Evaluation of Sensor Solutions & Motor Speed Control Methods for BLDCM /PMSM in Aerospace Applications Mattias Johansson Space Engineering, masters level 2017 Luleå University of Technology Department of Computer Science, Electrical and Space Engineering Lule˚a University of Technology Master Thesis Space Engineering, Specialization Spacecraft & Instrumentation Evaluation of Sensor Solutions & Motor Speed Control Methods for BLDCM/PMSM in Aerospace Applications Author: Mattias Johansson January 14, 2017 Abstract The goal of this thesis was to evaluate sensors and motor speed control methods for PMSM/BLDC motors in Aerospace applications. The sensors and methods were evaluated by considering accuracy, robustness,cost,developmentgainandparametersensitivity. Thesensorsandmethodschosentosimu- lateweredigitalHallsensorsandsensorlesscontrolofBLDCmotors. UsingMatlabSimulink/Simscape somemotorspeedcontrolmethodsandmotorspeedestimationmethodsweresimulatedusingtheHall sensors and sensorless control as a basis. It was found that the sensorless control methods for BLDC motors couldn’t estimate the speed accurately during dynamic loads and that the most robust and accuratesolutionbasedonthesimulationswasusingthedigitalHallsensorsforbothspeedestimation and commutation and this was tested on a hardware setup. Acknowledgements I would like to thank my supervisor Ingemar Th¨orn for all the help and support he has given me, especially for always taking the time to listen when I had questions and thoughts. I would also like to thank Jonas Dahlqvist for always having a door open and making sure that I integrated successfully into my new environment. Damiano Varagnolo for giving me the tools to succeed after the university, his expertise and passion for teaching control theory has greatly helped me taking on this challenge. Lastbutnotleast,IwouldliketothankmybeautifulJennywhoalwayslistenedtomyendlesstalking about Kalman filters and Hall sensors, thank you for your love and support. Acronyms ADC Analog to Digital Converter BLDCM BrushLess Direct Current Motor BW BandWidth CCS Code Composer Studio COG Center Of Gravity DAC Digital to Analog Converter EKF Extended Kalman Filter FLC Fuzzy Logic Control FOC Field Oriented Control GPIO General Purpose Input Output IDE Integrated Development Environment KVL Kirchhoff’s Voltage Law LED Light Emitting Diode MCU Micro Controller Unit MRAC Model Reference based Adaptive Controller ODE Ordinary Differential Equation PFC Power Factor Correction PI Proportional Integral PID Proportional Integral Derivative PM Permanent Magnet PMSM Permanent Magnet Synchronous Motor RDC Resolver to Digital Converter RK Runge Kutta RPM Revolutions Per Minute SPI Serial Peripheral Interface SPWM Sinusoidal Pulse Width Modulation SS Steady State SVPWM Space Vector Pulse Width Modulation THD Total Harmonic Distortion UKF Unscented Kalman Filter USB Universal Serial Bus Contents 1 Introduction 1 1.1 Objectives & Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 I Theory 4 2 Sensors 5 2.1 Hall effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Analog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2 Digital . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.3 Magnetic considerations . . . . . . . . . . . . . . . . . . . . . . 9 2.1.4 Placement on Motor . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Resolver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.1 Resolver to Digital Converter . . . . . . . . . . . . . . . . . . . 15 2.3 Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.1 Incremental vs Absolute . . . . . . . . . . . . . . . . . . . . . . 16 2.3.2 Optical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.3 Capacitive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.5 Chosen Sensors to Evaluate . . . . . . . . . . . . . . . . . . . . . . . . 19 3 Sensorless Control 20 4 Brushless Electric Motor 21 4.1 Motor Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2 Saliency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.3 Mutual Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.4 Electrical Degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.5 Motor Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.6 Torque Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.7 Back Electromotive Force . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.8 Motor Winding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.9 BLDCM vs PMSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.9.1 Back EMF Shape . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.9.2 Electromagnetic Torque . . . . . . . . . . . . . . . . . . . . . . 30 4.10 Motor reference frame . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.10.1 a-b-c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.10.2 α-β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.10.3 d-q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.11 Dynamic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.11.1 Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.11.2 State Space Model . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.11.3 Flux Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.11.4 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5 Commutation 43 5.1 Inverter Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.2 Trapezoidal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.3 Sinusoidal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.4 Space Vector Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6 Speed Control Methods 47 6.1 Ziegler-Nichols Tuning Process . . . . . . . . . . . . . . . . . . . . . . . 49 6.2 PI Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.3 Hybrid Fuzzy PI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.4 Adaptive Fuzzy PI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.5 Field Oriented Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 7 Speed Estimation 61 7.1 Hall sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 7.2 Linear Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 7.3 Modified Fourth Order Runge-Kutta Extrapolation . . . . . . . . . . . 63 7.4 Back-EMF Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 7.5 Back-EMF Observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 7.6 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 7.7 Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 68 7.8 Unscented Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7.9 Luenberger Observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 7.10 MRAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 8 Initial Position & Start-up Methods 75 8.1 Open Loop Start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 8.2 Inductance Comparison Method . . . . . . . . . . . . . . . . . . . . . . 75 8.3 Extended Inductance Comparison Method . . . . . . . . . . . . . . . . 78 II Simulations 80 9 Chosen Methods to Simulate 81 10 Simulation Model 84 11 Evaluation Strategy 86 12 Control Methods Simulation Results 92 12.1 Ziegler-Nichols Tuning Method . . . . . . . . . . . . . . . . . . . . . . 92 12.2 PI Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 12.3 Hybrid Fuzzy PI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 12.4 Adaptive Fuzzy PI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 13 Speed Estimation Simulation Results 99 13.1 Hall sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 13.2 Back-EMF Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 13.3 Linear Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 13.4 Modified Fourth Order Runge-Kutta Extrapolation . . . . . . . . . . . 106 13.5 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 13.6 Unscented Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 117 13.7 MRAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 14 Comparison & Evaluation of Simulation Results 122 14.1 Control Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 14.2 Speed Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 14.3 Extended Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 III Verification by Test 128 15 Chosen Methods to Verify & Verification Strategy 129 16 Hardware Setup 130 16.1 Test Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 16.1.1 BLWS235D-160V-3000 . . . . . . . . . . . . . . . . . . . . . . . 131 16.1.2 HDD 09N-Ma-A-A-A-AAA . . . . . . . . . . . . . . . . . . . . 132 16.2 TI High Voltage Motor Developers Kit . . . . . . . . . . . . . . . . . . 133 16.3 F28035 Piccolo controlCARD . . . . . . . . . . . . . . . . . . . . . . . 133 16.4 C2000 Resolver to Digital Kit . . . . . . . . . . . . . . . . . . . . . . . 134 16.5 Mechanical Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 17 Software Setup 135 18 Test Results 136 IV Final Discussions & Conclusions 137 19 Discussion & Future work 138 20 Conclusion 143 Appendix A: MATLAB Code 148 Appendix B: Simulink Models 165
Description: