ScienceoftheTotalEnvironment646(2019)121–133 ContentslistsavailableatScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Evaluatingtheroleofparticlesizeonurbanenvironmentalgeochemistry of metals in surface sediments JessicaUnda-Calvoa,⁎,EstilitaRuiz-Romeraa,SilviaFdez-OrtizdeVallejuelob, MirenMartínez-Santosa,AinaraGredillac aDepartmentofChemicalandEnvironmentalEngineering,UniversityoftheBasqueCountry(UPV/EHU),PlazaIngenieroTorresQuevedo1,Bilbao48013,BasqueCountry,Spain bDepartmentofAnalyticalChemistry,FacultyofScienceandTechnology,UniversityoftheBasqueCountry(UPV/EHU),E-8940Leioa,BasqueCountry,Spain cDepartmentofAppliedChemistry,FacultyofChemistry,UniversityoftheBasqueCountry(UPV/EHU),E-2018SanSebastián,BasqueCountry,Spain H I G H L I G H T S G R A P H I C A L A B S T R A C T • Non-destructiveandinvasivemethod- ologiesforsurfacesedimentcharacteri- zation • Metalgeochemistryvariationinparticle sizedistributioncontrolsavailability. • Naturalprocessesandhumanactivities aresourcesofavailablemetals. • Higherecologicalriskwasidentifiedin thedrycomparedtothewetseason. a r t i c l e i n f o a b s t r a c t Articlehistory: Inthisstudy,non-destructivetechniques(X-rayDiffraction,InfraredandScanningElectronMicroscopywithEn- Received28March2018 ergyDispersivespectroscopies)andinvasiveprocedures(pseudo-totalandsequentialmetalextractionmethod- Receivedinrevisedform13July2018 ologies)wereusedtohighlightthesignificanceofevaluatingdifferentparticlesizesofsedimentsforassessing Accepted13July2018 thepotentialenvironmentalandhealthimplicationsofmetalgeochemistryinanurbanecosystem. Availableonline24July2018 Thevariabilityincompositionandpropertiesbetweenbulk(b2mm)andfine(b63μm)fractionsinfluencedthe availability,andbyextension,thetoxicityofmetals.Indeed,thefinefractionpresentednotonlyhighermetal Editor:XinbinFeng pseudo-contents,butalsogreateravailablemetalpercentages.Besidesthelargersurfaceareaperunitofmass Keywords: andthehighcontentofclayminerals,itwasobservedthatitwasprincipallyFe/Mnoxyhydroxidesthatfavour Surfacesediment adsorptionofmetalsonthefinesurfacesediments.However,althoughwedemonstratedthattheoriginofmetals Particlesize,geochemistry inthebulksurfacesedimentswaspredominantlylithogenic,useoftheb2mmfractionprovedtobeausefultool Ecologicalandhealthrisk foridentifyingdifferentsourcesofavailablemetalsthroughouttheDebaRivercatchment.Specifically,discharges Urbanenvironment ofuntreatedindustrialandurbanwastewaters,andeveneffluentsfromwastewatertreatmentplantswerecon- sideredtogreatlyincreasethehealthriskassociatedwithmetalavailability.Finally,anevaluationofsediment dynamicsindifferenthydrologicalconditionshashighlightedtheroleplayedbyeachparticlesizeasavector ofmetaltransporttowardsthecoastalarea.Whileresuspensionoffinesurfacesedimentsnotablyinducedsignif- icantlyhigherparticulatemetalconcentrationsinwaterduringthedryseason,resuspensionofbulksurfacesed- imentsand,fundamentally,downstreamtransportofsuspendedparticulatematterbecamemorerelevantand loweredtheecologicalriskduringthewetseason.Greaterattentionthereforeneedstobepaidtothenew ⁎ Correspondingauthor. E-mailaddress:[email protected](J.Unda-Calvo). https://doi.org/10.1016/j.scitotenv.2018.07.172 0048-9697/©2018ElsevierB.V.Allrightsreserved. 122 J.Unda-Calvoetal./ScienceoftheTotalEnvironment646(2019)121–133 hydrologicalscenariosforecasttoresultfromclimatechange,inwhichlongerseasonswithlowriverdischarges areforecast. ©2018ElsevierB.V.Allrightsreserved. 1.Introduction (ICES,2011),whicharetheresultofinteractionsbetweenseveralvari- ablessuchaswaterdischargeorgrainsizedistribution(USEPA,1999; AccordingtoWorldPopulationProspects(UnitedNations,2017Re- Apitz,2012).Accordingtofutureclimatechangepredictions,alterations vision),theworld'spopulationisprojectedtogrowfromnearly7.6bil- intheseasonalprecipitation(magnitudeandduration)and,conse- lion in 2017to 8.6 billion in 2030. Intense developmentof human quently,riverflowvariationsareexpected.Therefore,deeperknowl- activity,drivenbydemographicgrowth,willgreatlyimpactenviron- edgeintosedimentdynamicswillbecrucialforabetterestimationof mentalqualityandbyextension,humanhealth(Ghanem,2018).Sev- metalenvironmentalrisk,basedonthenewhydrologicalscenarios. eralstudieshaveaddressedtheimpactofurbanizationonthequality Theoverallaimofthisstudyisthereforetoidentifytherelevanceof ofaquaticenvironments,includinghighloadingsofnutrientandmicro- analysingdifferentparticlesizes,asamorereliablereflectionoftheen- bialcontaminantsfrombothsepticsystemsandwastewatertreatment vironmentalgeochemistryofmetalsinsurfacesedimentsfromanurban plants(WWTPs)(Careyetal.,2013;McGraneetal.,2014),volatileor- catchmentandtheassociatedecologicalandhumanhealthrisk.The ganiccompoundsfromvehicularemissions(Mahbubetal.,2011)and specificobjectiveswere(i)tousedifferentmethodologiesformineral- metals,mainlyfromindustrialorurbaneffluents(Guptaetal.,2010; ogical,elementalandmetalcharacterizationofsurfacesediments,(ii) Buzieretal.,2011),amongothers. toidentifynaturalprocessesand/orsourcesofanthropogeniccontami- Sedimentisagoodindicatorofpollutionloadsinriverssinceitis nationinfluencingtheenvironmentalandhealthriskassociatedwith subjecttoacontinuousaccumulationofpollutants,especiallymetals theavailabilityofmetalsinsurfacesediments,and(iii)toevaluatethe (Devesa-Reyetal.,2010;Bartolietal.,2012).Thesecontaminantsare influenceofseasonalityonphysicalmechanismsgoverningmetalmi- consideredtoposeaseriousthreattoecologicalandhumanhealthbe- grationtowardsthecoastalarea.Wehypothesizedthatcombinedanal- causeoftheirnon-biodegradable,toxicandpersistentnature,aswellas ysisofdifferentparticlesizesofsurfacesedimentwillprovideusmore theircapacitytoenterthefoodchain(Burghardt,1994;vanKampetal., comprehensiveanddetailedinformationabouttheenvironmentalgeo- 2003;Armitageetal.,2007).Thepercentageoftotalmetalcontentin chemistryofmetalsinacatchmentsubjectedtomultiplepressures. thesedimentthatisavailableforabsorptionintothesystemiccircula- tionsystemandthathasatoxicimpactonhumanhealth,willdepend 2.Materialsandmethods firstly on environmental availability (Lanno et al., 2004; Harmsen, 2007),whichisinturnrelatedtoitschemicalformsortypesofbinding 2.1.Studyareaandsampling (Saracogluetal.,2009;Sunguretal.,2014).Thephysicalandgeochem- icalpropertiesofsedimentssuchassurfacetovolumeratio,mineralog- TheDebaRiverrunsthroughthecatchment(538km2)totheBayof ical composition and organic matter are considered to influence Biscay,receivinginflowsfromseveraltributaries,includingtheEgoand chemicaldistributionofmetals(SimpsonandBatley,2009;Campana Oñatistreams(Fig.1).Thegeologyofthecatchmentmainlyconsistsofa etal.,2012;Saeedietal.,2013;Zhangetal.,2014).However,particle successionofsedimentaryrocks,predominantlyanalternationofsand- sizedeterminesallthesepropertiesand,therefore,itisthecornerstone stonesandmudstonesinthenorthernandwesternpart,marlsinthe parameter(Maslennikovaetal.,2012). centralarea,andlimestonesinthesouthernregion.Incontrast,igneous Todate,numerousresearchershaveuseddifferentanalyticaltech- rocksdominatetheareaofconfluenceoftheEgotributaryandthemain niques(X-rayDiffraction,InfraredandScanningElectronMicroscopy river(Fig.1A). orInductivelyCoupledPlasma)toindividuallyinvestigatethegrain TheDebaRivercatchmentpossessescertaincharacteristicswhich sizeeffectover:themineralogicalandelementalcomposition(Zhou aredistinctiveofatypicalurbanenvironment.Theseincludedensepop- etal.,2015)orthemetalchemicalspeciation(Liangetal.,2018);as ulation,arelativelyhighlevelofproductivity,primarilydrivenbynon- well as the mineralogical effect over the metal content (Xie et al., agriculturalactivities,infrastructures,buildings,andanextensivemotor 2018).However,consideringallthesetechniquesasawholemaybe transportationnetwork(Wongetal.,2006;Fig.1B). moresuitabletobindtheparticlesizeeffectonthegeochemistryofsed- Surface waters receive treated effluents from three wastewater imentswiththemetalaccumulation,distributionandenvironmental treatmentplants(Fig.1B).TheApraitz(95,000populationequivalent impact. (pe))andMekolalde(35,000pe)WWTPshavebeenoperatingsince Inurbanenvironments,geochemicalpatternsobservedindifferent 2007and2008,respectively.TheEpeleWWTP(90,000pe)onlycame particle sizesofsediments helptodifferentiatethecontribution to intocontinuousoperationinMay2012;previously,organic-richwaste- metalavailabilityofnon-anthropogenicsourcesfromhumanactivities watersfromthetownsofArrasateandOñatiweredischargedintothe (Chiprésetal.,2009).Indeed,sedimentrecordsthegeochemicalcom- DebaRiverandOñatistream.InJune2014,thesewerfromErmua- position of the provenance bedrock and the intensity of chemical EibarwasalsoconnectedtotheApraitzWWTPanduntreatedurban weatheringandhydraulicsorting(Lapworthetal.,2012;Zhaoand wastewater(UWW)fromthesemunicipalitiesisnolongerdischarged Zheng,2015;Kirkwoodetal.,2016;Darwish,2017).Duringchemical intotheEgostream.However,accordingtodatafromGipuzkoaProvin- weatheringofthebedrock,water-solubleelementsarechemicallydis- cialCouncil,about6773m3y−1ofuntreatedindustrialwastewater solved in water, whereas water-insoluble elements are physically (IWW) from metal-working, the automotive industry, galvanising, transported by the water current (Zhao and Zheng, 2014). Conse- smelting factories and electrical appliance manufacturers are also quently,despitethehighadsorptioncapacityofminerals,thechemical dischargedintotheDebaRiveranditstributaries(Martínez-Santos dissolutionofsolubleonesmightpromotetheavailabilityofmetalspre- etal.,2015).Inthiscontext,surfacesedimentsarecharacterizedbyhav- viouslyretainedintheirlattice. ingahighcontentofmetals,nutrientsandorganiccompounds,princi- Additionally,afterelucidatethesourceandmagnitudeofavailable pallyinareasofgreatesturbanizationandindustrialization.Previous metalsineachparticlesize,sedimentdynamicsbecomedecisivelyim- studies have shown that discharges of effluents from WWTPs and portantinaddressingtheecologicalconsequencesofseasonalvariations evenIWWandUWWthroughoutthecatchmentareresponsiblefor inriverdischarge.Indeed,thephysicalprocessesinvolvedinsediment thedecliningqualityofsurfacesediments,posingapotentialriskfor dynamics include erosion, transport, deposition, and resuspension theecosystem(Unda-Calvoetal.,2018)andforhumanhealth(Unda- J.Unda-Calvoetal./ScienceoftheTotalEnvironment646(2019)121–133 123 Fig.1.LocationofDebaRivercatchment,and(A)lithologicalmap,(B)landusemap,and(C)heightprofile.Thesub-basinsubdivisionandthelocationofAltzolagaugingstationcanbe observedin(A).Thesamplingsites,thewastewatertreatmentplants(WWTPs)andhightraffic-densityroadsareshownin(B).Circlesandsquaresrepresenttheanomalies(normalized- concentrationN1)shownbyeachmetal(Fe:red;Mn;green;Zn:blue;Cu:purple;Pb:yellow;Cr:pink;Ni:orange)inthebulkandthefinesediments,respectively. 124 J.Unda-Calvoetal./ScienceoftheTotalEnvironment646(2019)121–133 Table1 Pseudo-totalmetal(Fe(mg·g−1),Mn,Cu,Cr,Ni,PbandZn(μgg−1))content,EnrichmentFactor(EF)andIndividualContaminationFactor(ICF)weredeterminedinthebulk(b2mm)and thefine(b63μm)surfacesedimentsateachsamplingsiteinOctober2015.Medianandstandarddeviation(SD)arecalculatedforeachparticlesize. Pseudo-totalcontent Fe Mn Cu Ni Cr Pb Zn River Sites Bulk Fine Bulk Fine Bulk Fine Bulk Fine Bulk Fine Bulk Fine Bulk Fine Deba D1 32.9 24.16 419 356 15.5 25.5 26.6 30.5 21.6 36.6 18.6 34.8 170 176 Deba D2 59.2 30.07 544 491 59.6 100 32.0 35.0 51.5 48.8 12.5 53.2 261 389 Deba D3 68.2 28.25 972 1177 60.7 70.2 37.4 42.5 28.7 46.5 16.2 29.4 288 421 Deba D4 68,1 27.22 811 588 58.9 87.8 45.9 53.9 44.0 77.6 26.7 33.1 373 570 Deba D5 70.8 26.14 902 664 66.1 95.0 46.8 52.8 63.9 78.5 61.8 33.7 407 591 Deba D6 46.9 37.85 993 1168 51.3 145 68.0 60.4 56.9 88.6 10.3 57.2 406 581 Ego E1 26.5 22.72 925 442 13.3 44.9 18.5 47.2 33.5 257 13.8 144 148 1087 Ego E2 34.7 29.77 925 441 69.6 236 38.7 98.7 41.5 318 9.66 101 306 2240 Median 53.1 27.8 914 539 59.3 91.4 38.1 64.5 42.7 78.0 15.0 44.0 297 576 %SD 35.3 16.4 26.3 49.1 45.0 65.2 38.3 40.1 33.8 89.9 81.7 67.4 33.8 33.8 (*)Pbcontentinresidualfractionisbelowthedetectionlimit,sothatICFwasnotcalculated.(**)MetalspeciationatE1wasnotdetermined,sothatICFwasnotcalculated. Calvoetal.,2017).However,nostudyhasaddressedtheroleofsedi- 400cm−1),recording32scansperspectrumataspectralresolutionof mentparticlesizeinthemobilization,deposition,anddispersionofpo- 4cm−1. tentiallytoxicmetalsintheDebaRivercatchment. InOctober2015,surfacesedimentsampleswerecollectedfromsix 2.2.2.Elementalanalysis samplingsitesalongthemainriverbank(D1,D2,D3,D4,D5andD6) Fortheelementalspectroscopicanalysis,0.5gofthefinesurface andfromtwosamplingsitesintheEgotributary(E1andE2)(Fig.1). sedimentsampleswaspressedatapressureof9tinaCrushIR(PIKE Thesesamplinglocationswerechosenwithaviewtostudyingtheinflu- Technologies,Canada)hydrauliclaboratorypress;thefinalpelletshad enceofnaturalprocessesoranthropogenicmetalsourcesonthechem- an approximate diameter of 12 mm and an approximate width of icalqualityofsurfacesediments.AsperUSEPA(2001),surfacesediment 1mm.Forthepurposesofcreatingelementaldistributionmaps,the subsamples(0–5cmdepth)frommultiplepointswithineachsampling b63μmgrainsizesedimentsampleswereselected,duetothehigher sitewerecollectedusingasterilizedplasticspoon,sievedthrougha concentrationofthestudyelementsinthisfraction. 2mmmesh,compositedinthefieldandsealedinsterilepolyethylene ScanningElectronMicroscopywithEnergyDispersiveSpectroscopy bags. (SEM-EDS)analysesonfinesedimentpelletswasusedforelectron Awatersamplegatheringprogrammewasestablishedtostudythe imageacquisitionsandelementalcompositiondeterminationusingan involvementofsuspendedparticulatematter(SPM)inmetaltransport X-Max energy dispersive X-ray spectrometer (Oxford Instruments, towardstheBayofBiscay.Theprogrammeconsistedofmanualsam- Abingdon,Oxfordshire,U.K.)coupledtoanEVO40scanningelectron plingofwaterinsterilepolyethylenebottlesmonthlyorbimonthly microscope(CarlZeissNTSGmbH,Germany).SEMimageswereac- from January 2015 to January 2016 at the same six sampling sites quiredathighvacuum,employinganaccelerationvoltageof20kV. alongthemainriverandatthreesamplingsitesintheOñati(O1)and Magnificationsupto10,000×wereachievedusingasecondaryelectron Ego(E1andE2)tributaries.Inaddition,dischargedata(Q,m3s−1) (SE)detector.Theelementalanalysiswascarriedoutusingaworking weremonitoreddailyatthecatchmentoutletintheAltzolagaugingsta- distanceof8.5mm,take-offangleof35°,andanaccelerationvoltage tion(www.gipuzkoahidraulikoak.eus/es/deba)todeterminedifferent of30kV.Anintegrationtimeof50swasusedtoimprovethesignal- hydrologicalconditionsduringthestudyperiod.Allwaterandsediment to-noiseratioofEDSspectra.SpectraldatawereprocessedusingINCA sampleswerestoredandrefrigeratedinthedarkandtransportedtothe software(OxfordInstruments,Abingdon,Oxfordshire,U.K.).Thissoft- ChemicalandEnvironmentalEngineeringlaboratory(Universityofthe warecanprovideasemiquantitativeapproximationoftheelements BasqueCountry)onthesameday. containedinthesurfacesedimentsamplesunderstudy,basedonthe K-alphanetareasofeachelementdetected.Additionalinformationre- latingtotheinstrument,measurementconditions,andspectralassign- 2.2.Laboratorymethodology mentcanbereviewedelsewhere(Aramendiaetal.,2018;Gómez-Nubla etal.,2013). Surfacesedimentswereair-driedandgroundwithapestleandmor- tarforhomogenization.Thefinefractionofthesurfacesediments(b63 2.2.3.Pseudototalandsequentialmetalextraction μm)wassievedthroughastainless-steelsieve.Themoisturecontentof ThepseudototalmetalcontentwasmeasuredusinganETHOS1, allsampleswasdeterminedinaccordancewithAPHA-AWWA-WPCF, Millestone microwave digestion system, where three replicates of 1999. eachsurfacesedimentsample(0.5g)wereheatedinTeflonvessels withconcentratedHNO :HClO(3:1.5)byraisingthetemperatureto 3 2.2.1.Molecular/mineralogicalanalysis 180°Cfor10minandmaintainingthislevelforanadditional25min Formolecularcharacterizationofthesurfacesedimentsamples,X- (USEPA,2007). rayDiffraction(XRD)andinfrared(IR)spectroscopieswereused.The Themetaldistributionwasdeterminedbysequentialextractionof XRDanalyseswereperformedusingaPANalyticalXpertPROpowder metalsusingtheproceduredevelopedbytheEuropeanCommunityBu- diffractometerequippedwithacoppertube(λCuKαmedia=1.5418 reauofReferences(BCR701),whichisdividedintofouroperationally- Å,λCuKα1=1.54060Å,λCuKα2=1.54439Å),averticalgoniometer definedfractions:(i)exchangeableandacid-extractable(F ,soluble 1 (Bragg−Brentanogeometry),aprogrammabledivergenceaperture, species,carbonatesandexchangeablemetals),(ii)reducible(F ,Fe/ 2 anautomaticinterchangeofsamples,asecondarygraphitemonochro- Mnoxyhydroxides),(iii)oxidizable(F ,organicmatterandsulphides), 3 mator,andaPixCeldetector.ThesoftwarePANalyticalX'pertHighScore and(iv)residualfraction(F ,remainingnon-silicateboundmetals). 4 canprovideasemiquantitativeapproximationofthecompoundsin Themetalsunderconsideration(Fe,Mn,Zn,Cu,Ni,CrandPb)inthe eachsample.TheIRlaboratoryequipmentwasaJasco6300FTIRspec- sequentialextractsandpseudo-totaldigestionweredeterminedbyICP- trophotometerintransmittancemode.AllIRspectraobtainedinthe OES(PerkinElmerOptima2000).Thedetectionlimitforthesemetals laboratorywerecollectedinthemiddleinfraredregion(from4000to was:Pb(1μgg−1),Mn(0.5μgg−1),FeandMn(0.4μgg−1)andCr, J.Unda-Calvoetal./ScienceoftheTotalEnvironment646(2019)121–133 125 Table1 Pseudo-totalmetal(Fe(mg·g−1),Mn,Cu,Cr,Ni,PbandZn(μgg−1))content,EnrichmentFactor(EF)andIndividualContaminationFactor(ICF)weredeterminedinthebulk(b2mm)and thefine(b63μm)surfacesedimentsateachsamplingsiteinOctober2015.Medianandstandarddeviation(SD)arecalculatedforeachparticlesize. EF ICF Mn Cu Ni Cr Pb Zn Fe Mn Cu Ni Cr Pb Zn Bulk Fine Bulk Fine Bulk Fine Bulk Fine Bulk Fine Bulk Fine Bulk Fine Bulk Fine Bulk Fine Bulk Fine Bulk Fine Bulk Fine Bulk Fine 0.75 0.86 1.02 2.28 1.34 2.10 0.58 1.34 1.03 2.62 3.07 4.33 0.10 0.37 6.63 7.99 0.35 1.54 1.40 1.80 0.23 0.09 3.89 (*) 0.38 1.55 0.54 0.96 2.18 7.20 0.90 1.93 0.77 1.43 0.38 3.22 2.61 7.70 0.04 0.32 0.96 6.24 0.74 4.59 0.30 1.55 0.19 0.22 2.50 (*) 0.74 4.24 0.84 2.44 1.92 5.37 0.91 2.50 0.37 1.45 0.43 1.89 2.51 8.85 0.02 0.45 1.74 16.5 0.30 4.31 0.35 2.19 0.11 0.24 0.32 (*) 0.10 5.75 0.70 1.27 1.87 6.97 1.12 3.29 0.57 2.52 0.71 2.21 3.25 12.4 0.03 0.28 0.82 6.10 0.74 4.34 0.67 2.39 0.87 1.06 1.90 (*) 0.92 7.76 0.75 1.49 2.02 7.85 1.10 3.36 0.80 2.65 1.59 2.35 3.42 13.4 0.02 0.23 0.74 7.27 0.22 4.97 0.26 2.39 0.36 1.03 0.60 (*) 0.68 8.55 1.24 1.81 2.36 8.27 2.41 2.65 1.07 2.07 0.40 2.74 5.15 9.12 0.03 0.31 0.69 7.74 0.37 8.13 0.26 2.56 0.16 0.83 0.97 (*) 0.86 7.57 2.05 1.14 1.08 4.27 1.16 3.45 1.12 9.98 0.95 11.5 3.32 28.4 (**) 1.56 0.87 4.33 17.1 1.85 5.51 1.06 9.44 0.51 6.16 5.23 44.7 0.05 0.24 0.30 4.46 0.79 4.74 0.10 2.48 0.32 1.89 3.14 28.6 1.77 9.48 1.05 1.35 2.10 7.41 1.35 3.10 0.80 3.86 0.75 4.09 3.57 16.1 0.04 0.31 1.69 8.04 0.50 4.66 0.48 2.20 0.32 0.77 1.90 28.6 0.91 6.41 49.6 40.4 48.8 59.3 38.9 36.5 34.6 94.5 56.2 80.4 29.4 84.5 66.5 24.4 131 48.7 48.4 41.2 93.0 17.3 80.8 83.7 70.7 47.4 43.2 CuandNi(0.1μgg−1).Additionally,therecoverypercentageforeach concentrationsofsomemetalswithrespecttotheregionasawhole metalineachstepofsequentialextractionwascalculatedtakingintoac- (Table1).GiventhatthesurfacesedimentsfromtheDebaRivercatch- countpseudo-totaldigestion.Forallelements,itstoodinarangeof94% mentwererichinFecontentandthatFewasstronglyretainedinthelat- to119%. ticeofmineralinbothbulk(b2mm)andfine(b63μm)fractions(as Forthepurposesofcontrollinganalyticalmethods,aNBSsediment shownbelow),itwasconsideredtobemainlyalithogeniccomponent, samplewasalsoused(BuffaloRiversediment,USA).Usingthistech- andthusanappropriatereferenceelementforEFcalculation.Jiaoetal. nique,allmetalswerealsomeasuredwithmeanvaluesclosetothecer- (2015)proposeasix-categorysystemtodescribethecontamination tifiedcontentsandvariationcoefficientslowerthan8%,exceptforPb level.EFb1,noenrichment;1≤EFb2,deficiencytominimalenrich- (17%with0.5gofsample). ment;2≤EFb5,moderateenrichment;5≤EFb20,significantenrich- Water samples collected at all sampling locations were filtered ment;20≤EFb40,veryhighenrichment;andEF≥40,extremelyhigh through0.45μmfiltersandtheresiduewasoven-driedat105°for enrichment.Theglobalenrichmentfactor(GEF)isequaltothesumof 1h.TheconcentrationoftheSPMwasobtainedfromtheweightof theenrichmentfactorofallmetalsateachsamplingsite(Eq.(4)). eachdriedresidueandthevolumeofthesample.Thepseudo-total (cid:2) (cid:3) metal(Fe,Mn,Zn,Ni,Cu,CrandPb)contentsintheSPMweredeter- EF¼(cid:2)½M(cid:2)S=½R(cid:2)S(cid:3) ð3Þ minedusingtheacid-digestionmethodologydescribedaboveforsur- ½M(cid:2) =½R(cid:2) rf rf facesediments. Xn¼6 2.3.Assessmentofchemicalqualityofsurfacesediments GEF¼ EF ð4Þ n¼1 BasedontheworkofSkeriesetal.(2017),itwasdecidedtousethe DeterminationofIndividualandGlobalContaminationFactorsof DivergenceFactor(DF)inthisstudytoidentifyhowfarasamplingloca- metals(ICFandGCF,respectively)isanimportanttoolforindicating tiondeviatedfromthedominanttrendintheDebaRivercatchmentin thedegreeofriskofmetalcontaminationtotheenvironmentinrelation termsofpseudo-totalcontentofthemetalsinsurfacesediments.Firstly, toretentiontimeinsediments(Najietal.,2010;Saleemetal.,2015). thepseudo-contentofeachelementfromeachsamplingsite[M]was ICFswereobtainedforeachmetalfromtheresultsofthefractionation divided by its respective median value throughout the catchment study,dividingthesumoftheconcentrations(C)inthefirstthreeex- (Eq.(1)).Thus,metalcontentinsurfacesedimentswasconsidered tractions(F ,F andF ,constitutingthenon-residualfraction)bythat anomalouswhennormalizedconcentrationexceeded1.Themedian- 1 2 3 intheresidualfraction(F )ateachsamplingsite(Eq.(5)).TheGCFis normalized values forthemetals ofinterestwerethen totalledfor 4 equaltothesumofindividualfactors(Ikemetal.,2003;Najietal., eachsamplingsite(Eq.(2)). 2010),asshowninEq.(6). ½M(cid:2) Normalizedconcentration¼ ð1Þ Cnon−residual Median½M(cid:2) ICF¼ ð5Þ Cresidual Xn¼7 DF¼ Normalizedconcentration ð2Þ Xn¼7 i¼1 GCF¼ ICFi ð6Þ i¼1 Enrichmentofagivenelementinsedimentsrelativetoabackground referencesiteisanindicationofthecontributionfromnature(e.g. weatheringprocessofrocks)andanthropogenicsources(Violintzis 2.4.Statisticalanalysis etal.,2009;Legorburuetal.,2013;Guetal.,2015).TheEnrichmentFac- tor(EF)foreachmetalwascalculatedinaccordancewithEq.(3),where OnceaShapiroWilktestconfirmedthatvariableswerenotnormally [M] and[R] aretheconcentrationsofthemetalMandthereferenceel- distributed,alldatawerelog-transformedinordertoreducetheskew- S S ementRinsurfacesedimentsamples,while[M] and[R] arethecon- nessofthedata. rf rf centrationsintheuppercontinentalcrust(Delshabetal.,2017).Theuse ASpearmancorrelationanalysis(non-parametrictest)wasper- oflocalnon-pollutedsedimentsasthebackgroundreferenceinsteadof formedwithmetalpseudo-contentstoestablishtherelationshipsbe- thecrusthasbeenwidelyproposedinordertodealwiththegeochem- tweenthebulkandthefinesurfacesediments.Inaddition,theeffect icalheterogeneityinnature(ReimannandDeCaritat,2005;Dungetal., ofvariabilityofcompositionandpropertiesbetweenparticlesizeson 2013;Malietal.,2015).However,wedeclinedtoestablishtheheadwa- the availability of metals in surface sediments was analysed using terlocations(D1andE1)asthereferenceduetotheunexpectedlyhigh one-wayANOVA(takingρb0.05assignificant,inaccordancewith 126 J.Unda-Calvoetal./ScienceoftheTotalEnvironment646(2019)121–133 Tukey'smultiplerangetest).Thevariabilityofmetalpseudo-contentsin surfaceareaincontactwithwater,weexpectedtofindlowerpercent- SPMduringdifferenthydrologicalconditionswasalsoanalysedtoeval- agesofunstableones(e.g.calcite)inthefinesurfacesedimentsthan uatetheinfluenceofseasonalityonsedimentdynamics.Inaddition,the inthebulksurfacesediments.Ineffect,thehighertheparticle-size, predominanceoftwophysicalmechanismsinvolvedinmetaldisper- thegreatertheproportionofquartz(exceptatD2andE2),clinochlore sionwereevaluatedusingregressionanalysisbetweensurfacesedi- (exceptatD1andE1)and,primarily,calcite.Conversely,thepercentage mentsandSPM.Finally,principalcomponentanalysis(PCA)wasused ofillite,aclaymineralandoneoftheproductsoffeldspardissolution toidentifythenaturalprocessoranthropogenicactivityrepresenting (Maetal.,2017),washigherinthefinesurfacesediments.Inaddition, themainsourceofavailablemetalsinsurfacesedimentsateachsam- thepresenceofcarbonatemineralsinthebulkmineralanalysisofthe plingsite.PCAwithaneigenvalueofover1wassubjectedtoanorthog- loess/palaeosolsequencewasusedbyTerhorstetal.(2012)toclassify onalvarimaxrotation.Thismaximisesthevariancetoobtainapattern theweatheringintensityatthelowerdegree.Basedonthatclassifica- ofloadingsforeachfactorthatisasdiverseaspossible,thusmakingit tion,surfacesedimentsfromtheDebacatchmentwouldbeconsidered easiertointerpret.Statisticalprocessingofthedatawasperformed tobeintheearlieststagesofmaturity.Indeed,watererosionisthedom- usingSPSS22.0software. inantgeomorphologicalforceaheadofkarstificationincalcareoussites, duetothehighrainfallandorographicfeaturesoftheregion(URA, 3.Resultsanddiscussion 2004). Focusingonthebulkfraction,thespatialdistributionofthemineral- 3.1.Mineralogicalandelementalcharacterizationofsurfacesediments ogy concurs with the lithological characteristics of each sub-basin (Fig.2).Theheadwaterofthemainchannel(D1)wascharacterizedby XRDanalyseswereperformedformolecularandmineralogicalchar- highproportionsofilliteandquartz,andtheabsenceofcalcite,dueto acterizationofthesurfacesedimentsamples.Thediffractograms(see thepredominanceofsandstones/mudstonesandthelimitedoccurrence forexampleFig.S1)showedquartz(SiO ),calcite(CaCO ,exceptin oflimestonesinthearea.D2-D3andD4-D5presentedsimilarlithology 2 3 D1), illite (K Al [Al Si O ](OH) ), and clinochlore (Mg Al and,therefore,mineralogy.IncontrasttoD1,anincreaseintheoccur- 0.65 2.0 0.65 3.35 10 2 5 (AlSi O )(OH) )inallsamplesandbothgrainsizes.Albite(NaAlSi O ) renceoflimestonesandmarls,especiallyatD4andD5(Fig.2),encour- 3 10 8 3 8 wasobservedparticularlyatD6(b63μm).Oxidesandhydroxidesof agedhighercalciteproportionsdownstream.Thehighestpercentagesof iron(hematite,Fe O andgoethite,FeO(OH))werefoundastrace,ex- quartzwereobservedupstreamoftheEgotributary(E1)duetothepre- 2 3 ceptinthecaseofE2(b2mm)forhematite. dominanceofsandstones/mudstones,whiledownstream(E2)calcitewas Asanestimationoftherelativeproportionoftheidentifiedminerals, theprincipalmineral.Thefactthatcarbonaterocksarenotcharacteristic thesemiquantitativeresults(Fig.2)showedthatallfine(b63μm)sur- ofthelithologyatE2suggeststhatthismineralwastransportedfromthe facesediments,exceptD1andE1hadthefollowingmineralogicalcom- Aixolawatershed(Fig.1A),wheremostofthemainbedrockconsistsof positionorder:IlliteNQuartzNCalciteNClinochlore.Incontrast,the practicallyimperviousUpperCretaceousCalcareousFlysch(Meaurio compositionalsequence ofbulk(b2mm)surfacesedimentsvaried etal.,2015).Finally,despitethefactthatlimestonespredominateinthe throughoutthecatchment,suggestingthatthebulkfractionbetterinte- lithology,theoutletofthecatchment(D6)presentedsimilarpercentages gratesandexplainsthedifferencesinthemineralogicalcompositionof ofallminerals.ThiscouldbeattributedtotheconfluenceoftheDeba thestudyarea,whereasthefinefractionisusefulforevaluatingtheex- RiverwiththeEgotributary,whichconsiderablyincreasestheriverdis- tentandinfluenceofweatheringonthematurityofsurfacesediments. charge.Hence,agreaterdischargeexplainsextensivetransportofsilicate Thetermmaturityreferstothecumulativechangesundergonebysed- mineralscausedbywatererosionofthesandstones/mudstonesthatform imentaryparticlesduringerosion,weathering,andtransportuntiltheir thebedrockfromimmediatelyupstream(Altzolagaugingstationsub- finaldepositionassediments(Warrieretal.,2016). basin,Fig.1A). Thus,giventhatcarbonatemineralshavehighersolubilitythansili- InaccordancewiththeXRDresults,themid-infrared(MIR)spectra cateminerals(Szrameketal.,2011)andsmallerparticleshavealarger (Fig.S2)identifiedO\\Hstretchingoffreeandboundhydroxylgroups LITHOLOGY Sandstontes/Mudstones Mudstones Marls Limestones Igenousrocks Alluvialdeposits D1 D2 D3 D4 D5 E1 E2 D6 MINERALOGY Quartz Illite Clinochlore Calcite D1 D2 D3 D4 D5 E1 E2 D6 tn em id es k lu B tn em id es en iF Fig.2.Lithologyofthesub-basinswheresamplingsitesarelocatedandpercentagemineralogicaldistributionofthebulkandfinesedimentsamplesusingXRD. J.Unda-Calvoetal./ScienceoftheTotalEnvironment646(2019)121–133 127 (at3628cm−1),suggestingthepresenceofclayminerals.Thedetected NNi,forthebulkandfinefractions,respectively(Table1).Otherwise, Si\\O\\SiandSi\\Ostretchingvibrations(at1000and694cm−1,re- NisignificantlycorrelateswithZn(ρ=0.976at0.01level),andingen- spectively)mayberelatedwithsilicateminerals—principallyillite eral,positivecorrelationsbetweenZn,NiandCrwerefoundinthebulk andkaolinite—,whilequartzdoublepeaksareobservedat776and fraction.Similarly,thesemetalsarehighlycorrelatedinthefinesurface 795cm−1.Finally,thebandslocatedat1420,872and712cm−1areas- sediments,suggestingthattheyhadthesameorigin.However,correla- sociatedwiththepresenceofcalciumcarbonate,andweakpeaksat tionsbetweenFe\\Cu,Ni\\CuandPb\\Cr(ρN0.714at0.05level)inthe around 796 cm−1, 745 cm−1 and 725 cm−1 could be attributed to finefractionimplydifferentpossiblemetalsources. othercarbonatedelements(e.g.Mg2+,Li+,K+andNa+)(Songetal., ThetexturesofsurfacesedimentsfromtheDebaRivercatchment 2012).Moreover,thecurvaturefoundat912cm−1maybecharacteris- displayapredominanceofthesandyfraction(0.063–2mm),withper- ticofAl-OHstretchingvibrationduetothepresenceofAl(OH) oreven centagesofover91%.Theproportionofheavymetalloadingfromthe 3 hematite. fine(b63μm)tothebulkfraction(b2mm)wascalculatedfromthe BroadbandscorrespondingtoC\\H(from200to3100cm−1)and metalcontentandthemasspercentageofthefinesedimentfraction. C_O(at1797cm−1)arelikelytobecharacteristicstretchingvibrations Onlyapproximately3.0–14.5(%)ofthetotalmetalloading(unpub- ofaliphatichydrocarbons,andaldehyde,ketone,esterorcarboxylic lisheddata)wasretainedintheb63μmfraction,conclusivelydemon- acid,respectively.Ontheotherhand,thebandat1636cm−1corre- stratingtheimportanceofanalysingbothparticlesizestoprovidea spondstoC_CandC_Ocharacteristicsstretchingvibrationoforganic morereliablereflectionoftheriskassociatedwithmetalsinsurface matter.Asforspatialdistribution,itshouldbehighlightedthatbothpar- sediments. ticlesizesofsurfacesedimentspresentedhigherareasofthesebands Asforspatialdistribution,thelowestpseudo-contentsinthemain downstreamofalltheWWTPs(D3,D5andD6). channelweremeasuredupstreamatD1forallmetals,exceptforPb Forelementalcharacterizationofthefinesurfacesedimentsamples, (Table1).Incontrast,theheadwateroftheEgotributary(E1)presented weselecteddifferentareasoneachpelletwhereFe,Mn,Cu,Ni,Cr,orZn adeviationofover30%withrespecttoD1forMn,NiandCrinthebulk hadpreviouslybeenidentifiedinseveralEDSspectra. surfacesediments,andZn,Ni,Cu,PbandCrinthefinesurfacesedi- Firstly, the omnipresence of illite in the fine surface sediments ments, supporting the idea that sampling sites considered as non- (Fig.2)wascorroboratedsincethesimilarityamongK,AlandSimaps disturbed(Fig.2)hadadifferentlithologicalcomposition. impliedtheformationofpotassiumaluminiumsilicates(Fig.S3A).Mg BydeterminingtheDivergenceFactor(DF),itispossibletoidentify alsoappearedwithAlandSi,indicatingthepresenceofmagnesiumalu- thesamplinglocationsthataremostanomalouswithrespecttothere- minateormagnesiumalumina-silicateasclinochlore(Fig.S3B).Onthe gionasawhole,withregardtometalpseudo-contentinsurfacesedi- otherhand,nocorrelationamongTi,Ca,FeandMgmaps(Fig.S3A)sug- ments.Whenthebulkfractionisconsidered,D4,D5andD6areof gestedthepresenceofoxidessuchasrutileoranatase(TiO ),hematite concern(Fig.3A).Indeed,D5andD6hadthehighestconcentrations 2 (Fe O )orgoethite(FeOOH). ofFe-Cr-PbandMn\\Ni,respectively(Table1).However,themaximum 2 3 Finally,ahighcorrelationofFewithAlandSi,andwithK+,Na+or valuesforPb,andforCu,Ni,CrandZnwerefoundinthefinesurface Mg2+highlightedthatitwaspreferentiallyretainedintheminerallat- sedimentsup-(E1)anddownstreamofthemunicipalitiesofErmua ticeoffinesurfacesediments.Alternatively,thedistributionmapsofZn, andEibar(E2)respectively.Consequently,theEgotributary,andthe Cu,Ni,andCrshowednocorrelationwithotherelementsexceptOand mid-partandtheoutletoftheDebaRiverareapriorithemostpoten- C.Thismightindicatethattheywerepresentedmainlyasoxideorhy- tiallycontaminatedareasofthecatchment.Indeed,normalizedconcen- droxideorboundtotheorganicmatter,exceptatD6andE2whereCu trationsN1ofallmetalsmainlyatmid-(D4andD5)anddownstream andZn,respectively,werecorrelatedwithsulphur,suggestingthat (E2andD6)samplingsites(Fig.1B)suggesttheexistenceofsignificant theywerepresentedassulphateorsulphide. metalinputsintheselocations. Table1clearlyshowsthatanthropogenicinfluenceincreases,toa 3.2.Pseudototalandsequentialmetalextractioninsurfacesediments greater(PbandCr)oralesser(MnandNi)extent,fromthebulkto thefinefraction.Inthecaseofthebulksurfacesediments,onlytheme- AsshowninTable1,medianpseudo-contentsofmetals(Fe,Mn,Zn, dianEFvaluesforCuandZnshowmoderateanthropogenicpollution. Ni,Cu,CrandPb)inthefinesurfacesedimentswerehigherthaninthe However,metalpseudo-contentsinthefinesurfacesedimentsrepre- bulksurfacesediments,exceptforFeandMn.Theseresultsconcurwith sentamoderate(Pb,CrandNi)orevensignificant(ZnandCu)enrich- thoseofotherauthorswhoshowedthatconcentrationsofmetalstend ment.TheextremeanthropogenicpollutionatE1,dueprimarilytoZn toincreasewithadecreaseinparticlegrainsize(Zhangetal.,2002; andPb(Table1),shouldbenoted.Thiscontradictsthepremisethat Morellietal.,2012;Yaoetal.,2016;Kangetal.,2017).Thefinefraction theheadwateroftheEgotributaryisanon-disturbedarea.Vehicle isthemostchemicallyactivesedimentphaseduetoitshighcapacityfor emissionsfromthemainnationalroadandmotorway(Fig.1B)might cationicexchange,resultingfromahighcontentofsecondaryminerals bethemainsourceofthesemetalsinsurfacesediments(Saeedietal., (e.g.clayminerals,FeandMnoxidesandhydroxides,andcarbonates) 2009;Adamiecetal.,2016).Itisalsointerestingtonotethestrongrela- andorganicmatter(HardyandCornu,2006),andthelargesurface tionshipbetweenDFandGEFforthefinefraction(Fig.3A),whichsug- areaperunitmass,whichgivesitgreateradsorptioncapacity(Guven gests that anthropogenic sources of metals are responsible for the andAkinci,2013).Indeed,thebulkfractionhadahighercontentof anomaliesthroughoutthecatchment,especiallyintheEgotributary quartz,whichgivesitaveryweakadsorptioncapacityataparticle (E1andE2),andmid-(D5)anddownstream(D6)ofthemainriver. sizeofb2mm(Horowitz,1991).Additionally,asobservedinEDSspec- Inthecaseofthebulkfraction,theabsenceofalinearrelationbetween traofthefinesedimentsfromalmostallsamplingsites(Fig.S3B),Feand factors(Fig.3A)indicatesthatanomaliesarefundamentallydueto Mn appeared together, suggesting the presence of Fe/Mn metalcontributionfromnaturesources. oxyhydroxides.However,highquantitiesofFeoxidesmightalsobe Theresultsofsequentialextractionofmetals(Fe,Mn,Zn,Cu,Ni,Pb foundinthecoarsefraction(Devesa-Reyetal.,2011),suchashematite andCr)inthebulkandfinesurfacesedimentsareshowninTable2.The (Fe O )inthebulksurfacesedimentsfromE2.Thus,coatings,probably concentrationofallmetalsinthethreemobilefractions(F ,F andF ) 2 3 1 2 3 formedbyFeandMnoxidesonthesandyfractionmightexplainthe significantlyincreased(ρb0.05)withdecreasinggrainsize,exceptfor predominanceofthesemetalsinthebulksurfacesediments. FeandCrintheexchangeableandacid-extractablefraction(F ),and 1 Reflectingtheinfluenceofparticlesizeontheadsorptioncapacityof forMn,Zn,NiandCrintheoxidizablefraction(F ).Incontrast,thepro- 3 surfacesediments,themetalconcentrationinthetwofractionsisnot portionofallmetalsintheresidualfraction(F )significantlydecreased 4 correlated(ρb0.5)andtwodifferentcontentpatternscouldbeidenti- (ρb0.05)withdecreasinggrainsize,exceptforCr.Thehigherpercent- fied:FeNMnNZnNCuNCrNNiNPbandFeNZnNMnNCrNCuNPb ages of the mobile fractions in the b63 μm particle size suggest a 128 J.Unda-Calvoetal./ScienceoftheTotalEnvironment646(2019)121–133 20 100 A) B) C) E2 E2 E2 80 16 80 60 E1 R² = 0.91 12 D5 R² = 0.91 60 R² = 0.88 FE F D6 EF G D D6 D4 G 40 8 40 D4D5 D6 D3E2 D2 D2 D5D4D3 D2D4D5 D6 D2 D3 D3 200 DD11 ED12DE23DD64 D5 R² = 0.01 04 D1R² D= 10.58 200 DD36DD5E2D24DD11 R² = 0.04 0 4 8 12 16 20 0 10 20 30 40 50 60 0 10 20 30 40 50 60 Fig.3.LinearrelationshipsbetweenDivergenceFactor(DF),GlobalEnrichmentFactor(GEF)andGlobalContaminationFactor(GCF)takingallsamplingsitesintoconsideration(exceptE1 ingraphicsBandC)forthebulk(b2mm;triangles)andthefine(b63μm;circles)surfacesediments. preferenceoftheavailablemetals—mainlyattributedtoananthropo- F /F ; F′ = F /F ; and F′ = F /F , respectively). Two metal 1 123 2 2 123 3 3 123 genicinput(Ramirezetal.,2005;Tiquioetal.,2017)—forsmallerparti- behavioursweredistinguished: cles. Meanwhile, the predominance of the residual fraction in the b2mmgrainsizeindicatesthatmetalswerestronglyretainedinthe (a) ThechemicaldistributionofMnandCrdidnotvarybetween minerallatticeand,consequently,thattheywerelargelycontributed grain sizes and the results are consistent with the study by bylithogenicsources(Kangetal.,2017). Kangetal.(2017).ThegreatestproportionofMnwasmainlyas- ThemeanICF(Table1)ofmetalsarerangedintheorderPbNMn sociatedwithF′(44.9–55.4%),followedbyreducible(F′)andox- 1 2 NZnNCuNNiNCrNFe,withnovariationbetweenparticlesizes.Con- idizable(F′)fractions(31.7–37.3%and7.32–23.5%,respectively). 3 sideringthatICFreflectstherisktoawater-sedimentbodyofapollut- Althoughsensitivetoreducingconditions,therelativepredomi- ant,thebulksurfacesedimentsonlyrepresentedarisk(ICFN1)from nanceofMnintheexchangeablefractionwasduetocompounds MnandPb,especiallyatD1.Conversely,allmetalsinthefinesurface ofthiselementbeingsolubilizedinsurfacesedimentssubmitted sedimentswerewidelyavailableinallsamplingsites,mainlyatE2,D3 tocontinuouschangesintheirredoxstate(Devesa-Reyetal., and D6. The strong positive relationships between GCF and DF 2010).ThehighestproportionofCrwasmainlyassociatedwith (Fig.3B),andGCFandGEF(Fig.3C)forthefinesurfacesedimentsindi- F′ (74.3–94.3%), followed by F′ and F′ (4.09–24.1% and 3 2 1 catethatanomaliesfoundthroughoutthecatchmentwereduetothe 1.65–1.71%,respectively).ThewidespreadpresenceofCrinthe mostmobilemetals,whichwerelikelytocomefromanthropogenic oxidizablefractionmightberelatedtothefactthatinoxidation sources.Conversely,thenegativerelationshipbetweenGCFandDF state,thismetalcouldbeassociatedwithorganicsoradsorbed (Fig.3B)forthebulksurfacesedimentssuggeststhatmetalsinthere- inhydrousformontosediments(FilipekandOwen,1979). sidualfraction(F )and,consequently,lithologicalcharacteristicsof (b) ThechemicaldistributionofFe,Pb,Cu,NiandZnvariedbetween 4 eachsub-basinwereresponsiblefortheanomalies. sedimentfractions,withtheinfluenceofthedifferentcomposi- Inordertoobviatethegreaterabundanceofmetalsintheresidual tionandpropertiesofparticlesizesparticularlynoticeableon fractionofthebulksurfacesedimentsthaninthefinesurfacesediments, thebehaviourofmetalsinthewaterenvironment(Yaoetal., andtoidentifydifferentmetalpartitioningintheentirelynon-residual 2016).Theoxidizablefraction(F′)wasthemostabundantnon- 3 fraction(F )dependingonparticlesize,theresultsforthemobilefrac- lithogenousfraction(57.5–93.2%)forCuinbothgrainsizes.Its 123 tionswererecalculated(unpublisheddata)basedontheirsum(F′= high affinity to humic substances (Davutluoglu et al., 2011) 1 Table2 Metaldistributioninthebulk(b2mm)andthefine(b63μm)surfacesedimentsforallsamplingsites(N=7).Themeanandstandarddeviation(±SD)dataarepresentedinμgg−1forall metals,exceptforFe(mgg−1).Thevalueinparenthesesshowpercentageofelementalconcentration,wherethehighestpercentageforeachmetalisshowninbold.Sum:F1+F2+F3 +F4;theTotalwasdeterminedbymicrowaveassistedaciddigestion;Recovery(%):(Sum/Total)×100. F1 F2 F3 F4 Sum Total Recovery Exch./Carbonates Reducible Oxidizable/Sulphides Residual Bulk Fe 0.057±0.036(0.106) 0.798±0.315(1.48) 0.970±0.395(1.80) 52.1±15.7(96.6) 53.9 54.2 99 Mn 175±98.2(22.1) 117±52.8(14.7) 83.4±39.5(10.5) 417±205(52.6) 793 795 100 Zn 56.0±40.1(16.53) 49.0±34.4(14.5) 58.0±23.9(17.1) 176±33.7(51.9) 339 315 108 Ni 3.99±1.57(9.83) 3.67±2.72(9.05) 2.91±2.45(7.17) 30.0±12.9(74.0) 40.6 42.0 97 Cu 1.00±1.08(1.62) 0.386±0.616(0.623) 18.8±10.0(30.3) 41.8±15.5(67.5) 62.0 55.5 112 Pb 0.181±0.141(0.844) 1.84±1.59(8.59) 9.20±4.15(43.0) 10.2±9.04(47.6) 21.4 22.0 97 Cr 0.243±0.359(0.531) 0.433±0.540(0.943) 10.3±8.20(22.5) 34.9±15.1(76.1) 45.9 43.8 105 Fine Fe 0.030±0.024(0.104) 4.36±1.08(15.1) 2.41±0.786(8.36) 22.0±3.59(76.4) 28.8 29.1 99 Mn 405±229(48.9) 290±209(35.0) 40.7±21.7(4.91) 92.4±37.5(11.2) 828 698 119 Zn 219±263(32.6) 299±320(44.6) 74.2±74.5(11.1) 78.9±60.14(11.8) 670 710 94 Ni 13.7±6.39(23.2) 18.8±7.05(31.8) 8.44±4.17(14.3) 18.1±5.49(30.7) 59.0 53.4 110 Cu 9.82±16.6(9.43) 35.0±30.0.7(33.6) 41.6±17.8(39.9) 17.8±10.6(17.1) 104 108.4 96 Pb 2.27±1.65(4.03) 38.6±12.4(68.5) 15.0±13.6(26.6) 0.487±1.29(0.864) 56.4 48.9 115 Cr 1.48±3.02(1.42) 11.1±12.8(10.6) 40.0±55.9(38.3) 51.7±27.1(49.6) 104 99.2 105 J.Unda-Calvoetal./ScienceoftheTotalEnvironment646(2019)121–133 129 favoursapronouncedtendencyforcomplexationwithsediment downstreamtransportofthefinesurfacesediments,asdiscussedin organicmatter.However,thepredominanceofthereducible thesectionbelow. fraction(F′)overtheexchangeablefraction(F′)inthefinesur- Unlikethefinefraction,thebulksurfacesedimentsfromthehead- 2 1 facesedimentsmightberelatedtothehighercontentofFe/Mn wateroftheDebaRiver(D1)werecharacterizedbyhavingthehighest oxidesandhydroxides(F ;Table2).TheprevalenceofFeinthe availableFe,Mn,NiandPbpercentages(8.98%,86.9%,58.3%and79.6% 2 reducible fraction of the fine surface sediments (F′; 64.25%) respectively;Fig.S4A).Theirmaximumpercentagesinthereducible 2 alsoappearstoinfluencethepartitioningofZn,NiandPbinthe fractionatD1(Fig.S4A)andtheabsenceofhumanactivitiesinthis smallestparticlesize.PbboundtoF′(71.2%)exceedsPbbound areasuggestthattheseavailablemetalsresultedprimarilyfromnatural 2 toF′(25.0%)inthefinesurfacesediments,despitethetendency weatheringofmineralsandtheirsubsequentadsorptionintothecoat- 3 ofleadtoformstableorganiccomplexesand/ortobeboundto ingsformedbyFeandMnoxidesonthesandyfraction. sulphides(Tüzen,2003).AlthoughNiandZnweredistributed Incontrast,industrialwastewaters(IWW)werethemainsourcesof betweenthreemobilefractionsinbothgrainsizes,theywere non-lithogenousCrinthebulkandthefinesurfacesediments,espe- alsomainlyboundtoF′(46.9%)inthefinesurfacesediments. ciallyatD4(46.6%;Fig.S4Aand51.4%;Fig.S4B,respectively).They 2 alsoprovidedavailableCu(42.6%),Zn(42.5%;mainlyatD2),andPb andNi(65.5%and40.1%,respectively;mainlyatD4)tothebulksurface sediments.BeforeconnectiontotheApraitzWWTPinJune2014,un- RegardlessofchemicaldistributionchangesinF ′betweenthebulk 123 treatedwastewater(UWW)fromErmuaappeartohavecontributed andthefinesurfacesediments,itwasobservedthatthereducible(F′) 2 tothefactthatthehighestpercentagesofavailableZnandCu(63.9% andtheoxidizable(F3′)werethefractionswhichshowedsignificantdif- and44–0%,respectively;Fig.S4A)werefoundinthebulksurfacesedi- ferencesbetweenparticlesizes(ρb0.038)forallmetals,exceptforNi. ments,andCr(65.4%,Fig.S4B)inthefinesurfacesedimentsfromthe Inaddition,althoughfinesedimentshavegreaterparticulateorganic Egotributary(E2).Althoughresidentialwasteisthechiefsourceofcop- carbon (Strom et al., 2011), Fe/Mn oxyhydroxides appeared to be perinriversediments(Zhaietal.,2003;Paramasivametal.,2015;Yao chieflyresponsiblefortheincreasedadsorptionofmetalsonfinesurface etal.,2016),vehicleshavebeenalsoreportedtobeoneofthecontribu- sedimentstothedetrimentoforganicmatter. torstoZnandCuenteringthesurfacewatersystem,asaresultofthe Finally,PCAswereperformedonthemetalpercentagesinthemo- combustionofmotorfuel,wearonbrakelinings,tyrewearandcar bilefraction(F )toelucidatethemainsourcesofavailablemetalsin 123 washing(LegretandPagotto,1999;SörmeandLagerkvist,2002;Rule thebulkandfinesurfacesedimentsfromtheDebaRivercatchment. etal.,2006).Moreover,urbanwastewatersaregatheredfromhomes, ThetwosetsofresultswereplottedtogetherinFig.4toestablishsimi- commercialestablishments,industriesandstorm-waterrunofffrom larities/dissimilaritiesbetweengrainsizes.PCAproducedtwoprincipal roads,whichareallalsolikelytobesourcesofmetals. components,representing75.3%(PCI:46.1%;PCII29.3%)and71.4% Otherwise,althougheffluentsfromWWTPsarenotoneofthemajor (PCI:36.2%;PCII:35.2%)ofthetotalvarianceforthebulkandthefine pathways of available metals to the bulk surface sediments, Epele fraction,respectively. WWTP(D3)appearstocontributenon-lithogenousMn(63.5%),Zn Basedonthevariableloadingandsamplescore,similarclusteringof (50.0%)andNi(25.8%).Inthecaseofthefinesurfacesediments,itcon- samplingsitescouldbeobservedforbothparticlesizes.However,while tributestohighlymobileFe(31.0%),Mn(94.3%),Zn(85.2%)andNi themobilefractionofmetalsshowsawidespreadspatialdistributionin (68.7%).Meanwhile,theMekolaldeWWTP(D5)isgroupedtogether thebulksurfacesediments(from24.1%to62.6%ofdeviationbetween withIWWduetothehigheravailableCr,probablyfromD4.WWTPs samplingsites,Fig.S4A),itremainsunchangedalongthecatchmentin treatnotonlyurbanbutalsoindustrialwastewaters,whosedissolved thefinesurfacesediments(from1.3%to18.2%ofdeviation,Fig.S4B), Zn,NiandMnhasthelowestremovalefficiencyintheactivatedsludge hinderingtheidentificationofmetalsources.Thus,aswiththemineral- process(Yamagataetal.,2010;Ongetal.,2010;daSilvaOliveiraetal., ogicalanalysis,theb2mmsedimentgrainsizeismoreusefulforidenti- 2007).Finally,whileavailablemetalsinthebulkfractionatD6came fyingdifferentnaturaloranthropogenicsourcesofavailablemetalsin fromtheEgotributary(Fe,Zn,CuandPb)andupstream(D5;Mnand the study area, while they are masked by the higher influence of Zn),onepossibleanthropogenicsourceofnon-lithogenousFe,Mn,Ni andCu in thefinefraction should benoted (theApraitzWWTP or IWW). ZnCuPb CuCu Fe 3.3.TransportofcontaminantsbySPM Ni -1Zn Cr PbMNin1 Themediandischarge(Q)valueobtainedforthe9samplingcam- 3 Mn paignswas10m3s−1.Thisallowsustoestablishtwodifferentsetsof Fe hydrological conditions: a wet season corresponding to sampling 2 II months with Q values of over 10 m3 s−1 (January, February and CPCI P March2015,andJanuary2016);andadryseasoncomprisingmonths )% 1 E2 IWW D5 D6 Headwater withQvaluesofbelow10m3s−1.Fig.5summarizestheSPMcontent 2 D2 D1 .53 UWW D2D4 D4 inthewatersamplesandtheconcentrationsofFe,Mn,Zn,Ni,Cu,Cr %- 0 E2 D3 andPbintheSPMinthedryandwetseason.Metalcontentinthe 3 D6 SPMshowssignificantlyhighermedianvaluesduringthedryseason IIC.92( -1 DD35 WWTP twhaatnerdsuarminpgltehsedwispetlasyeeadsotnhe(ρopbp0o.s0i5te),bwehhailveiothuer.SInPMdeecdon,acednetcrraetiaosneiinn P -2 D1 Headwater waterdischargecauseslesserosion,andthusreducesthetransportca- pacityoftheriver(Pascaudetal.,2015).However,duringlowdischarge -3 events,resuspendedparticlestendtobesmaller(Palleiroetal.,2013), -2 -1 0 1 2 3 PCI(36.2% -46.1%) havinghighmetalconcentrationsasweobservedaboveforsurface sediments. Foramoreaccurateevaluationofsedimentdynamicsduringthetwo sFuigr.fa4c.ePsriendciimpaelnCtsomfoproanllesnatmsApnlinalgyssiisteasp(pelxiecdeptotftohreEm1)obainledffroarctbiootnh(gFr1a23in)osifzaelslm(be2tamlsmin: differenthydrologicalconditions,linearregressionswereappliedusing triangles;b63μm:circles). metalsaschemicalconnectorsbetweenSPMandsurfacesediments 130 J.Unda-Calvoetal./ScienceoftheTotalEnvironment646(2019)121–133 160 160 10000 7000 140 140 6000 8000 120 120 -1Lgm(MPS)104680000 -1Fe(mgg)SPM104680000 -1Mn(µgg)SPM 246000000000 -1Zn(µgg)SPM2345000000000000 20 20 1000 0 0 0 0 DRY WET DRY WET DRY WET DRY WET 450 350 600 450 400 400 300 500 350 350 -1Cu(µgg)SPM112230505000000 -1Ni(µgg)SPM11220505500000 -1Cr(µgg)SPM 123400000000 -1(µgg)PbSPM 112230505000000 50 50 0 0 0 0 Fig.5.Boxplotsummarizingsuspendedparticlematter(SPM)concentrationinwatersamplesandmetalcontentinSPMduringthedry(Qb10m3s−1)andwet(QN10m3s−1)seasons. Eachboxshowsthe25th,50thand75thpercentilesofmedianvaluesmeasuredateachsamplingsite(N=11samplingcampaigns). (Table3).Theinfluenceofhorizontalsedimenttransportwasrepre- shouldencourageustogainadeeperunderstandingoftheenvironmen- sentedbythemetalconcentrationsinSPMatthesitejustupstream talgeochemistryofmetals.Sinceseveralstudieshavefoundthatenvi- (A;Table3);inthecaseofD4andD6,sedimenttransportfromthetrib- ronmentalandhumanhealthisassociatedwithexcessiveexposureto utaries(theOñatiandtheEgostreams,respectively)wasalsotakeninto metals,andsedimentsactasstorageandtransportvectors,determining consideration.Atthesametime,theinfluenceofverticalturbulence theroleplayedbysedimentparticlesizeisavaluabletoolforaccurately causingsedimentresuspensionwasrepresentedbymetalconcentra- evaluatingthemobilization,depositionanddispersionofpotentially tionsinboththebulk(B;Table3)andthefine(C;Table3)surfacesed- toxicmetalsinurbanecosystems. imentsatthesamplingsitestudied. Inthisstudy,theuseofnon-destructivetechniques(XRD,IRand Astheabsoluteβvaluesindicate,horizontalsedimenttransportwas SEM-EDspectroscopies)andinvasiveprocedures(pseudo-totalandse- dominantduringthewetseason(QN10m3s−1).Incontrast,during quentialmetalextractionmethodologies)toanalysebothbulk(b2mm) thedryseason(Qb10m3s−1)metalconcentrationsintheSPMwere andfine(b63μm)surfacesedimentshasallowedustoassessthepoten- moreimportantlydependentonmetalcontentsinresuspendedsurface tialenvironmentalandhealthimplicationsofmetalgeochemistryinan sediments,exceptatD4,D5andD6.Thefindingssuggestthattheshallow urbancatchment.Weobservedthatthecompositionandpropertiesof depthofthewatercolumnduetolowriverdischargesmaycausecurrents eachparticlesizeinfluencetheavailability,andbyextension,thetoxic- toapproachthebottom,resultinginstrongersurfacesedimentresuspen- ityofmetalsinsurfacesediments;thefinefractionmobilizednotonly sion. However, as the discharge in the main river notably increases highermetalpseudo-contentsbutalsogreateravailablemetalpercent- throughstreamsflowingintoitandtheslopeofthecatchmentabruptly ages.Inadditiontothelargersurfaceareaperunitmassandthehigh decreasesfromD3(Fig.1C),thedepthoftheinfluencezoneandtheve- contentofclaymineralssuchasillite,mainlyFeandMnoxyhydroxides locityofthecurrentbothrise,promotinghorizontaltransportoversurface havebeenfoundtoencourageadsorptionofmetalonthesmallestsed- sedimentresuspensionatsitesdownstreamofD3andthemostimpor- imentparticles,especiallyforPb,NiandZn.Inaddition,wehavedem- tanttributaries(D4,D5andD6).Indeed,theoutletofthecatchment onstrated that discharges of IWW, UWW and even effluents from (D6)ishighlyinfluencedbysedimenttransportfromtheEgotributary WWTPsalongtheDebaRivercatchmentwerethemainanthropogenic inthewetseason(Table3).Theseresultsconcurwiththeearlierinterpre- sourcesofavailablemetalsinsurfacesediments.Inthecaseofthebulk tationofthePCA(Fig.4)andthestudybyFdez-OrtizdeVallejueloetal. fraction,theoriginofthemetalswaspredominantlylithogenicanddue (2017),whoconcludedthattheSPMwiththehighestconcentrationsof towatererosion,whichwasidentifiedasthedominantgeomorpholog- Zn,PbandCrwerecollectedintheAltzolagaugingstationduringflood icalforce,wasresponsibleforthepresenceofhighavailablemetals eventsasaconsequenceofreceivingwatersfromtheEgotributary. mainlyattheheadwaterofthemainriver. Finally,itisimportanttostresstheneedtoconsiderparticlesizedis- Finally,sinceeachfractionrepresentsdifferentavailablemetalload- tributionduringthesurfacesedimentresuspensioneventforcontrol- ing,byevaluatingsedimentdynamicsduringdifferenthydrological lingtransportationofmetalstowardsthecoastalarea.Ineffect,during conditions,wewereabletoidentifytheseasonposingthehighesteco- thedryseason,metalconcentrationsintheSPMoriginatingfromsedi- logicalrisk.Whiletheresuspensionoffinesurfacesedimentsnotablyin- mentresuspension(BandC;Table3)weremuchmoredependenton duced significantly higher metal concentrations in SPM during dry metalcontentinthefinesurfacesediments(exceptatD5andE1), season,resuspensionofbulksurfacesedimentsand,fundamentally, whereasduringthewetseason,theydependedmoreonthemetalcon- downstreamtransportofSPMbecamemorerelevantanddiminished tentinthebulksurfacesediments(exceptatD1,D3,D6andE2). theecologicalriskduringthewetseason.Thisknowledgewillbecrucial forsustainabledevelopmentofanurbanecosysteminthecontextofcli- 4.Conclusions matechange,giventhatfuturehydrologicalscenariosestablishlonger dryperiodsbetweenprecipitationevents(IPCC,2013),asituationin Recognitionofthesusceptibilityofanurbanenvironmentduetothe whichbalancingtheintenseexpansionofhumanactivitieswiththein- increasingpressurefromhumanactivityorevenfromclimatechange creasinglyadversenaturalconditionswillbeaverychallengingtask.