication 2 potential was computed to be 0.02 gPO e/kWh under 10% cofiring operating conditions and 4 0.06gPO e/kWhwith20%cofiringoperatingconditions. TheacidificationpotentialsforF(Dutch 4 forestrymaterialswithpelletization)andF(Canadianforestrymaterialswithtorrefiedpellets)were determinedtobe88.1gSO e/kWhand105gSO e/kWh,respectively[28]. Theacidificationandthe 2 2 eutrophicationpotentialsfortheAR(ricestraw)biomassfeedstockwerenotedtobe2.6gSO e/kWh 2 and 0.15 gPO e/kWh, respectively [29]. The variations in the acidification and eutrophication 4 potentialsmaybeattributedtothevariationsinthelifecycleprocessstagesandthecofiringconditions. 3.3. StatisticalEvaluationofBiomass-OnlyLCAStudies Figure1providesagraphicalpresentationofthe(a)errorbars(mean±95%confidenceinterval (CI)statistics)and(b)boxplots(quartiles+outlierstatistics)forGHGemissionsfromthedifferent feedstock-basedbiomass-onlyelectricitygenerationsystemsreviewedinthisstudy. Table3provides astatisticalsummaryofthelifecycleGHGemissionsthatprovidesdetailsonthesamplesize(N), mean(X)±standarddeviation(SD),minimum(Min.),maximum(Max.),standarderrorofthemean (SE),quartile1(Q1),quartile2ormedian(Q2),andquartile3(Q3)forthedifferentfeedstock-based biomass-onlyelectricitygenerationsystemsreviewedinthisstudy. FromFigure1aandTable3,onemaynotethemeanlifecycleGHGemissionsobtainedfromthe useofagricultureresidues,dedicatedenergycrops,forestry,industry,andwastesinbiomass-only electricity generation systems are 291.25 gCO e/kWh, 208.41 gCO e/kWh, 43 gCO e/kWh, 2 2 2 45.92gCO e/kWh,and1731.36gCO e/kWh,respectively. Theforestryandindustryfeedstock-based 2 2 biomassproducedconsiderablylowerGHGemissionsthantheremainingthreebiomassfeedstock categories. ThelowerGHGemissionsresultingfromtheuseofforestryandindustryfeedstock-based biomass may be attributed to the fact that bioenergy chains having resources/residues as raw Sustainability2016,8,1181 8of12 materials avoid the high impacts of dedicated energy crop production and emissions from waste management[19,31,32]. Oftheremainingthreebiomassfeedstockcategories,dedicatedenergycropsproducedlower meanlifecycleGHGemissions,followedbyagricultureresidues,andwastes. Theuseofdedicated energycropsinexistingpowerstationshassignificantpotentialtoreduceGHGemissions[13].Mineral fertilizersaccountedforthemajority(62%–82%)oftheGHGemissionsresultingfromcultivationof dedicatedenergycrops[16]. Oneneedstoadopttheuseofnaturalfertilizerstofurtherreducethe GHGsemittedfromtheuseofdedicatedenergycrops. Appropriatemitigatingstrategies, suchas bestfarmingpracticestomaximizetheyield, areessentialtocontroltheGHGemissionsresulting from an increased land footprint for natural fertilizers. Transportation accounted for the majority oftheGHGemissionsfromricestrawpreparationunderthecategoryofagricultureresidues[21]. Thecompositionandsegregationofwastewereidentifiedtobethecriticalfactorsinfluencinglifecycle GHGemissionsfromthewastefeedstock-basedbiomass-onlyelectricitygenerationsystems[33]. From Figure 1b, one may note the degree of variation in GHG emissions was less between LCAstudiesbasedonforestry,followedbyindustry,dedicatedenergycrops,agricultureresidues, andwastes.Themedianquartilestatistic(Q2)showedaconsistentpatterntothatobservedinthemean lifecycleGHGemissionspattern,withforestrybeingtheminimum,followedbyindustry,dedicated Seusntaeirngabyilictryo 2p01s6,, a8g, 1r1ic8u1 ltureresidues,andwastes(refertotheboxplotsfromFigure1bandTable83 )o.f 12 (a) (b) Figure 1. GHG emissions from biomass-only electricity generation systems: (a) mean ± 95% Figure1.GHGemissionsfrombiomass-onlyelectricitygenerationsystems:(a)mean±95%confidence confidence interval (CI) error bars and (b) quartile box plots. interval(CI)errorbarsand(b)quartileboxplots. TTaabbllee 33.. GGHHGG eemmiissssiioonn ((ggCCOO2ee/k/WkWh)h s)tsattaistitsictisc sfrformom biboimomasass-so-nolnyl yeleelcetcrtirciictiyt ygegnenereartaitoinon sysystsetmems.s . 2 Biomass Type N X ± SD Min. Max. SE Q1 Q2 Q3 agBriiocumltausres rTeysipdeue N4 291X.25± ± 3S7D2.8 6M7 in. 8M45a x. 18S6.E4 67Q 1 126.Q5 2 180Q 3 dedicated energy crops 19 208.41 ± 316.54 17 1085.94 72.62 50 95 250 agricultureresidue 4 291.25±372.8 67 845 186.4 67 126.5 180 forestry 6 43 ± 25.67 10 82 10.48 22 44 56 dedicatedenergycrops 19 208.41±316.54 17 1085.94 72.62 50 95 250 industry 4 45.92 ± 26.67 7 66 13.33 7 55.35 59.7 forestry 6 43±25.67 10 82 10.48 22 44 56 waste 2 1731.36 ± 1144.3 922.22 2540.5 809.14 922.22 1731.36 922.22 industry 4 45.92±26.67 7 66 13.33 7 55.35 59.7 waste 2 1731.36±1144.3 922.22 2540.5 809.14 922.22 1731.36 922.22 3.4. Statistical Evaluation of Biomass Cofiring with Coal LCA Studies Figure 2 provides a graphical presentation of the (a) error bars (mean ± 95% CI statistics) and (b) The use of biomass has a potential to reduce the life cycle GHG emissions by 77%–99% in box plots (quartiles + outlier statistics) for GHG emissions from the different feedstock-based biomass comparisontofossilfuelcombustion,dependingonthefeedstockcategoryandcombustiontechnology cofiring electricity generation systems reviewed in this study. Table 4 provides a statistical summary used [18]. The biomass-only electricity generation system net electric efficiency was identified to of the life cycle GHG emissions for the different feedstock-based biomass cofiring electricity be the most important factor that influences the final GHG emission savings [20]. The mode of generation systems reviewed in this study. From Figure 2a and Table 4, the mean life cycle GHG emissions from the use of agriculture residues (N = 10), dedicated energy crops (N = 9), forestry (N = 9), industry (N = 2), and parks and gardens (N = 1) in biomass cofiring electricity generation systems are 1039.92 gCO2e/kWh, 1001.38 gCO2e/kWh, 961.45 gCO2e/kWh, 926.1 gCO2e/kWh, and 1065.92 gCO2e/kWh, respectively. These results indicate that there is not much difference in the mean life cycle GHG emissions from cofiring electricity generation systems utilizing different biomass feedstock categories. This may be attributed to the fact that considerably higher GHGs are emitted from the combustion of coal than the combustion of biomass. More LCA studies utilizing parks and gardens feedstock-based biomass for biomass cofiring electricity generation systems are to be considered before one generalizes the influence of parks and gardens feedstock on life cycle GHG emissions (considering the need to have a minimum sample size of two to determine the degree of confidence in the mean life cycle GHG emission statistic of parks and gardens feedstock-based biomass). Amongst the different feedstock categories considered for biomass cofiring electricity generation systems, the mean life cycle GHG emissions were noted to be the minimum for industry, followed by forestry, dedicated energy crops, agriculture residues, and parks and gardens. One may note that the industry and the forestry feedstock-based biomass cofiring electricity generation systems produced the lowest GHG emissions (as also noted in the case for biomass-only electricity generation systems) owing to the elimination of GHG emissions resulting from biomass production and waste management during the implementation of bioenergy projects. The GHG mitigation per ton of dedicated energy crop during cofiring was noted to be better than that for dedicated energy crop biomass-only combustion [12]. Sustainability2016,8,1181 9of12 transportation and distance would largely influence the GHG emissions from biomass electricity generationsystems[14]. 3.4. StatisticalEvaluationofBiomassCofiringwithCoalLCAStudies Figure2providesagraphicalpresentationofthe(a)errorbars(mean±95%CIstatistics)and (b) box plots (quartiles + outlier statistics) for GHG emissions from the different feedstock-based biomasscofiringelectricitygenerationsystemsreviewedinthisstudy. Table4providesastatistical summaryofthelifecycleGHGemissionsforthedifferentfeedstock-basedbiomasscofiringelectricity generationsystemsreviewedinthisstudy. From Figure 2a and Table 4, the mean life cycle GHG emissions from the use of agriculture residues (N = 10), dedicated energy crops (N = 9), forestry (N = 9), industry (N = 2), and parks and gardens (N=1) in biomass cofiring electricity generation systems are 1039.92 gCO e/kWh, 2 1001.38gCO e/kWh,961.45gCO e/kWh,926.1gCO e/kWh,and1065.92gCO e/kWh,respectively. 2 2 2 2 TheseresultsindicatethatthereisnotmuchdifferenceinthemeanlifecycleGHGemissionsfrom cofiringelectricitygenerationsystemsutilizingdifferentbiomassfeedstockcategories. Thismaybe attributedtothefactthatconsiderablyhigherGHGsareemittedfromthecombustionofcoalthanthe Sustainability 2016, 8, 1181 9 of 12 combustionofbiomass. MoreLCAstudiesutilizingparksandgardensfeedstock-basedbiomassfor Tbhieo mobasssercvoafitriionngs eolefc ltirfiec itcyycgleen GerHatGio nemsyisstseimonssa rbeetiongb escimonilsaidr ebreetdwbeeefno rdeeodniecagteende reanliezregsyt hceroinpflsu aenndce foorfepsatrryk sinan tdheg acrodfeirnisnfge epdrsotcoecsks ownelirfee acylscole nGoHteGd einm iasnsiootnhser( csotnusdidye r[2in3g]. tThehen euesde toofh cahveemaimcailnsi manudm fesratmilipzleerssi zweaosf itdweonttiofieddet etorm bien ethteh emdaejogrr eceoonftrciobnufitodre ntoce liifne tchyecmle eGanHlGife ecmycislesioGnHs Gweitmhi srseifoenresntcaeti sttoic boiofmpaarskss parnoddugacrtidoenn [s3f4e]e.d stock-basedbiomass). Amongstthedifferentfeedstockcategoriesconsidered forbFiroomma Fssigcuorfier 2inbg, oenleec tmriacyit ynogteen tehrea tdioengrseyes otef mvas,ritahteiomn eina nGlHifeGc eymcliessGioHnGs beemtwiseseionn LsCwAe rsetundoiteesd fotor bfoertehsetrym winaims umminifmorailn, dfoulslotrwy,efdo lbloyw aegdricbuyltfuorree srterysi,ddueedsi,c dateeddiceanteedrg eyncerrogpys ,carogprisc,u alntudr einrdesuisdturye.s , Tahned mpeadrkiasna nqduagratirlde esntas.tiOstince (mQ2a)y snhootweethda at tdhieffienrdenuts tpryatatenrdn tthoe tfhoarte sotbrysefreveedds tionc kth-bea mseedanb ioGmHaGss ecmoifisrsiinogn eplaecttterricni,t ywgitehn einradtuiosntrysy bsteeinmgs tphreo dmuicneimduthme,l ofowlleoswtGedH bGye dmeidsisciaotnesd( aesnearlsgoy ncorotepds,i nfotrheestcrays,e afnodr bagiormicuasltsu-oren lryeseildecutersic (irtyefgere ntoe rtahteio bnosxy pstleomts sf)roomwi Fniggtuoreth 2ebe alinmdi nTaatbiolen 4o).f GHGemissionsresulting fromAblli othmea rsesvpireowdeudc tsitoundaiensd owna csotefimrinagn angoetmede nctodnusirdinergatbhlee irmedpulecmtioennst aitnio GnHofGb ieomenisesrigoynsp rwohjeecnts . cTomhepGarHeGd wmiitthig faotsiosinl fpueerl tcoonmobfudsetdioicna. tIetd meanye rbgey ncortoepdd furormin gthceo firerviniegww oafs sneoletecdt sttoubdeiebse [t1te2r,2t2h,a2n6,2th7a] t thfoart daesd tihcaet epderecneenrgtaygcer oopf bbiioommaassss- oinnl ycocfoimrinbgu sitniocnre[a1s2e]d.,T htheeo lbisfee rcvyactiloen GsHofGli feemcyiscsleioGnHs Gdeecmreiasssieodn. s Cboeminbgussitmioinla ranbedt wtreaennspdoerdtiactaiotend weneerreg yidcernotpifsieadn dtof obrees ttrhye inmtahjeorc ocfiornintrgibpurtoocress stow leirfee aclyscolen oGteHdGin eamniostshioenrss tiund cyof[i2r3in].gT [h2e8]u. sSeomofec hsteumdiiceas l[s2a4n,2d6]f enrotitleizde arsn winacsreidaseen tiinfi ethdet oenbeergthye dmenasjoitryc aonndtr icboufitroinrgto elfiffieciceyncclye wGHillG heelmp irsesdiouncse wthieth lirfeef ecryecnlec eGtHoGbi oemmaissssiopnros.d uction[34]. (a) (b) FFigiguurere 22. .GGHHGG eemmisisssioionns sfrfroomm bbioiommaassss ccooffiirriningg eelleeccttrricicitityy ggeenneerraattioionn ssyysstteemmss: :(a(a) )mmeeaann ±± 9955%% CCI I eerrroror rbbaarsr saanndd (b(b) )qquuaartritliele bbooxx pplolotsts. . Table 4. GHG emission (gCO2e/kWh) statistics from biomass cofiring electricity generation systems. Biomass Type N Mean ± SD Min. Max. SE Q1 Q2 Q3 agriculture residue 10 1039.92 ± 85.27 864.3 1181.7 26.96 990 1062.48 1082.8 dedicated energy crops 9 1001.38 ± 95.02 875.6 1150 31.67 935.1 990 1072.79 forestry 9 961.45 ± 88.85 811 1066.03 29.62 957 1003 1013 industry 2 926.1 ± 108.61 849.3 1002.9 76.8 849.3 926.1 1002.9 parks and gardens 1 1065.92 ± 0 1065.92 1065.92 0 1065.92 1065.92 1065.92 4. Conclusions This paper evaluated the life cycle GHG emissions from different feedstock category-based biomass-only and cofiring electricity generation systems using a two-step approach. The first step involved a comprehensive search for biomass-only and cofiring LCA studies, followed by a comprehensive review that included categorization of each of the identified biomass-only and cofiring LCA based on the type of feedstock. The second step involved the computation of statistical parameters that enables quantification of the life cycle GHG emissions with a degree of confidence and examination of the variability in life cycle GHG emissions. A total of 11 biomass-only and 11 cofiring electricity generation LCA case studies were identified from the literature. The identified biomass-only and cofiring electricity generation LCA studies were Sustainability2016,8,1181 10of12 Table4.GHGemission(gCO e/kWh)statisticsfrombiomasscofiringelectricitygenerationsystems. 2 BiomassType N Mean±SD Min. Max. SE Q1 Q2 Q3 agricultureresidue 10 1039.92±85.27 864.3 1181.7 26.96 990 1062.48 1082.8 dedicatedenergycrops 9 1001.38±95.02 875.6 1150 31.67 935.1 990 1072.79 forestry 9 961.45±88.85 811 1066.03 29.62 957 1003 1013 industry 2 926.1±108.61 849.3 1002.9 76.8 849.3 926.1 1002.9 parksandgardens 1 1065.92±0 1065.92 1065.92 0 1065.92 1065.92 1065.92 FromFigure2b,onemaynotethedegreeofvariationinGHGemissionsbetweenLCAstudies for forestry was minimal, followed by agriculture residues, dedicated energy crops, and industry. The median quartile statistic (Q2) showed a different pattern to that observed in the mean GHG emissionpattern,withindustrybeingtheminimum,followedbydedicatedenergycrops,forestry, andagricultureresidues(refertotheboxplotsfromFigure2bandTable4). All the reviewed studies on cofiring noted considerable reductions in GHG emissions when comparedwithfossilfuelcombustion. Itmaybenotedfromthereviewofselectstudies[12,22,26,27] that as the percentage of biomass in cofiring increased, the life cycle GHG emissions decreased. CombustionandtransportationwereidentifiedtobethemajorcontributorstolifecycleGHGemissions incofiring[28]. Somestudies[24,26]notedanincreaseintheenergydensityandcofiringefficiency willhelpreducethelifecycleGHGemissions. 4. Conclusions This paper evaluated the life cycle GHG emissions from different feedstock category-based biomass-onlyandcofiringelectricitygenerationsystemsusingatwo-stepapproach. Thefirststep involved a comprehensive search for biomass-only and cofiring LCA studies, followed by a comprehensive review that included categorization of each of the identified biomass-only and cofiringLCAbasedonthetypeoffeedstock. Thesecondstepinvolvedthecomputationofstatistical parametersthatenablesquantificationofthelifecycleGHGemissionswithadegreeofconfidenceand examinationofthevariabilityinlifecycleGHGemissions. Atotalof11biomass-onlyand11cofiringelectricitygenerationLCAcasestudieswereidentified fromtheliterature. Theidentifiedbiomass-onlyandcofiringelectricitygenerationLCAstudieswere categorizedonthebasisofthetypeoffeedstock(agricultureresidues,dedicatedenergycrops,forestry, industry,parksandgardens,wastes). Whiletheuseofmineralfertilizerswasidentifiedtobethemajor contributortoGHGemissionsfromdedicatedenergycropproduction,transportationwasidentified tobethemajorcontributortoGHGemissionsfromagricultureresiduepreparation. Theuseofforestry andindustryfeedstockcategoriesavoidedthehigheremissionsthatwouldhavebeenassociatedwith the crop production and the waste management activities. For the biomass feedstock category of wastes,thecompositionandsegregationofwastewereidentifiedtobetheprimaryfactorsaffectinglife cycleGHGemissions. Asthepercentageofbiomassincreasedincofiring,theGHGemissionsreduced. Based on the statistical evaluation of the biomass-only LCA studies, the mean life cycle GHG emissions for agriculture residues (N = 4), dedicated energy crops (N = 19), forestry (N = 6), industry (N=4), and wastes (N = 2) were computed to be 291.25 gCO e/kWh, 2 208.41gCO e/kWh,43gCO e/kWh,45.93gCO e/kWh,and1731.36gCO e/kWh,respectively. Inthe 2 2 2 2 case of cofiring, the mean life cycle GHG emissions for agriculture residues (N = 10), dedicated energy crops (N=9), forestry (N = 9), industry (N = 2), and parks and gardens (N = 1) were computedtobe1039.92gCO e/kWh,1001.38gCO e/kWh,961.45gCO e/kWh,926.1gCO e/kWh, 2 2 2 2 and 1065.92 gCO e/kWh, respectively. The use of forestry and industry feedstock categories is 2 recommended for extensive use in both biomass-only and cofiring electricity generation systems (considering that the mean life cycle GHG emissions were the lowest and there was not much difference). ThevariationinmeanlifecycleGHGemissionsincofiringelectricitygenerationsystems with respect to biomass feedstock categories was minimal (a consequence of considerably higher
Description: