Communications in Computer and Information Science 275 EditorialBoard SimoneDinizJunqueiraBarbosa PontificalCatholicUniversityofRiodeJaneiro(PUC-Rio), RiodeJaneiro,Brazil PhoebeChen LaTrobeUniversity,Melbourne,Australia AlfredoCuzzocrea ICAR-CNRandUniversityofCalabria,Italy XiaoyongDu RenminUniversityofChina,Beijing,China JoaquimFilipe PolytechnicInstituteofSetúbal,Portugal OrhunKara TÜBI˙TAKBI˙LGEMandMiddleEastTechnicalUniversity,Turkey Tai-hoonKim KonkukUniversity,Chung-ju,Chungbuk,Korea IgorKotenko St.PetersburgInstituteforInformaticsandAutomation oftheRussianAcademyofSciences,Russia DominikS´le˛zak UniversityofWarsawandInfobright,Poland XiaokangYang ShanghaiJiaoTongUniversity,China Leszek A. Maciaszek Kang Zhang (Eds.) Evaluation of Novel Approaches to Software Engineering 6th International Conference, ENASE 2011 Beijing, China, June 8-11, 2011 Revised Selected Papers 1 3 VolumeEditors LeszekA.Maciaszek WrocławUniversityofEconomics InstituteofBusinessInformatics 53-345Wrocław,Poland and MacquarieUniversity DepartmentofComputing Sydney,NSW2109,Australia email:[email protected] KangZhang UniversityofTexasatDallas ErikJonssonSchoolofEngineering andComputerScience 800W.CampbellRoad Richardson,TX75080-3021,USA E-mail:[email protected] ISSN1865-0929 e-ISSN1865-0937 ISBN978-3-642-32340-9 e-ISBN978-3-642-32341-6 DOI10.1007/978-3-642-32341-6 SpringerHeidelbergDordrechtLondonNewYork LibraryofCongressControlNumber:2012954395 CRSubjectClassification(1998):D.2,F.3,D.3,C.2,H.4,K.6 ©Springer-VerlagBerlinHeidelberg2013 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,re-useofillustrations,recitation,broadcasting, reproductiononmicrofilmsorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9,1965, initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsareliable toprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelaws andregulationsandthereforefreeforgeneraluse. Typesetting:Camera-readybyauthor,dataconversionbyScientificPublishingServices,Chennai,India Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface The mission of the ENASE (Evaluation of Novel Approaches to Software Engineering)conferencesis tobe aprime internationalforumfordiscussingand publishingresearchfindingsandITindustryexperienceswithrelationtoevalua- tionofnovelapproachestosoftwareengineering.Bycomparingnovelapproaches with established traditional practices and by evaluating them against software qualitycriteria,theENASEconferencesadvanceknowledgeandresearchinsoft- ware engineering, identify the most hopeful trends, and propose new directions forconsiderationbyresearchersandpractitionersinvolvedinlarge-scalesoftware development and integration. This CCIS volume contains papers of the 6th edition of ENASE held in Beijing, China.The previous conferences took place in Erfurt,Germany (2006), Barcelona, Spain (2007), Madeira, Portugal (2008), Milan, Italy (2009), and Athens,Greece (2010).There is a growingresearchcommunity aroundENASE, and it is increasingly recognized as an important international conference for researchers and practitioners to review and evaluate emerging as well as estab- lishedSEmethods,practices,architectures,technologiesandtools.TheENASE conferences host also keynotes, workshops,and panels. For the 6th ENASE in Beijing we received 75 papers from 31 countries, of which 55 were regular papers and 20 were short or position papers. The reviewing process was carried out by about 80 members of the ENASE 2011 ProgramCommittee.Thefinaldecisionofacceptance/rejectionwastakenbased onthereviewsreceivedbythePCCo-chairsLeszekMaciaszekandKangZhang. Borderlinepapers were subjected to extra considerationsand discussions before decisions were reached. ForENASE2011,wefinallyaccepted18fullpapers(withscores4andabove; max. 6) and 10 short papers. The relevant acceptance statistics for full papers are:32.7%(basedon55submissions)or24%(basedon75submissions)—clearly, theformerpercentageismoretruthful.Theacceptancerateconfirmsthedesireof ENASE conferences to ensure a high quality ofpresented papers andassociated events. All six ENASE conferences had the acceptance rate for full papers at around or below 30%. Papers accepted for ENASE 2011 were presented in nine categories: 1. Software Quality and Testing 2. Requirements Engineering 3. Programming 4. Software Processes and Methods VI Preface 5. Software Tools and Environments 6. Business Process and Services Modeling 7. Software Components 8. Software Effort and Processes 9. Socio-Technical Aspects of Software Development November 2011 Leszek Maciaszek Kang Zhang Organization Conference Chair Joaquim Filipe Polytechnic Institute of Setu´bal / INSTICC, Portugal Program Co-chairs Leszek Maciaszek MacquarieUniversity,Australia/Universityof Economics, Poland Kang Zhang The University of Texas at Dallas, USA Organizing Committee S´ergio Brissos INSTICC, Portugal Patr´ıcia Alves INSTICC, Portugal Helder Coelhas INSTICC, Portugal Vera Coelho INSTICC, Portugal Andreia Costa INSTICC, Portugal Patr´ıcia Duarte INSTICC, Portugal Bruno Encarnac¸˜ao INSTICC, Portugal Liliana Medina INSTICC, Portugal Carla Mota INSTICC, Portugal Raquel Pedrosa INSTICC, Portugal Vitor Pedrosa INSTICC, Portugal Daniel Pereira INSTICC, Portugal Cla´udia Pinto INSTICC, Portugal Jos´e Varela INSTICC, Portugal Pedro Varela INSTICC, Portugal Program Committee Colin Atkinson, Germany Rebeca Cortazar,Spain Farokh B. Bastani, USA Massimo Cossentino, Italy Giuseppe Berio, France Philippe Dugerdil, Switzerland Ghassan Beydoun, Australia Angelina Espinoza, Spain Maria Bielikova, Slovak Republic Joerg Evermann, Canada Dumitru Burdescu, Romania Maria Joa˜o Ferreira, Portugal Wojciech Cellary, Poland Agata Filipowska, Poland Panagiotis Chountas, UK Juan Garbajosa, Spain VIII Organization Janusz Getta, Australia SaschaMueller-Feuerstein, Germany Cesar Gonzalez-Perez,Spain Johannes Mu¨ller, Germany Ian Gorton, USA Anne Hee Hiong Ngu, USA Jeff Gray, USA Andrzej Niesler, Poland Hans-GerhardGross, The Netherlands Janis Osis, Latvia Brian Henderson-Sellers,Australia Mieczyslaw Owoc, Poland Rene Hexel, Australia Marcin Paprzycki,Poland Charlotte Hug, France Jeffrey Parsons,Canada Bernhard G. Humm, Germany Oscar Pastor, Spain Zbigniew Huzar, Poland Naveen Prakash, India Akira Imada, Belarus Lutz Prechelt, Germany Warwick Irwin, New Zealand Elke Pulvermueller, Germany Stefan Jablonski, Germany Rick Rabiser, Austria Slinger Jansen, The Netherlands Gil Regev, Switzerland Monika Kaczmarek, Poland Artur Rot, Poland Wan Kadir, Malaysia Francisco Ruiz, Spain Robert S. Laramee, UK Krzysztof Sacha, Poland Xabier Larrucea, Spain Motoshi Saeki, Japan George Lepouras, Greece Heiko Schuldt, Switzerland Pericles Loucopoulos, UK Manuel Serrano,Spain Graham Low, Australia Jerzy Surma, Poland Jian Lu, China Stephanie Teufel, Switzerland Andr´e Ludwig, Germany Rainer Unland, Germany Leszek Maciaszek, Australia Olegas Vasilecas, Lithuania Cristiano Maciel, Brazil Igor Wojnicki, Poland Lech Madeyski, Poland Kang Zhang, USA Auxiliary Reviewers Saquib Anwar, Canada Luca Sabatucci, Italy Roman Lukyanenko, Canada Valeria Seidita, Italy Giovanni Pilato, Italy Invited Speakers Harold Krikke Tilburg University, The Netherlands Xuewei Li Beijing Jiaotong University, China Kecheng Liu University of Reading, UK Leszek Maciaszek Macquarie University / University of Economics, Australia / Poland Yannis A. Phillis Technical University of Crete, Greece Shoubo Xu Chinese Academy of Engineering / Beijing Jiaotong University, China Yulin Zheng UFIDA, China Lida Xu Old Dominion University, USA Table of Contents Papers A Study on Software Effort Prediction Using Machine Learning Techniques...................................................... 1 Wen Zhang, Ye Yang, and Qing Wang Modularizing Different Responsibilities into Separate Parallel Hierarchies...................................................... 16 Francisco Ortin and Miguel Garcia Steering through Incentives in Large-Scale Lean Software Development .................................................... 32 Benjamin S. Blau, Tobias Hildenbrand, Rico Knapper, Athanasios Mazarakis, Yongchun Xu, and Martin G. Fassunge Comparing and Evaluating Existing Software Contract Tools .......... 49 Janina Voigt, Warwick Irwin, and Neville Churcher Continuous Improvement of Business Processes Realized by Services Based on Execution Measurement.................................. 64 Andrea Delgado, Barbara Weber, Francisco Ruiz, Ignacio Garc´ıa-Rodr´ıguez de Guzma´n, and Mario Piattini Structure Editors: Old Hat or Future Vision?........................ 82 Andreas Gomolka and Bernhard Humm A Framework for Aspectual Pervasive Software Services Evaluation..... 98 Dhaminda B. Abeywickrama and Sita Ramakrishnan ABC Architecture: A New Approach to Build Reusable and Adaptable Business Tier Components Based on Static Business Interfaces......... 114 Oscar M. Pereira, Rui L. Aguiar, and Maribel Yasmina Santos Improving Quality of Business Process Models....................... 130 Laura S´anchez-Gonz´alez, Francisco Ruiz, F´elix Garc´ıa, and Mario Piattini Team Radar: A Radar Metaphor for Workspace Awareness............ 145 Cong Chen and Kang Zhang Model-Driven Test Code Generation................................ 155 Beatriz P´erez Lamancha, Pedro Reales, Macario Polo, and Danilo Caivano X Table of Contents Comparing Goal-Oriented Approaches to Model Requirements for CSCW ......................................................... 169 Miguel A. Teruel, Elena Navarro, V´ıctor Lo´pez-Jaquero, Francisco Montero, and Pascual Gonz´alez Towards Interdisciplinary Approach to SOA Implementations.......... 185 Zheng Li, He Zhang, and Liam O’Brien Formalisation of a Generic Extra-Functional Properties Framework..... 203 Kamil Jeˇzek and Premek Brada Author Index.................................................. 219 A Study on Software Effort Prediction Using Machine Learning Techniques WenZhang,YeYang,andQingWang LaboratoryforInternetSoftwareTechnologies,InstituteofSoftware ChineseAcademyofSciences,Beijing100190,P.R.China {zhangwen,ye,wq}@itechs.iscas.ac.cn Abstract. Thispaperconductsastudyonofsoftwareeffortpredictionusingma- chinelearningtechniques.Bothsupervisedandunsupervisedlearningtechniques areemployedtopredictsoftwareeffortusinghistoricaldataset.Theunsupervised learningask-medoidsclusteringequippedwithdifferentsimilaritymeasuresis usedtoclusterprojectsinhistoricaldataset.ThesupervisedlearningasJ48de- cision tree, back propagation neural network (BPNN)and na¨iveBayes is used toclassifythesoftwareprojectsintodifferenteffortclasses.Wealsoimputethe missingvaluesinthehistoricaldatasetsandthenmachinelearningtechniquesare adoptedtopredictsoftwareeffort.ExperimentsonISBSGandCSBSGdatasets demonstratethatunsupervisedlearningask-medoidsclusteringproducedapoor performance. Kulzinsky coefficient has the best performance in measuring the similarities of projects. Supervised learning techniques produced superior per- formances than unsupervised learning techniques in software effort prediction. BPNNproducedthebestperformanceamongthethreesupervisedlearningtech- niques.Missingdataimputationimprovedtheperformancesofbothunsupervised andsupervisedlearningtechniquesinsoftwareeffortprediction. Keywords: Effort prediction, Machine learning, k-medoids, BPNN, Missing imputation. 1 Introduction Thetaskofsoftwareeffortpredictionistoestimatetheneededefforttodevelopasoft- ware artifact [17]. Overestimate of software effort may lead to tight schedule of de- velopmentandfaultsmayleaveinthesystemafterdelivery,whereasunderestimateof effortmay leadto delayofdeliverofsystem andcomplainsfromcustomers.Theim- portance of software developmenteffort prediction has motivated the construction of predictionmodelstoestimatetheneededeffortasaccurateaspossible. Currentsoftwareeffortpredictiontechniquescanbecategorizedintofourtypes:em- pirical,regression,theory-based,andmachinelearningtechniques[2].MachineLearn- ing (ML) techniques learn patterns (knowledge) from historical project data and use these patterns for effortprediction, such as artificial neural network (ANN), decision tree,andnaiveBayes.Recentstudies[2][3]providedetailedreviewsofdifferentstud- iesonpredictingsoftwaredevelopmenteffort. L.A.MaciaszekandK.Zhang(Eds.):ENASE2011,CCIS275,pp.1–15,2013. (cid:2)c Springer-VerlagBerlinHeidelberg2013