ebook img

Evaluation and optimization of PCR primers for selective and quantitative detection of marine PDF

13 Pages·2017·0.81 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Evaluation and optimization of PCR primers for selective and quantitative detection of marine

ApplMicrobiolBiotechnol(2017)101:5847–5859 DOI10.1007/s00253-017-8338-x METHODSANDPROTOCOLS Evaluation and optimization of PCR primers for selective and quantitative detection of marine ANME subclusters involved in sulfate-dependent anaerobic methane oxidation PeerH.A.Timmers1,2&H.C.AuraWidjaja-Greefkes1&CarolineM.Plugge1,2& AlfonsJ.M.Stams1,3 Received:22February2017/Revised:7May2017/Accepted:8May2017/Publishedonline:15June2017 #TheAuthor(s)2017.Thisarticleisanopenaccesspublication Abstract Sincethediscoverythatanaerobicmethanotrophic From these qPCR tests, only certain combinations seemed archaea (ANME) are involved in the anaerobic oxidation of suitableforselectiveamplification.Afteroptimizationofthese methane coupled to sulfate reduction in marine sediments, primer sets, we obtained valid primer combinations for the different primers and probes specifically targeting the 16S selective detection and quantification of ANME-1, ANME- rRNAgeneofthesearchaeahavebeendeveloped.Microbial 2a/b,andANME-2cinsampleswheredifferentANMEsub- investigation of the different ANME subtypes (ANME-1; typesandpossiblymethanogenscouldbepresent.Asaresult ANME-2a,b,andc;andANME-3)wasmainlydoneinsed- of this work, we propose a standard workflow to facilitate iments where specific subtypes of ANME were highly selectionofsuitableprimersforqPCRexperimentsonnovel enrichedandmethanogeniccellnumberswerelow.Indiffer- environmentalsamples. entsedimentswithhigherarchaealdiversityandabundance,it is important that primers and probes targeting different Keywords Anaerobicoxidationofmethane .AOM . ANME subtypes are very specific and do not detect other Methanotrophs .ANME .qPCR .Primers ANMEsubtypesormethanogensthatarealsopresent.Inthis study, primers and probes that were regularly used in AOM studiesweretestedinsilicooncoverageandspecificity.Most Introduction ofthepreviouslydevelopedprimersandprobeswerenotspe- cificfortheANMEsubtypes,therebynotreflectingtheactual Atmospheric methane (CH ) is the second most important 4 ANMEpopulationincomplexsamples.Selectedprimersthat greenhouse gas on earth and accountsfor 20% of all the in- showedgoodcoverageandhighspecificityforthesubclades fraredradiationcapturedintheatmosphere(Daleetal.2006). ANME-1,ANME-2a/b,andANME-2cwerethoroughlyval- Marine sediments produce significant amounts of methane, idated using quantitative polymerase chain reaction (qPCR). and most methane derives from organic matter degradation andtoalesserextentfromthermogenicandgeochemicalpro- cesses (Reeburgh 2007; Thauer and Shima 2008). The pro- Electronicsupplementarymaterial Theonlineversionofthisarticle (doi:10.1007/s00253-017-8338-x)containssupplementarymaterial, ducedmethaneonlypartlyreachesthewatercolumnthrough whichisavailabletoauthorizedusers. seeps,vents,andmudvolcanoesorviadiffusionfromanoxic sediments and dissolution of methane clathrate hydrates. * PeerH.A.Timmers Morethan90%oftheannuallyproducedmethaneisoxidized [email protected] coupledtosulfatereduction(SR)inanoxicmarinesediments before it reaches the hydrosphere (reviewed in Hinrichs and 1 LaboratoryofMicrobiology,WageningenUniversity,Stippeneng4, Boetius 2002; Knittel and Boetius 2009; Reeburgh 2007). 6708WEWageningen,theNetherlands Anaerobic oxidation of methane (AOM) coupled to SR was 2 CentreofExcellenceforSustainableWaterTechnology,Wetsus, firstdiscoveredinmarinesedimentsatthezonewheregradi- Oostergoweg9,8911MALeeuwarden,theNetherlands entsofmethaneandsulfateoverlap,thesulfate-methanetran- 3 CentreofBiologicalEngineering,UniversityofMinho,Campusde sition zone (SMTZ) (Martens and Berner 1974; Reeburgh Gualtar,4710-057Braga,Portugal 1976). Molecular studies showed that most archaeal 16S 5848 ApplMicrobiolBiotechnol(2017)101:5847–5859 rRNA gene sequences that were retrieved from marine systems and microbial mats where the in situ archaeal com- methane-oxidizing environments belonged to specific clades munitywasinvestigatedusing16SrRNAgeneanalysis.The in the Euryarchaeota that were named anaerobic majority of these previously developed widely used probes methanotrophic archaea (ANME) (Hinrichs et al. 1999; and primers such as EelMS932 (Boetius et al. 2000), Boetius et al. 2000; Orphan et al. 2001). In marine environ- ANME-1-350 (Boetius et al. 2000), ANME2a-647, ANME- ments,threecladesofANMEwereidentifiedandthesewere 2c-622,andANME-2c-760(Knitteletal.2005)wereindeed namedANME-1(consistingofsubclustersaandb),ANME-2 suitabletostudyarchaeainvolvedinAOMintheseenviron- (consisting of subclusters a, b, and c), and ANME-3. The ments.However,itisnotknowniftheseprobesandprimers ANME-1 cluster is related to Methanomicrobiales and capturethefulldiversitywithinANMEcladesandiftheyare Methanosarcinales but forms a separate cluster (Hinrichs specificforcertainANMEcladesthatoccurinotherenviron- et al. 1999), ANME-2 are related to cultivated members of ments.TheANME-3subtypehassofaronlybeenreportedto the Methanosarcinales (Hinrichs and Boetius 2002), and occurinsomemudvolcanoes(Lösekannetal.2007;Niemann ANME-3 are most related to Methanococcoides spp. et al. 2006; Omoregie et al. 2008) whereas in most marine (Knitteletal.2005).ThesubclustersANME-2aandANME- sediments, the ANME subtypes ANME-1, ANME-2a, 2b were subdivided, but they form a coherent clade that is ANME-2b, and ANME-2c and different methanogens are clearlyseparatedfromANME-2c,andtheyarethereforeoften present and show overlapping regions of occurrence clusteredasANME-2a/b(Timmersetal.2017)(Fig.1).The (Nunouraetal.2006;Orcuttetal.2005;Orphanetal.2004; sequencesderivedfromclonelibrariesofthefirststudieswere Pachiadakietal.2011;Roalkvametal.2011,2012;Yanagawa usedtodevelopprobesforfluorescenceinsituhybridization etal.2011).Therefore,indifferentmarinesedimentsthathar- (FISH)andprimersforquantitativePCR(qPCR)-basedanal- borahighdiversityofANMEandmethanogens,itisimpor- ysis.Theseprobesandprimersweremainlyusedtostudyseep tantthatprimersandprobestargetingANMEareveryspecific a b Fig.1 aThelowestpercentageof16SrRNAgenesequencesimilarity AOM performing clades (white). Using 1291 sequences from the between and within ANME clades and the GoM-Arc I clade (that SILVASSUrefNR99database(release119.1)(Quastetal.2013),the containedANME-2d).Similaritieswerecalculatedusingallsequences tree was constructed with the ARB software package (version arb- ofthespecificcladesfromtheSILVA16SrRNAdatabaseversionSSU 6.0.1.rev12565) (Ludwig et al. 2004). Trees (bootstrapping value of r122RefNR(Quastetal.2013)withthedistancematrixmethodofthe 1000trees)werecalculatedwiththeARBneighbor-joiningmethodwith ARBsoftwarepackagewithsimilaritycorrection(Ludwigetal.2004).b terminalfilteringandtheJukes-Cantorcorrection.Crenarchaeotagroup Phylogenetictreeoffulllength16SrRNAgenesequencesofarchaeal C3 was used as outgroup. The scale bar represents the percentage of clades that harbor AOM performing archaea (colored) and other non- changespernucleotideposition ApplMicrobiolBiotechnol(2017)101:5847–5859 5849 anddonotdetectotherANMEsubtypesormethanogensthat MC3 and Desulfovibrio G11. We also included environ- arepresent.Itindeedappearedthatpublishedprimerpairsand mental samples from Eckernförde Bay (Baltic Sea, probeswerelesssuitedforotherenvironments,especiallyin Denmark) which is a gassy diffusive sediment different quantitative PCR (qPCR) experiments. Thus, new specific from seeps and hydrothermal vents, since methane is pro- primersemerged,butthedesign,validationandoptimization duced from in situ organic matter degradation (Treude ofprimersforthedifferentANMEsubcladesisdifficult.This et al. 2005b). This sediment contained ANME-1, is mainly because the phylogenetic distances are large be- ANME-2a/b, and ANME-2c and methanogens (Timmers tween ANMEsubclades aswellaswithinANMEsubclades et al. 2015a, b) and is therefore highly suitable to validate (Knittel and Boetius 2009). With more 16S rRNA gene se- primers and probes on specificity for the different ANME quences emerging in the database, primers and probes are subtypes. High specificity will enable studies on abun- continuously developed to detect novel ANME sequences, dance and occurrence of different ANME clades which orwhenpublishedonesweredeemednotspecific. is important for understanding global methane emissions In this study, we performed in silico validation of the from marine sediments and other methane-cycling envi- so far published primers and probes that were used to ronments. The workflow applied for evaluation and opti- study ANME that performed sulfate-dependent AOM in mization of qPCR primer sets is shown in Fig. 2. marine sediments. We therefore focussed on oligonucleo- tides that target the clusters ANME-1, ANME-2a/b (pre- vious primer sets covering only ANME-2a or only Materialsandmethods ANME-2b were not tested in this work), and ANME-2c. For each probe or primer pair, we studied the coverage of InsilicotestingofprobesandprimersReportedprobesand the target ANME groups, as well as the coverage of non- primersusedinmarineAOMstudiesweretestedforcoverage target groups. When oligonucleotides seemed suitable, andspecificity,usingtheSILVAProbeMatchandEvaluation in vitro validation and optimization was done for specific Tool-TestProbe3.0andTestprime1.0services(Klindworth amplification of ANME-1, ANME-2a/b, and ANME-2c, etal.2013)withtheSILVA16SrRNAdatabaseversionSSU using quantitative PCR. Validation of primers was done r128 Ref NR (Quast et al. 2013). Only results with 100% using cloned full-length 16S rRNA gene sequence inserts specificity (0 mismatches) were used for both probes and ofANME-1,ANME-2a/b,andANME-2carchaea,aswell primers.Primerpairsthatwereamixtureofmultipleforward as 16S rRNA gene sequence inserts of Methanococcoides orreverse primers weresubmitted witha degeneratebaseto sp. and genomic DNA from Methanosarcina mazei strain Testprime1.0.Forinstance,primerANME1-395Fconsistsof Fig.2 FlowchartofqPCR Literature Primer design approachwhenexistingornewly designedprimersareusedwitha complexAOMsample Described Tm Obtain Tm Gradient qPCR(T ) m curve analysis T target = T non target? T target ≠T non target? m m m m [DNA] gradient non-target [DNA] gradient target Sample [DNA] Sample [DNA] R2>0.99% T = T T ≠ T non- non- msamples mtarget msamples mtarget target target Efficiency ≥ < ≥90-100% Control Control [DNA] [DNA] amplified amplified Not OK OK OK Not OK 5850 ApplMicrobiolBiotechnol(2017)101:5847–5859 a mixture of three different primers and ANME1-1417R testedforspecificitywithclonedarchaealinsertsofANME-1, consistedofamixtureoftwodifferentprimersforincreasing ANME-2a/b, ANME-2c, Methanococcoides sp. (HP-Arch- coverageofthetargetANME-1group(Miyashitaetal.2009). F02, Genbank ID: HF922275.1), and genomic DNA of Therefore,wecombinedamaximumoftwoprimersineach M. mazei strain MC3 (DSM-2907) and Desulfovibrio G11 Testprimesubmissionbyreplacingonebasewiththedegen- (DSM-7057),aswellaswithacomplexenvironmentalsample eratebasethatcoversbothprimers;inthiscasewesubmitted from Eckernförde Bay (EB0). For most primer sets, the first ANME1-395F(1+2)/ANME1-1417R(1+2)andANME1- strategywastoreproducePCRconditionsasdescribedinthe 395F(3)/ANME1-1417R(1+2)toTestprime(seesequence original literature. When not satisfactory, annealing tempera- informationoftheprimersinTable1).Thisresultsinadiffer- tureswereoptimizedbyperformingagradientPCRusingall entcoveragethanwhenallthreeprimersinthisinvitroPCR oftheabovelistedtestsamples.Primersspecificforamplifica- werecombined.Primerandprobecoverageoftargetandnon- tion of ANME-1, ANME-2a/b, and ANME-2c archaea were targetgroupsisgiveninTables1and2,respectively. validated. After amplification, specificity was checked by performingameltingcurveanalysis.Thisconsistedofatem- Environmental samples and pure cultures Samples were perature gradient (72–95 °C) to obtain the specific melting taken from Eckernförde Bay (Baltic Sea) at station B (water temperatureofthePCRproducts.PCRproductswithadiffer- depth28m;position54°31′15N,10°01′28E)duringacruise ent sequence and size will show a different melting tempera- oftheGermanresearchvesselLittorinainJune2005.Thissam- ture.MeltingcurveanalysisofPCRproductsgivesanaccurate plingsitehasbeendescribedbyTreudeetal.(2005b).Sediment andsensitivemeasurementoftheamountandthedifferenceof samplesweretakenwithasmallmulticoresamplerasdescribed thePCRproductsthatwereformedascomparedtothepositive previously(Barnettetal.1984).Thecoreshadalengthof50cm control. Afterwards, PCR products were also checked for the andreached30–40cmintothesedimentbed.Immediatelyafter correctsizeona1.5%agarosegel,usingthe1-kbplusladderas sampling,thecontentofthecoreswasmixedinmultiplelarge sizereference(ThermoScientific). bottles, which were made anoxic by replacing the headspace withanoxicartificialseawater.Inthelaboratory,theheadspace wasreplacedbyCH4(0.15MPa)andbottleswerekeptat4°Cin Results thedark.M.mazeistrainMC3(DSM-2907)andDesulfovibrio G11 (DSM-7057) were obtained from the culture collection In silico testing of probes and primers In silico probe and (DSMZ,Braunschweig,Germany). primermatchingwasdonewithpublishedprobesandprimers to obtain coverage and specificity of target groups (marine DNA isolation Genomic DNAwas extracted using the Fast ANME subclades 1, 2a/b, and 2c) and non-target groups, DNAKitforSoil(MPBiomedicals,Solon,OH)accordingto allowing zero mismatches (100% specificity). In Table 1, re- themanufacturer’sprotocolwithtwo45-sbeatbeatingsteps sultsoftheprimermatching(i.e.,insilicoPCR)areshownfor using a Fastprep Instrument (MP Biomedicals, Solon, OH). all primer pairs used in previous studies. Most primer pairs Afterwards, DNAwas purified and concentrated using the showedagoodcoverageofthetargetgroupwithlittlecoverage DNA Clean & Concentrator kit (Zymo Research of non-target groups. Only primer pair ANME-2aF/ANME- Corporation, Irvine, CA). The DNA concentrations were ei- 2aR did not have a specific target and primer pair ANMEF/ ther determined with the NanoDrop® ND-2000 (Thermo 907RonlytargetedasmallfractionofANME-3.Theresultsof FisherScientific,Waltham,MA)ortheQubit2.0fluorometer probe matching, which does not match primer pairs, but (ThermoFisherScientific). matches single oligonucleotide sequences to the SILVA 16S rRNAgenedatabase,aregiveninTable2.Theseresultsshow Quantitative real-time PCR PCR amplifications were done thatasignificantamountofprobesshowzeromismatcheswith intriplicateinaBioRadCFX96system(Bio-RadLaboratories, non-target groups, sometimes with a high coverage. Primer Hercules,CA)inafinalvolumeof25μlusingiTaqUniversal pairs with highest target group coverage and least non-target SYBR Green Supermix (Bio-Rad Laboratories), 5μl of tem- group coverage were tested in vitro using quantitative PCR plateDNA,and1μlofforwardandreverseprimers(concen- (qPCR)andaregiveninboldinTable1. trationof10μM),allaccordingtothemanufacturer’srecom- mendations.Triplicatestandardcurveswereobtainedwithten- fold serial dilutions ranging from 2 × 105 (corresponding to Invitrotestingofprimers 1ngμl−1DNA)to2×10−2copiespermicroliterofplasmids containing16SrRNAarchaealinsertsofANME-1(HP-Arch- ANME-1 D10,GenbankID:HF922261.1),ANME-2a/b(HP-Arch-B12, Genbank ID: HF922244.1), and ANME-2c (HP-Arch-F07, ANME-1-337F and ANME-1-724R (Girguis et al. 2005) GenbankID:HF922279.1).Allusedprimerswereextensively showed highest coverage of the target group, with lowest ApplMicrobiolBiotechnol(2017)101:5847–5859 5851 Reference (Miyashitaetal.2009) (Miyashitaetal.2009) (Girguisetal.2005) (Lloydetal.2011)(Boetiusetal.2000)(Miyashitaetal.2009) (Miyashitaetal.2009) (Vigneronetal.2013) (Miyashitaetal.2009) (Miyashitaetal.2009) (Miyashitaetal.2009) (Vigneronetal.2013) (Girguisetal.2003) (Thomsenetal.2001) on ze(bp) old. xplanati si b e Product 1039 1039 358 219 833 833 - 866 960 960 221 268 816 playedin^hodsfor %) dis met ( e ge ar nd Covera er)3.41.0 er)0.1 er)3.30.9er)1.90.5her)3.3 er)1.90.4her)0.8 er)0.50.10 her)0.3 er)0.2her)2.6 er)1.50.4her)1.0 er)0.60.2her)3.2 er)1.81.60.5her)2.8 er)1.60.425 her)0.20.1-0.30.10.1 inthisstudyBMaterialsa Coverage(%)Non-target 162.2Methanomicrobia(othEuryarchaeota(other) 12.7Methanomicrobia(oth 168.6Methanomicrobia(othEuryarchaeota(other)140Methanomicrobia(othEuryarchaeota(other)2a/b38.9Methanosarcinales(ot Methanomicrobia(othEuryarchaeota(other)2a/b9.5Methanosarcinales(ot Methanomicrobia(othEuryarchaeota(other)0- 2b42.9Methanosarcinales(ot 2a/b3.2Methanomicrobia(oth2c48.3Methanosarcinales(ot Methanomicrobia(othEuryarchaeota(other)2c18.6Methanosarcinales(ot Methanomicrobia(othEuryarchaeota(other)2c65.6Methanosarcinales(ot Methanomicrobia(othANME-2a/bEuryarchaeota(other)2c60.2Methanosarcinales(ot Methanomicrobia(othEuryarchaeota(other)31.6pMC2A209 Methanosarcinales(otDesulfuromonadalesLokiarchaeotaMBG-D specificity(0mismatches).Primerstested sdescribedbyMiyashitaetal.(2009),see urethatwereusedforANMEdetection SequenceTarget AACTCTGAGTGCCTCCWA/ANME-CCTCACCTAAAYCCCACT AACTCTGAGTGCCCCCTA/ANME-CCTCACCTAAAYCCCACTAGGTCCTACGGGACGCAT/ANME-GGTCAGACGCCTTCGCTGCTTTCAGGGAATACTGC/ANME-TCGCAGTAATGCCAACACTGTTGGCTGTCCRGATGA/ANME-AGGTGCCCATTGTCCCAA TGTTGGCTGTCCAGATGG/ANME-AGGTGCCCATTGTCCCAA ACGGATACGGGTTGTGAGAG/-CTTGTCTCAGTCCCCGTCTCAGTGCCAGTACTAAGTGC/ANME-TTTCGAGGTAGGTACCCAANME-1411RCGCRCAAGATAGCAAGGG/ANME-CCAAACCTCACTCAGATG AGCACAAGATAGCAAGGG/ANME-CCAAACCTCACTCAGATG TCGTTTACGGCTGGGACTAC/ANME-TCCTCTGGGAAATCTGGTTG (FandRareswitched) CGCACAAGATAGCAAGGG/ANME-CGTCAGACCCGTTCTGGTA GGCUCAGUAACACGUGGA/ANME-CCGTCAATTCCTTTRAGTTT gtheonlineTestprimedatabaseofSILVA,using100% ydesignedprimers(indicatedbynumberinbrackets)a Table1Primersdescribedintheliterat Primercombination aANME1-395F(1+2)/ANME1-1417R(1+2) aANME1-395F(3)/ANME1-1417R(1+2)ANME-1-337F/ANME-1-724RANME1-628f/ANME1-830raANME2a-426F(1+2)/ANME2a-1242R aANME-2a-426F(3)/ANME2a-1242R ANME-2aF/ANME-2aRANME2b-402F/ANME2b-1251R aANME2c-AR468F(1+2)/ANME2c-AR- aANME2c-AR468F(3)/ANME2c-AR-1411R ANME2c-F/ANME-2c-R Ar-468F/AR736R ANMEF/907R AllprimercombinationsweretestedusinaTheseprimersareamixtureofseparatel 5852 ApplMicrobiolBiotechnol(2017)101:5847–5859 coverage of non-target groups in the in silico analysis product length is optimal between 70 and 200 bp), these (Table 1). This primer pair was described to be specific for primersseemtobespecificandappropriateforquantification ANME-1, had strong 3′-mismatches to closely related usingourprotocol(Fig.3),butthelowefficiencymayresult outgroups, and was previously tested for amplification with inlowsensitivitywhentargetconcentrationsarelow. Desulfobulbusspp.,Beggiatoaspp.,and28archaealandbac- terialphylotypescommonlyfoundinseepsediments(Girguis ANME-2a/b et al. 2005). Here, specificity was tested using qPCR with genomic DNA of M. mazei strain MC3 and cloned full- For specific detection of the coherent clade ANME-2a/b, length 16S rRNA gene sequences of ANME-1 and ANME- primer set ANME-2a-426-F and ANME-2a-1242-R 2casDNAtemplate.ThisrevealedthattheANME-1primer (Miyashita et al. 2009) were tested in this work. pairs were not specific under described reaction conditions. Amplification of the cloned 16S rRNA gene sequence of TheANME-1primerpairgaveaPCRproductwithgenomic ANME-1 as DNA template only occurred at concentrations DNAofM.mazeistrainMC3asDNAtemplateconsistingof of>2×10116SrRNAgenecopiesμl-1,andthePCRproduct two bands, with one having the correct fragment size of showed a different melting temperature at lower template 358bpforthisprimerset.Meltingcurveanalysisshowedthat DNAconcentrations.Onlyathighertemplateconcentrations (oneofthe)PCRproductsalsohadanidenticalmeltingtem- of ANME-1 cloned sequences of >2 × 102 16S rRNA gene peraturecomparedtothePCRproductofthepositivecontrol. copiesμl-1,thePCRproductswerevisible(Fig.S5).Cloned The primer pair also gave multiple PCR products with the ANME-2c 16S rRNA gene sequences as template DNA for cloned 16S rRNA gene sequence of ANME-2c as template this ANME-2a/b primerpair only showed a PCR product at DNA, with none of these products having the expected concentrationsof>2×10216SrRNAgenecopiesμl-1asseen ampliconsizeof358 bp(Fig.S1).Thisalsocounted for the fromthemeltingcurveanalysis,buttheproductquantitywas cloned16SrRNAgenesequenceofANME-2a/b. toolowforavisibleproductonanagarosegel(Fig.S6).The Another primer pair was described to be specific for sameresultwasobservedwithclonedMethanococcoidessp. ANME-1: ANME1-395F and ANME1-1417R) (Miyashita 16S rRNA gene sequences as template DNA. The et al. 2009). With these designed primers for ANME-1, EckernfördeBaysampleastemplateDNAresultedinaPCR Miyashita et al. (2009) tested the specificity using genomic product with a melting temperature that corresponded to the DNA from Methanogenium organophilum and PCRproductoftheclonedANME-2a/b16SrRNAgenese- Methanomicrobiummobile.DetectionofANMEinmethano- quence as template DNA. Since the environmental sample genic environments such as methanogenic sludge, rice field EB0 used in this study has a low amount of the ANME-2c soils, lotus field sediment, and natural gas fields was also subtype(Timmersetal.2015a,b),thisprotocolcanbeapplied performed(Miyashitaetal.2009).However,underthereport- forthisspecificsample(Fig.3).Althoughthecoverageofthis edconditionsthatwereappliedtoourEckernfördeBaysam- primersetisnotoptimal(±38%),otherpublishedANME-2a/b ples,thePCRefficiencywiththeANME-1primerswasonly primer sets were not sufficiently covering the target groups 61.8%andthecalibrationcurveshowedanR2valueofonly (Table1). 0.973.Afteroptimization,mainlychangingannealingtemper- atures, these values greatly improved (efficiency = 87%, ANME-2c R2=0.998)andmeltingtemperaturesofPCRproductsfrom both the cloned 16S rRNA gene sequence of ANME-1 and The primer pair AR468f and AR736r was described to be from the Eckernförde Bay environmental sample EB0 were specificforANME-2candhasbeentestedforspecificitywith identical (Fig. S2). For the ANME-1 primer set, genomic Methanosarcinaacetivoransandotherrepresentativearchaeal DNA from M. mazei strain MC3 and Desulfovibrio G11 as groups commonly found in seep sediments (Girguis et al. templateDNAdidnotgiveaPCRproductafteroptimization. 2003).Theprimersshowedahighcoverageoftargetgroups Only when using template concentrations of >2 × 102 16S withlow coverageofnon-target groups(Table1).However, rRNAgenecopiesμl-1cloned16SrRNAgenesequencesof when we performed qPCR, the primer pair was not specific ANME-2a/b and ANME-2c as DNA template gave a PCR underdescribedreactionconditions.ItshowedaPCRproduct product (Figs. S3 and S4). Furthermore, when this cloned withtemplateDNAfromM.mazeistrainMC3,andtheam- ANME-2c 16S rRNA gene sequence gave a PCR product, plifiedproducthadthesameexpectedproductsizeof268bp the melting temperature was not the same as for the cloned and the same melting temperature as the positive control ANME-116SrRNAgenesequenceandsampleEB0astem- (Fig. S7). This was also the case for the cloned ANME-1, plateDNAandthePCRproduct(s)werenotoftheexpected ANME-2a/b,andANME-2c16SrRNAgenesequence. sizeof1039bp(Fig.S4).Althoughtheefficiencyoftheprim- TheforwardprimerAR468fwasalsousedinamixtureof er set was not high, probably due to the length of the PCR threeseparateforwardprimerstoincreasecoverage,together product (efficiency should be between 90 and 100% and witha newreverse primerANME-2c-AR-1411R(Miyashita ApplMicrobiolBiotechnol(2017)101:5847–5859 5853 etal.2009).Thisprimerpairindeedshowedhighercoverage subtypes,manywerenotspecificallytargetingthecladesthat of the target group with low coverage of non-target groups theseprobesandprimersweredesignedfor(Tables1and2). (Table1).Thisprimerpairhasbeentestedforspecificityusing The non-target 16S rRNA sequences that showed no mis- genomic DNA from Methanogenium organophilum and matches, especially with the investigated probes, included Methanomicrobium mobile (Miyashita et al. 2009). some problematic non-targets which are shown in Detection of ANME in methanogenic environments such as Table 2. These were other marine ANME clades and the methanogenicsludge,ricefieldsoils,lotusfieldsediment,and GoM-Arc I clade, also known as the AAA archaea (Knittel naturalgasfieldshasalsobeenperformed,aswasdoneforthe andBoetius2009).Thiscladecontainstherecentlydescribed ANME-1primers(Miyashitaetal.2009).Inourexperiments, BCandidatusMethanoperedensnitroreducens^thatbelongsto the primer set showed a PCR product with genomic DNA theANME-2dsubcladethatcoupledAOMtonitrateandiron fromM.mazeistrainMC3andDesulfovibrioG11aswellas ormanganese reduction (Raghoebarsingetal. 2006;Haroon with all cloned ANME-1 and ANME-2a/b 16S rRNA gene etal.2013;Ettwigetal.2016;Arshadetal.2015).Thereisnot sequencesasaDNAtemplate.However,multiplePCRprod- muchknownontheoccurrenceandactivityoftheANME-2d ucts were obtained, but none had the expected product size subclade and on the overarching GoM-Arc I/AAA clade. and melting temperatures. This was in contrast with PCR However, the GoM-Arc I/AAA clade has been found to co- products of the cloned 16S rRNA gene sequence from occur with ANME types that are known to be involved in ANME-2c as DNA template (Fig. S8). The authors claimed AOM coupled to sulfate reduction, such as ANME-1, thatitwasindeeddifficulttodesignprimersperfectlyspecific ANME-2a/b, and ANME-2c (Timmers et al. 2016; Mills forANME-2csequences(Miyashitaetal.2009). et al. 2003; Mills et al. 2005; Lloyd et al. 2006). Therefore, Primers for ANME-2c were designed by others as well, probes and primers specific for ANME involved in sulfate- such as ANME-2c-F and ANME-2c-R that showed highest dependentAOMshouldnotmatchwith16S rRNAgenese- coverageofthetargetgroup(Table1)(Vigneronetal.2013). quencesoftheGoM-ArcI/AAAclade,ifthiscladeco-occurs Under described PCR conditions, ANME-1, ANME-2a/b, withthe ANME subtypes. Withall ANMEsequences inthe Methanococcoidessp.,andallnegativecontrolsgaveaPCR SILVA 16S rRNA gene database version SSU r122 Ref NR productoftheexpectedsize.However,afteroptimization,no (Quastetal.2013),wecalculatedthesimilaritybetweenand PCRamplificationoftheclonedANME-2a/b16SrRNAgene withinANMEcladesandtheGoM-ArcIcladethatcontained sequence was observed, although ANME-2a/b was targeted ANME-2d, using the distance matrix method of the ARB with zero mismatches (Table 1). PCR amplification of the software package with similarity correction (Ludwig et al. cloned16S rRNAgenesequenceofANME-1asDNAtem- 2004). The lowest similarity was between ANME-1 and plateonlyoccurredwithtemplateconcentrationsof>2×102 ANME-2ccladesandwas74.2%,whichislowerthanprevi- 16SrRNAgenecopiesμl-1(Fig.S9).ThePCRproductofthe ously reported by Knittel and Boetius (2009) (Fig. 1). The Eckernförde Bay sample showed a melting temperature cor- lowestsimilaritywithin ANMEcladeswas within ANME-1 respondingtothePCRproductsoftheclonedANME-2c16S andwasonly80.6%(Fig.1).Sincethisinter-andintra-group rRNA gene sequence. Eckernförde Bay samples have low diversity is high, designing primers that should specifically copy numbers of the ANME-1 subtype, and therefore, this target ANME subclades without targeting outgroups is protocol can be used in these types of sediments. Although deemed difficult. New sequences added to the database can DNA of M. mazei strain MC3 and Desulfovibrio G11 did alsodrasticallychangecoverageandspecificityofpreviously showaPCRproductwiththeseprimers,themeltingtemper- designedprobesandprimers,andtherefore,probeandprimer ature did not correspond to the melting temperature of the validationneedstobereconsideredconstantly.Asanalterna- PCR product of the cloned ANME-2c 16S rRNA gene se- tiveto(orcomplementwith)the16SrRNAgeneasbiomark- quence,whichisreflectedinthedifferentPCRproductsize. er,onecanusefunctionalmarkergenessuchasthegenefor Therefore,whenusingtheseprimersforenvironmentalsam- thealphasubunitofthemethylcoenzymemreductase(mcrA) ples,quantificationofANME-2ccannotbedonewhenmul- thatispresentinallmethanogensandANMEsubtypes.This tiple PCR products are obtained and when different melting mcrAgeneishighlyconserved,andcomparativephylogenetic temperatures are obtained that are identical to those of studies have clearly shown that mcrA and 16S rRNA gene- M. mazei strain MC3. The optimized protocol for the basedphylogenyisconsistent(reviewedinFriedrich(2005)). ANME-2cspecificprimersisgiveninFig.3. However, it has been recently discovered that not only me- thanogenicarchaeapossessthemcrAgene(Laso-Pérezetal. 2016). Discussion Afterinsilicoselectionofonly16SrRNAgenetargeting primersandprobeswithhighestcoverageoftargetgroupand Fromall16SrRNAgene-basedpublishedprobesandprimers lowestcoverageofnon-targetgroups,wefoundthatsomeof that were so far designed to be specific for different ANME theselectedprimersandprobesthatshouldspecificallytarget 5854 ApplMicrobiolBiotechnol(2017)101:5847–5859 9) 0 0 al.2000) al.2000) al.2000) al.2002) al.2000) al.,2005a) dBoetius2 al.2005) al.2005) Reference (Boetiuset (Boetiuset (Boetiuset (Orphanet (Boetiuset (Treudeet (Knittelan (Knittelet (Knittelet e Coverag 2-2.8 1.2-100 0.1 0.2-0.3 0.4-0.7 23.9 0.9 0.8-26.9 0.2-4.3 0.2-0.4 0.1 0.1-0.2 0.6 0.5-1.5 2.4 0.5-5 0.2 3.6 55.7 68.7 0.1-31.6 2.5-8.3 9.1 7.6 2.0 0.4-15.8 5.8 1-1.2 0.9-2.5 0.4-15.8 0.7 2.6 3.7 2.2 2.5 A Non-target Methanocellales Thermoplasmatales Thaumarchaeota Methanosarcinales(other) Aenigmarchaeota CandidatedivisionYNPFF GOMArcI Thaumarchaeota Crenarchaeota Methanomicrobiaceae Methanosarcinales(other) Thermoplasmata Hadesarchaea ClassWSA2 Methanomicrobia(other) Sulfolobales Crenarchaeota Methanomicrobia(other) GOMArcI Ca.Methanoperedens Methanosarcinales(other) Methanococci MSBL-1 Methanomicrobia(other) Euryarchaeota(other) Methanosarcinales(other) Methanomicrobia(other) Aenigmarchaeota WSA2 Methanosarcinales(other) Euryarchaeota(other) Methanomicrobia(other) Methanosarcinales(other) obia(other)Methanomicr ANME-2a/b e g a ver 9 6 3 9 3 1 5 3 8 5 3 2 Co 67. 91. 50. 75. 78. 63. 12. 89. 79. 87. 62. 76. b b b c a/ b a/ c b a/ c 1 1 1 1 2 2 2 2 2 2 2 2 E- E- E- E- E- E- E- E- E- E- E- E- et M M M M M M M M M M M M Targ AN AN AN - AN AN AN AN AN AN AN AN AN n o MEdetecti argetsite 05-322 50-367 32-649 6-880 30-847 –38555 12-729 47-664 22-639 T 3 3 6 8 8 5 7 6 6 N A or f d C hatwereuse GGTTCT TGATGC GCTTGG GGGCTT CAACAC GGCCGC GGTCCC AAGCCT TGATTG cribedintheliteraturet ’’Sequence(5-3) AGCCCGGAGATG AGTTTTCGCGCC TCAGGGAATACT GGCGGGCTTAAC TCGCAGTAATGC GGCTACCACTCG TTCGCCACAGAT TCTTCCGGTCCC CCCTTGGCAGTC s e d s e b 2Pro name E-1-305 E-1-350 E1-632 E-1-862 E1-830 E-2-538 E-2-712 E2a-647 E2c-622 e e M M M M M M M M M Tabl Prob AN AN AN AN AN AN AN AN AN ApplMicrobiolBiotechnol(2017)101:5847–5859 5855 6) 1 0 2 al.2005) al.2000) al.2000) al.2000) hleretal. Reference (Knittelet (Boetiuset (Boetiuset (Boetiuset (Hatzenpic e g Covera 2.7-2.9 0.6-5.3 4.9 2.9 1.2 0.9 1.5 0.7 0.7 4.5 0.1-50 6.9-73 0.2-5.9 0.4 14 12.2 1-56.7 54.8 67.5 0.1 9.1 1-31.6 1-7.2 0.7-9.7 1.1-10 1.3-4.5 1-2.7 0.9 1.2 0.4 0.1 0.1 d ol b Non-target Archaeoglobi Methanosarcinales(other) ANME-2a/b Methanomicrobia(other) Ca.Methanoperedens GOM-ArcI ANME-3 ANME-1b Euryarchaeota(other) Methanosaetaceae Thermoplasmata Methanosarcinaceae(other) Methanomicrobiales(other) Thermococci GOMArcI Ca.Methanoperedens Methanosarcinales(other) GOMArcI Ca.Methanoperedens Methanosaetaceae CandidatedivisionMSBL1 Methanosarcinaceae(other) Methanomicrobia(other) Methanosarcinales(other) Methanococcales Archaeoglobi Methanomicrobia(other) GOMArcI Ca.Methanoperedens Methanosarcinales(other) Methanomicrobia(other) Euryarchaeota(other) stedinthisstudyaregivenin e t s e b age Pro Cover 86.9 79.5 60.8 27.3 83.3 89.2 61.5 12.5 12.5 6 4.8 1.5 0.8 75 5.7 ches). at m s mi c a/b c b c a/b b b c a/b b a/b (0 Target ANME-2 ANME-2 ANME-2 ANME-3 ANME-2 ANME-2 ANME-2 ANME-2 ANME-2 ANME-2 ANME-1 ANME-3 ANME-2 ANME-2 ANME-2 pecificity s % 0 0 e 1 argetsit 60-777 40-257 38-556 32-949 A,using T 7 2 5 9 V L SI of C e CC AG CG GT abas T T C A T at G A G T C d TC TG GG TG GC obe CTT ACC CTC CGT GGGC Testpr ’’(5-3) CCAG TACA ACCA CACC CGTA online uence CCC CAC GCT CTC TTCT ngthe Seq CG CC CG AG CG usi d 2(continued) name E-2c-760 S240 S538 S932 E-2b-729 obeswereteste Table Probe ANM EelM EelM EelM ANM Allpr 5856 ApplMicrobiolBiotechnol(2017)101:5847–5859 Fig.3 OptimizedqPCR programsforallarchaealprimer setsusedinthisstudy differentANMEcladeswerenotspecificinourinvitroqPCR available, one needs to be sure that the primers and probes analysis.Mostoftheseprimersandprobescanthereforenot useddonottargetcloserelativesandarespecific. beappliedtocomplexmicrobialcommunitieswheredifferent Aftervalidationandoptimizationofpublished16SrRNA ANMEcladesandmethanogensco-occur,whichisthecasein gene targeting primer sets, we found three sets suitable for mostmarinesediments.Validationwithsequencesfromthein specific and quantitative detection of ANME-1, ANME-2a/ situarchaealcommunityofthenewenvironmentistherefore b, and ANME-2c subclades in a complex marine environ- mandatory, or when no data on the archaeal community is ment, Eckernförde Bay, where different ANME subtypes

Description:
and quantitative detection of marine ANME subclusters involved . 2004). b. Phylogenetic tree of full length 16S rRNA gene sequences of archaeal.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.