UNLV Theses, Dissertations, Professional Papers, and Capstones 2009 EEvvaalluuaattiioonn ooff eexxttrraaccttiioonn cchhrroommaattooggrraapphhyy rreessiinnss ffoorr rraappiidd aaccttiinniiddee aannaallyyssiiss Julie Marisa Gostic University of Nevada Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Nuclear Commons, and the Radiochemistry Commons RReeppoossiittoorryy CCiittaattiioonn Gostic, Julie Marisa, "Evaluation of extraction chromatography resins for rapid actinide analysis" (2009). UNLV Theses, Dissertations, Professional Papers, and Capstones. 93. http://dx.doi.org/10.34870/1380716 This Dissertation is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Dissertation has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. EVALUATION OF EXTRACTION CHROMATOGRAPHY RESINS FOR RAPID ACTINIDE ANALYSIS By Julie Marisa Gostic Bachelor of Arts College of Charleston 2000 Masters of Science University of Massachusetts, Lowell 2004 A dissertation submitted in partial fulfillment of the requirements for the Doctor of Philosophy Degree in Radiochemistry Department of Chemistry College of Science Graduate College University of Nevada, Las Vegas December 2009 THE GRADUATE COLLEGE We recommend that the dissertation prepared under our supervision by Julie Marisa Gostic entitled Evaluation of Extraction Chromatography Resins for Rapid Actinide Analysis be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Radiochemistry Kenneth Czerwinski, Committee Chair Kenton Moody, Committee Member Gary Cerefice, Committee Member Ralf Sudowe, Graduate Faculty Representative Ronald Smith, Ph. D., Vice President for Research and Graduate Studies and Dean of the Graduate College December 2009 ii ABSTRACT Evaluation of Extraction Chromatography Resins for Rapid Actinide Analysis by Julie M. Gostic Dr. Kenneth R. Czerwinski, Examination Committee Chair Professor of Chemistry Chair of the Department of Radiochemistry University of Nevada, Las Vegas In this work, physical and chemical parameters associated with extraction chromatography separation procedures were investigated for rapid actinide analysis. A vacuum box system was designed in-house and was characterized in terms of flow rate reproducibility, matrix effects on flow rate for sequential elution, and actinide separation efficiency using different types of resin (TEVA, DGA and TRU). Results indicated that the columnar kinetics of the resins were sufficiently rapid to run high purity samples through the unit over a wide range of flow rates for all resin types. Single matrix interferences at a metal ion ratio of 1:106 relative to the actinide of interest affected separation efficiency with some resins and a flow rate dependency was observed. After parameter optimization, the system was used to isolate Pu for isotopic analysis from dissolved particles from a nuclear warhead that was destroyed in a fire 50 years ago. Isotopic analysis was obtained by a combination of radiometric and mass-based methods using cerium fluoride (CeF ) micro-precipitation for sample preparation. The results of these 3 experiments were compared to historical record surrounding the source of the particles. iii ACKNOWLEDGEMENTS I would like to take this opportunity to express my sincerest gratitude to those individuals that helped me reach this milestone in my educational career. First, I would like to thank my thesis advisor, Ken Czerwinski for having the foresight and tenacity to build a multi-disciplinary radiochemistry program at UNLV. I have benefited from his hard work and dedication to the program and would like to thank him in particular for his efforts. I would also like to thank the members of my thesis committee for their patience and support throughout my research and writing. In particular, I would like to thank Ken Moody for his thoughtful commentary and hours of time spent reviewing this body of work. Gary Cerefice and Ralf Sudowe have also been very influential in my professional growth and development and I thank them for their guidance and support throughout my graduate career at UNLV. I could not have accomplished this without the love and support of friends and family. To my husband, I am eternally grateful for your unwavering support and willingness to complete our PhDs together. I would like to dedicate this work to those on whose shoulders I stand, Linda Jones, Mike Ryan, Nancy Carder, Sy Baron, David Borsook, Jeanette Cohan, Lino Becerra, Clay French, Mark Tries, Jim Eagan, and Dave Medich. iv TABLE OF CONTENTS ABSTRACT .......................................................................................................... iii ACKNOWLEDGEMENTS .....................................................................................iv LIST OF TABLES ............................................................................................... viii LIST OF FIGURES ............................................................................................... x CHAPTER 1 INTRODUCTION .................................................................. 1 1.1 Background ............................................................................................... 1 1.2 Bulk Sample Processing Through Automation .......................................... 3 1.3 Method Selection ...................................................................................... 3 1.4 Source Preparation and Analysis .............................................................. 5 1.5 Thesis Organization .................................................................................. 6 CHAPTER 2 INSTRUMENTATION AND METHODS................................ 9 2.1 Introduction ............................................................................................... 9 2.2 Chemical Separations ............................................................................... 9 2.3 Radionuclide Standards .......................................................................... 12 2.3.1 Americium ................................................................................... 12 2.3.2 Plutonium .................................................................................... 12 2.4 Cerium Fluoride Precipitation Sample Preparation ................................. 17 2.5 Alpha Spectrometry ................................................................................. 18 2.5.1 Detector Calibration .................................................................... 19 2.5.2 Data Analysis .............................................................................. 23 2.6 Gamma Spectrometry ............................................................................. 23 2.6.1 Detector Calibration .................................................................... 24 2.6.2 Data Analysis .............................................................................. 26 2.7 Liquid Scintillation Counting .................................................................... 27 2.7.1 LSC Sample Preparation ............................................................ 27 2.7.2 LSC Counting Method ................................................................. 28 2.7.3 LSC Efficiency Calibration: Mineral Acid Affects ......................... 29 2.7.4 LSC Analysis .............................................................................. 33 2.8 Inductively Coupled Plasma-Atomic Emission Spectrometry .................. 33 2.8.1 Sample Preparation .................................................................... 34 2.8.2 Instrument Settings ..................................................................... 35 2.8.3 Analyte Analysis ......................................................................... 37 2.9 Inductively Coupled Mass Spectrometry ................................................. 39 2.9.1 Sample Preparation .................................................................... 40 2.9.2 Instrument Settings ..................................................................... 40 2.9.3 Analyte Parameters .................................................................... 41 2.9.4 Analyte Interferences .................................................................. 42 v CHAPTER 3 EXTRACTION CHROMATOGRAPHY PERFORMANCE AMERICIUM SEPARATIONS ............................................ 43 3.1 Abstract ................................................................................................... 43 3.2 Introduction ............................................................................................. 44 3.3 Materials and Methods ............................................................................ 47 3.3.1 Vacuum Extraction System ......................................................... 47 3.3.2 Reagents .................................................................................... 48 3.3.3 Radionuclide Standards .............................................................. 49 3.3.4 Flow Rate Characterization ......................................................... 50 3.3.5 Americium Separation ................................................................. 50 3.3.6 Elemental Matrix Interference Effects ......................................... 51 3.4 Results and Discussions ......................................................................... 53 3.4.1 Vacuum Extraction System Characterization .............................. 53 3.4.2 Effects of Flow Rate on Americium Extractions .......................... 60 3.4.3 Sorption of Elemental Matrix Interferences ................................. 62 3.4.4 TRU Resin Capacity of Selected Metal Ions ............................... 65 3.4.5 DGA Resin Capacity for Selected Metal Ions ............................. 67 3.4.6 Effects of Elemental Matrix Interferences on 241Am Separation Efficiency .................................................................................... 69 3.5 Concluding Remarks ............................................................................... 72 CHAPTER 4 EXTRACTION CHROMATOGRAPHY PERFORMANCE - PLUTONIUM SEPARATIONS ............................................ 73 4.1 Abstract ................................................................................................... 73 4.2 Introduction ............................................................................................. 73 4.3 Materials and Methods ............................................................................ 77 4.3.1 Vacuum Extraction System ......................................................... 77 4.3.2 Reagents .................................................................................... 77 4.3.3 Radionuclide Standards .............................................................. 78 4.3.4 Flow Rate Characterization ......................................................... 79 4.3.5 Plutonium Separation .................................................................. 79 4.3.6 Elemental Matrix Interference Effects ......................................... 81 4.4 Results and Discussions ......................................................................... 83 4.4.1 Vacuum Extraction System Characterization .............................. 83 4.4.2 Effects of Flow Rate on Plutonium Extractions ........................... 84 4.4.3 Optimization of Redox Reagent Addition .................................... 86 4.4.4 Sorption of Elemental Matrix Interferences ................................. 88 4.4.5 Effects of Elemental Matrix Interferences on 239Pu Separation Efficiency ............................................................................................. 90 4.5 Concluding Remarks ............................................................................... 94 CHAPTER 5 HOT PARTICLE DISSOLUTION AND PLUTONIUM ISOTOPIC ANALYSIS ........................................................ 96 5.1 Abstract ................................................................................................... 96 5.2 Introduction ............................................................................................. 96 5.3 Materials and Methods .......................................................................... 100 vi 5.3.1 Reagents .................................................................................. 100 5.3.2 Particle Dissolution ................................................................... 101 5.3.3 Chemical Separations ............................................................... 102 5.3.4 Sample Preparation for Plutonium Isotopic Analysis ................ 104 5.3.5 Plutonium Isotopic Analysis – Gamma and Alpha Spectrometry ........................................................................................................... 105 5.3.6 Elemental Analysis .................................................................... 110 5.4 Results and Discussion ......................................................................... 112 5.4.1 Plutonium Isotopic Composition – Historical Record................. 112 5.4.2 Particle Dissolution ................................................................... 113 5.4.3 Bulk Activity Ratios ................................................................... 117 5.4.4 Chemical Separations ............................................................... 118 5.5 Plutonium Isotopic Composition ............................................................ 121 5.5.1 Relative Abundance of 240Pu .................................................... 121 5.5.2 Relative Abundance of 238Pu .................................................... 123 5.5.3 Relative Abundance of 241Pu .................................................... 123 5.5.4 Elemental Analysis .................................................................... 126 5.6 Concluding Remarks ............................................................................. 129 CHAPTER 6 PLUTONIUM ISOTOPIC STANDARD DEVELOPMENT FOR GAMMA, ALPHA AND MASS SPECTROMETRY ............ 132 6.1 Abstract ................................................................................................. 132 6.2 Introduction ........................................................................................... 133 6.3 Materials and Methods .......................................................................... 136 6.3.1 Reagents .................................................................................. 136 6.3.2 Radionuclide Standard .............................................................. 136 6.3.3 Sample Preparation .................................................................. 139 6.3.4 Cerium Fluoride Co-Precipitation .............................................. 141 6.3.5 Analysis by ICP-MS .................................................................. 142 6.3.6 Plutonium Isotopic Analysis – Gamma Spectrometry ............... 149 6.3.7 Plutonium Isotopic Analysis – Alpha Spectrometry ................... 151 6.4 Results and Discussion ......................................................................... 154 6.4.1 Alpha Analysis .......................................................................... 154 6.4.2 Gamma Analysis ....................................................................... 161 6.4.3 Mass Analysis – Aqueous Solution ........................................... 164 6.4.4 Mass Analysis – CeF Filter ...................................................... 169 3 6.5 Concluding Remarks ............................................................................. 178 CHAPTER 7 CONCLUDING REMARKS AND REFLECTIONS ON FUTURE RESEARCH ...................................................... 179 BIBLIOGRAPHY ............................................................................................... 187 VITA ................................................................................................................. 202 vii LIST OF TABLES Table 1 Extraction chromatography resins used for actinide separations ..... 10 Table 2 Plutonium isotopic content of aqueous standard (Isotope Products, 1198-16-1) ....................................................................................... 14 Table 3 Efficiency calibration source information .......................................... 20 Table 4 Alpha energy ROIs used for data analysis ....................................... 23 Table 5 Photon energy and radiative yield information used for determining Pu isotopic ratios and Am separation efficiency by gamma spectrometry. ................................................................................... 25 Table 6 ICP-AES calibration standard preparation ....................................... 36 Table 7 Matrix ion photon wavelengths used to determine signal intensity on the ICP-AES. ................................................................................... 38 Table 8 Plutonium m/z ratios used for ICP-MS analysis for both aqueous and CeF co-precipitated samples. ......................................................... 41 3 Table 9 Method elution matrices used for 241Am separation. ........................ 51 Table 10 Matrix ion photon wavelengths used to determine signal intensity on the ICP-AES. ................................................................................... 53 Table 11 241Am separation efficiency for TRU and DGA resins in the presence of selected ions. ............................................................................... 69 Table 12 Method elution matrices used for 239Pu separation on TEVA resin .. 80 Table 13 Matrix ion photon wavelengths used to determine signal intensity on the ICP-AES. ................................................................................... 82 Table 14 Redox reagent aging effects on Pu efficiency on TEVA resin. ......... 87 Table 15 Plutonium activity percent recovered in each collected method fraction determined by LSC counting in the presence of selected ions ......................................................................................................... 92 Table 16 Plutonium isotopic composition of the nuclear missile in 1958. ....... 99 Table 17 Detection efficiency for selected photons using the broad energy germanium (BEGe) spectrometry system. ..................................... 108 Table 18 Photon wavelengths used to determine signal intensity for the ICP- AES ............................................................................................... 111 Table 19 Activity recovered from hot particle dissolutions vs. estimated activity from non-destructive gamma spectrometry analysis. ..................... 115 Table 20 Sample geometry dependence on high resolution gamma spectrometry detection efficiency. .................................................. 116 Table 21 Decay corrected plutonium isotopic standard information. ............ 138 Table 22 Total activity and mass values based on 239Pu for each sample solution within a set of 7. Four sets of aqueous solutions were prepared, 2 for CeF and 2 for ICP-MS. ......................................... 140 3 Table 23 Plutonium m/z ratios used for ICP-MS analysis for both aqueous and CeF co-precipitated samples. ....................................................... 143 3 Table 24 Operating parameters for the CETAC laser ablation system, LSX500 and ELAN ICP-MS. ........................................................................ 148 viii Table 25 Detection efficiency for selected photons emitted in the decays of the indicated Pu isotopes using the broad energy germanium (BEGe) spectrometry system. ..................................................................... 150 Table 26 Alpha spectrometry isotopic analysis prior to and after 241Am separation. ..................................................................................... 155 Table 27 Gamma spectrometry isotopic analysis prior to and after 241Am separation. ..................................................................................... 163 Table 28 Aqueous ICP-MS detection limits for the Pu isotopic m/z ratios. ... 165 ix
Description: