ebook img

Evaluating the impacts of greening scenarios on thermal comfort and energy and water consumptions for adapting Paris city to climate change PDF

2018·7.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Evaluating the impacts of greening scenarios on thermal comfort and energy and water consumptions for adapting Paris city to climate change

UrbanClimate23(2018)260–286 ContentslistsavailableatScienceDirect Urban Climate journalhomepage:http://www.elsevier.com/locate/uclim Evaluating the impacts of greening scenarios on thermal comfort and energy and water consumptions for adapting Paris city to climate change C.deMuncka,*,A.Lemonsua,V.Massona,J.LeBrasa,M.Bonhommeb aCentreNationaldeRecherchesMétéorologiques,GAME,Météo-France/CNRS,Toulouse,France bLaboratoiredeRechercheenArchitecture,Toulouse,France A R T I C L E I N F O A B S T R A C T Articlehistory: Recentclimateprojectionspredictanamplificationofglobalwarmingandmorefrequent Received31May2016 extremeeventssuchasheatwaves.Therefore,theadaptationofcitiestocounterbalance Receivedinrevisedform29November2016 theseadversechangesisurgent.Amongavailableadaptationstrategies,urbangreeningisa Accepted5January2017 measurethatisfrequentlyencouragedtoimprovethermalcomfortorenergydemand,but Availableonlinexxxx whoseimpactsarenotwellknownatthescaleofcities.Inthisstudyweevaluatetheeffects ofvariousurbangreeningscenariosbasedonurbanclimatesimulationsacrosstheParisarea. Keywords: The modelling relies on the Town Energy Balance model. The scenarios tested consist of Climatechangeadaptation anincreaseinground-basedvegetationoranimplementationofgreenroofsoncompatible Greeningstrategies buildings,orthetwocombined.Resultsshowthatincreasingthegroundcoverhasastronger Thermalcomfort coolingimpactthanimplementinggreenroofsonstreettemperatures,andevenmoreso Energyconsumption Waterresources whenthegreeningrateandtheproportionoftreesareimportant.Greenroofsarehowever themosteffectivewaytoreduceenergyconsumption,notonlyinsummerbutalsoonan annualbasis.Theeffectsthevariousgreeningmeasuresmayhaveoverdifferentseasonsis finallyaddressedinordertodrawupacomprehensiveinventoryoftheclimaticimpactsof suchstrategies. ©2017ElsevierB.V.Allrightsreserved. 1. Introduction Currentclimateprojectionsforecastanamplificationoftheglobalwarming(MeehlandTebaldi,2004;Stockeretal.,2013) andanincreaseinextremeevents(Giorgi,2006).Thoseglobaltrendsthattranslateatregionalandlocalscales,arelikelytohave significantimpactsincities,thatarehometothemajorityofthepopulation,namelyachangeintheintensityoftheurbanheat island(highlydependentonthesoilwaterresources,suchashighlightedbytheworkofLemonsuetal.,2013),increasedhealth risks(asattestedbythe15,000excessdeathsduetoextremeheatobservedinAugust2003,HémonandJougla,2004),notto mentiontheincreaseintheuseofairconditioningtomeetthecomfortneedsoftheinhabitants(180%between2003and2020 accordingtoAdnot,2003a,b).Theseperspectivesmakecitiesterritorieswherenotonlymitigationissueswillbethestrongest, butalsopotentiallyterritoriesmorevulnerabletoclimatechangethannaturalenvironments. *Correspondingauthor. E-mail address:[email protected](C.Munck). http://dx.doi.org/10.1016/j.uclim.2017.01.003 2212-0955/©2017ElsevierB.V.Allrightsreserved. C.Muncketal. /UrbanClimate23(2018)260–286 261 Therearedifferentformsofadaptationstrategiestoreducethisurbanvulnerability,involvingactionsonrequalificationof surfaces,urbanforms,innerandouterbuildingenvelopes,oronindividualbehaviors.Urbangreeningstrategies,morespecifi- cally,havemultipleinterests.Thankstovegetationcoolingpotential,theyarebothadaptationmeasurestoclimatechangeand mitigationmeasuresforurbanheatislandandair-conditioningdemand.Beyondclimaticconsiderations,urbangreeningalso deliversadditionalbenefitstotheurbanecosystem,suchasabettermanagementofstormwater(Ashleyetal.,2011;Stovin, 2010;Stovinetal.,2008),areductionofairpollution(CurrieandBass,2008;Hill,1971;Nowaketal.,2006;Pughetal.,2012)or anincreaseinurbanbiodiversity(GetterandRowe,2006;Madreetal.,2014;Mullaneyetal.,2015)forexample. This is by modifying its radiative, thermal, hydrological and aerodynamic properties that vegetation affects the urban environment.Thesemodificationsresultfromthreephysicalprocesses:directevaporationofthewaterheldinthesoiland interceptedbythefoliageofplants(daytimeandnighttime),thetranspirationofalltypesofplants(generallydaytime,butcan alsooccuratnighttimeforsomeplantspeciesorundercertainclimates),andfinallytheinterceptionofsolarradiationfortree species(daytime).Butthereisawiderangeofgreeningsolutionsthathavedifferenteffectsdependingonthescaleatwhich theyareimplemented(building,street,neighbourhood,city),ontheplantspeciesselected,onthelocalclimaticconditions,but alsoontheaspectsstudied(thermalcomfort,energetics,dynamics,hydrology,etc.).Thisisshownbythevastliteratureonthe subject,whetherfromexperimentalornumericalstudies. Greeningthebuildingenvelopescanreducesurfacetemperaturescomparedtoartificialsurfaces,whichlimitstheamount ofheatthatcanpenetrateintobuildings(EumorfopoulouandKontoleon,2009;KontoleonandEumorfopoulou,2010;Onmura etal.,2001;Sternbergetal.,2011;TakebayashiandMoriyama,2007;Wongetal.,2010).Indoingso,theydiminishtheseasonal temperaturevariationsinsidebuildings(Castletonetal.,2010),generatingenergysavings,butwithouttotallyachievingthe efficiencyofconventionalinsulationaccordingtoEumorfopoulouandAravantinos(1998)andEumorfopoulouandKontoleon (2009).Urbangreeningtakesalsootherformsthroughstreettrees,urbanparksorforests.Onthebasisofameta-analysisofthe literatureonthesetypesofstrategies,Bowleretal.(2010)showthaturbanparksgenerateanaveragedaycoolingintherange of0.94◦C,withvariationswhichareexplainedinparticularbythesizeofthepark(Barradas,1991;Changetal.,2007)andits composition(tree/lawnratio,Potchteretal.,2006)butalsothesurroundingclimate.Theyalsohighlightthatthetemperatures under the trees are systematically cooler than the surroundings during the day, with variations depending on tree shading capacityShashua-BarandHoffman(2000).Atnighttime,however,treecanopycouldretainheat(Liangmeietal.,2008;Souch andSouch,1993;Tahaetal.,1991).Besides,astudybySouchandSouch(1993)suggeststhatthethermalperformanceoftrees canvarydependingonthetypeofsurfaceonwhichtheyareplanted(grassorconcrete,forexample).Theevapotranspiration potentialconditionedtowaterstatusofplantsandsoils,andirrigationpractices,isalsoacrucialpointwhichhasreceivedvery littleattentiontodate,exceptbyShashua-Baretal.(2009)whoproposeanefficiencycoefficientwhichlinkscoolingeffectand evaporation. Foroperationalpurposeswithintheframeworksofurbanpolicies,theanalysisandevaluationofsuchstrategiesneedtobe examinedatalargescale.Sofar,onlyafewnumericalstudiesinvestigatethecoolingpotentialoflarge-scalestrategiesofurban planning,suchastheimplementationofgreenandbluecorridorsforParisurbanarea(GroupeDescartes,2009),orofgreen roofsoverToronto(Bassetal.,2003)andNewYorkCity(Rosenzweigetal.,2009). Ourstudyaimstocomplementthescientificliterature,butalsobettermeettheexpectationsofurbanplannersanddeci- sionmakers,throughaphysically-basedanddetailedmodellingofurbanclimate,usingParisurbanareaasastudycase.The originalityoftheworklies(1)inthedevelopmentofrealisticurbangreeningscenarios,implementedlocallybutassessedat cityscale;(2)inthecomparisonofdifferentvegetationinstallationsinurbanenvironment,onroofs(withorwithoutirrigation) andontheground(lawns,mixedvegetation);(3)inthemulti-criteriaevaluationofscenarioswhichcoverstheissuesofheat exposureandthermalcomfort,energyconsumption,andwaterdemand;and(4)inthetimescalesthatareinvestigated(fora specificheatwave,aswellasatseasonalandannualscales). Thenextsection(Section2)presentsthebasisfortheconstructionofthedifferentscenariosthatwesimulated,thenumerical configurationusedaswellasitsevaluationbeforegreening.Thenvariousimpactsareassessed,bothinextremesummercon- ditions(heatwave,Section3)andfortherestoftheyear(Section4)toevaluatewhetherthesegreeningmeasuresdevisedto meetheatwaveissueshaveadverseeffectsontherestoftheyearornot.Theimpactsstudiedarethermalcomfortandenergy consumptionforuseofair-conditioning(AC)andheating,whicharegoodindicatorsofthevulnerabilityofcitiestoheatwaves, butarealsoaboutthemanagementofurbanwater(volumesrequiredforwateringthevegetationandgeneratedbysurface runoffthroughouttheyear).Thelastsection(Section5)drawstheconclusionsofthisworkandsuggestswaystodevelopthis approach. 2. Methodologyforevaluatinggreeningscenariosatcity-scale Theinitialaimofthisstudyistoevaluate,basedonmodelling,greeningscenarioswhichmayrepresentstrategiestoimprove futuresummerconditionsincities.AstheEuropeanheatwaveof2003isidentifiedbythescientificcommunitytoberep- resentativeinmeantemperaturesofsummersofthesecondhalfofthe21st century(Déqué,personalcommunication),the meteorologicalconditionsassociatedtothisheatwavearetakenasastudycasetoevaluategreeningscenarios.Thismethod- ology,focusingonPariscity,reliesonsimulatingtheurbanclimateofPariswiththeTownEnergyBalance(TEB)urbancanopy model(HamdiandMasson,2008;Masson,2000).ThefirststepconsistsindesigningforPariscitygreeningscenariosthatare atthesametimerealisticandpromisingandthatcanalsobetakenintoaccountbyourmodel.Inasecondstep,theurban climateofParisissimulatedatthespatialresolutionof1kmwithTEBinofflinemode(withmeteorologicalforcings)foreach 262 C.Muncketal. /UrbanClimate23(2018)260–286 greeningscenario,alongsidesustainablestrategiesforenergyandwaterusage.Thisisdoneundera10-yearmeteorological forcing(1999–2008)thatincludestheheatwaveeventof2003(8–13August2003).Thiswaybothcanbestudiedthebenefits ofgreeningscenariosinaheatwavecontextaswellastheirrespectiveimpactsatthescaleofotherseasons.Thismethodology allowsforacomprehensiveassessmentofgreeningstrategiestoberealised.Duringthesimulations,indicatorsidentifiedto berepresentativeofcityvulnerabilitytoclimatechangearecomputedsothattheimpactsoftherespectivescenarioscanbe quantifiedandcompared. 2.1. Simulationconfigurationandevaluationofthereferencesimulation 2.1.1. Simulationconfiguration Forthisstudy,thesimulationswereperformedwiththeSURFEXsurfacescheme(Massonetal.,2013),andmorespecifically withTEB,theTownEnergyBalancemodel(HamdiandMasson,2008;Masson,2000)builtinSURFEXforurbanandartificial surfaces,andISBA,theInteractionbetweenSoil-Biosphere-Atmospheremodel(Boone,2000;NoilhanandMahfouf,1996)for naturalsurfaces(soilandvegetation).TheconfigurationchosenforthesimulationfollowsthatsetupintheMUSCADEproject (Massonetal.,2014b),whichthisstudyispartof.ThisconfigurationisdetailedinAppendixA.Inthisconfigurationthatinvolves aplatformofmodels,theinputdataforSURFEXareprovidedbyanarchitecturalmodel,theGENeratorofInteractiveUrban blockS(GENIUS,Bonhomme,2013;Bonhommeetal.,2013).ThismodelprovidesSURFEXwithlandcoverinformationatthe resolutionof250m(includingexistingurbangreenspaces),andmorespecificallyprovidesTEBwithamapdescribingurban morphologybasedoneighttypesofurbanblocks(Continuouspavilion,Discontinuouspavilion,Continuousblock,Discontinuous block,High-risetower,Ancientcentre,Industrialbuilding)withspecificgeometricfeaturesandbuildingdates.Then,TEBtrans- latestheseeighturbanblocksintofivebuildingtypes(Haussmannianbuilding,Individualhousing,Densecollectivehousing, Officetower,Warehouse)andaggregatesthemattheresolutionof1kmtoreducecomputationalcosts.Fivetypesofbuildinguse (Residential,Office,Industrial,Agricultural,Commercial)completethisrepresentation.Theradiativeandthermalcharacteristics ofbuildingsareprescribedonthebasisofbuildingtypeandage(characteristicsprovidedinAppendixA),buildingequipment characteristics(air-conditioning,heating,ventilation)onthebasisofbuildinguse(seeAppendixA)andscenariohypothesis.For example,inoursimulations,virtuoustemperaturesetpointsforair-conditioningandheatingarechosentobeinlinewiththe sustainabilityofthegreeningscenarios:19◦Cforheatingand26◦Cforair-conditioning.Heatingandair-conditioningareactive all-yearroundandtriggeredassoonastheirrespectivetemperaturesetpointsarereachedwhatevertheseason. InthisconfigurationTEBisruninofflinemode(i.e.with1Dmeteorologicalforcingsasopposedtocoupledtoanatmospheric model),atthespatialresolutionof1km,andwithmostofitsparameterizationsactivatedtoallowformorephysicalprocesses andinteractionstobeaccountedfor:verticalturbulentdiffusionwithinmultilayerurbancanyons(HamdiandMasson,2008; MassonandSeity,2009),buildingenergetics(Buenoetal.,2012;Pigeonetal.,2014),urbanvegetationontheground(Lemonsu etal.,2012),greenroofs(deMuncketal.,2013a),aswellasamoduleforcomputingthermalcomfortindexes(Fialaetal.,2012; Pigeon, 2011). In addition, the urban weather generator (UWG) implemented in SURFEX is applied in order to derive a 2D temperatureforcingfroma1Dforcingandcityfeatures(LeBrasandMasson,2015).Despiteeffortstoimprovethemodel,some physicalprocessesarenotyetrepresentedintheversionusedinthisstudy,suchastheshadingeffectoftrees,aswellasthe radiativetrappingbytreecanopies. Underthisconfiguration,themodificationstothesurfaceinducedbythegroundgreeningscenariostranslatewithinTEB intothemodificationoftherespectivefractionsofroadsandgreenspaces,wherevergreeningispossibleandaccordingtothe threegreeningratiostested.Inthecaseofscenarioswithroofgreening,thethermalandradiativecharacteristicsofthegreened artificialroofs(thoseofwarehousesandindividualanddensecollectivebuildings)arereplacedbythoseofgreenroofs.Thetotal densityofurbanvegetationinducedbythedifferentscenariosispresentedinFig.1.Additionalsurfacecharacteristics(building fractionandtype,usageandheightofbuildings)whichmaybehelpfulfortheanalysisofsimulationresultsareprovidedin AppendixA. 2.1.2. Evaluationofthereferencesimulation Thereferencesimulation,whichtakesintoaccounttheexistingurbanvegetationandisthereforetheclosesttorealityin termsoflandcover,isevaluatedtoappreciatetheperformanceofthemodelconfigurationsetupinthisstudy,bothduring theheatwave(8–13August2003)andthedecade(1999–2008)studied.Thisevaluationexerciseisbasedonthe2-mairtem- peraturesrecordedateightoperationalweatherstationsthatarelocatedwithinthespatialdomainstudied(seeAppendixB). Theyprovidecompleteseriesofdailyminimumandmaximumtemperaturesoverthe10-yearperiod1999–2008,andhourly temperaturesduringthesixdaysofthe2003heatwavearealsoavailableforsevenofthem.Ata1-kmhorizontalresolution, themodelcannotaccuratelyreproducethesub-gridheterogeneityinthesurfacecharacteristics.Thereforeitismoresuitable tocomparemodelestimatesandobservationsforgroupsofstationshavingsimilarsurfacecharacteristicsratherthantocon- ductameshbymeshcomparison.Consequently,theevaluationexerciseisperformedfortwotypesofstations,thoseurban andthoserural(seeAppendixB),dependingontheurbanisedfractionofthemodelmeshtheybelongto,onaverage81±16% and21±16%respectively.Whilesimulatedandobservedhourlytemperaturesarecomparedforthe2003heatwave,minimum andmaximumtemperaturesarecomparedintermsofthemonthlyclimatologyoverthe10-yearperiodstudied.AppendixB providesgraphsshowingtheevolutionofsimulatedandobserved2-mtemperaturesduringtheheatwaveaswellasthatof monthlymeansofsimulatedandobserved2-mminimumandmaximumtemperatures(referredtothereafterasTNmeanand TXmean).TheassociatedstatisticalscoresaresummarizedinTable1. C.Muncketal. /UrbanClimate23(2018)260–286 263 Fig.1. Urbanvegetationdensityineach1-km2gridmesh.RepresentsgroundvegetationforLV25,LHV25,LV50,LHV50,LV75,andLHV75scenarios,androoftop vegetationforGRandIGRscenarios(greysquaresshowthelocationofbuildingswithoutgreenroof,i.e.Haussmannianbuildingsandofficebuildings). Duringtheheatwave,althoughthemodelcorrectlysimulatesthedailydynamicsoftemperatures(seeAppendixB),thebias valuesobtained(+1.33◦Cforurbanstationsand+1.14◦Cforruralones)suggestthatthemodeltendstosimulatetemperatures alittlehigherthanthoseobserved,whateverthelocationofthestation.Withstandarddeviationsforsimulatedtemperatures veryclosetothoseobservedatstations,5.22◦Cversus5.06◦Crespectivelyaturbanstationsand6.03◦Cversus5.51◦Catrural stations,themodeliscapableofcapturingtheslightlyhighertemperaturevariabilityobservedatruralstations.Runningat the spatial resolution of 1km, an average error on the six days of the heat wave of about 1.9◦C is made on the simulated temperatures,whetherinurbanorruralareas.Thiserrorseemstobeduetoanoverestimationbythemodelofthetemperatures 264 C.Muncketal. /UrbanClimate23(2018)260–286 Table1 Rootmeansquareerrors(RMSE)andmeanbiaserrors(MBEModel-Obs)associatedwith2-mairtemperatureforthe referencesimulationduringthe2003heatwaveandforthemeanclimatologyofthe1999–2008decade. 8–13August2003 1999–2008decade T(hourly) TNmean TXmean Urban Rural Urban Rural Urban Rural RMSE(◦C) 1.93 1.90 1.26 0.77 0.73 0.86 MBE(◦C) +1.33 +1.14 +1.25 +0.76 +0.53 +0.71 duringthefirstthreedaysoftheheatwave(seeAppendixB),whichisprobablytheconsequenceofaninsufficientrepresentation ofadvectionprocessesinthesimulationconfigurationused(discussedfurtherinAppendixB). Onaverageoverthedecadesimulated,RMSEandMBEvaluesobtainedshowthatatthespatialresolutionof1km,beitat nightorduringtheday,themodelconfigurationweusetendtooverestimate2-mairtemperatures.Atnight,themodelpresenta RMSEof1.26◦CandaMBEof+1.25◦CforurbanstationsandaRMSEof0.77◦CandaMBEof+0.76◦Cforruralstations.Whatever theseason,errorsontheTNmeanarelowerforruralthanforurbanstations(onaverageby0.5◦Cforbothscores),suggesting thatthemodelfurtheroverestimatestemperaturesatnightinurbansettings.Thistendencyofthemodeltooverestimate2-m temperaturesismuchlesspronouncedatdaytimethannighttime,withRMSEandMBEvaluestwotimeslessthoseatnight (RMSEof0.73◦CandMBEof+0.53◦C).Contrarytonighttimeperiod,themodelpresentsaslighttendencytooverestimate moremaximumtemperaturesforruralthanforurbanstationsduringtheday.Asfarastemperaturevariabilityisconcerned, thecalculationofthestandarddeviationsforthemonthlyclimatologyshowedthattheydonotdiffermuchbetweenurbanand ruralstations:fortheTNmean,theyareonaverage4.77◦Cforobservationsand4.63◦Cformodelestimations,andfortheTX meanrespectively6.79◦Cand6.48◦C.Suchstandarddeviationvaluesthatareequivalenttoslightlylessthanforobservations demonstratethatthemodelisquitegoodatcapturingthevariabilityfoundintheobservationsforthedecadestudied. OurresultsareinlinewithpreviousnumericalstudiesrunningwiththeTEBmodelthatarebasedonmoresophisticated simulationconfigurationsthantheoneusedinourstudy.Whensimulatingthesamesix-dayperiodofthe2003heatwavewith theTEBmodelcoupledtoamesoscaleatmosphericmodel,deMuncketal.(2013b)obtainatthespatialresolutionof1.25kma similarMBE(+1.0◦C)andahigherRMSE(2.6◦C)valuesthanthoseobtainedwithoursimulationconfigurationfortheprediction of2-mtemperatures.It’sonlybyrunningatahigherspatialresolution(250m)andwithaverydetaileddescriptionofsurface characteristicsthattheperformanceofthemodelisimproved,withaMBEof+0.2◦CandaRMSEof1.5◦C,yetcomparableto theoneobtainedwithoursimulationconfiguration.SimilarscoresareobtainedbyLemonsuetal.(2015)whosimulatethe2003 heatwaveatthespatialresolutionof1kmwithachainofmodelsincludingTEB:aMBEonnighttimetemperaturesranging from+0.41to+3.72◦Cbetweenthemostandtheleasturbanisedlandcovers,witherrorsrangingfrom0.83to3.83◦C,and atdaytime,anaverageMBEof−0.52◦Canderrorsrangingfrom0.78to2.06◦C.Inordertominimizetheimpactofthebiases anderrorshighlightedinthereferencesimulation,theanalysisoftheimpactsofthegreeningscenariosinthepresentstudyis carriedoutinrelativeterms(relativetothereferencesimulationbeforegreening). 2.2. DesigningrealisticgreeningscenariosforPariscity Thegreeningstrategiesweevaluateconsistingreeningthecitywhereverpossiblebypartiallytransformingartificialurban surfacesavailableintogreenspaces.Weassumeaspartlyavailableforgreening,theurbansurfacesatgroundlevelsuchas pavements,squares,roundaboutsandcarparks(surfacesthatareneitherbuiltasbuildingsorroads,oralreadyvegetated), aswellastheroofsofsomebuildingtypes.Atgroundlevel,acertainpercentageoftheurbansurfaceavailableforgreening Table2 Characteristicsofthescenariossimulated. Scenarioacronym Conversiontovegetation Additionalgreenareas(km2) Vegetationtype Irrigation GR Roofsofsuitablebuildingsa 251(+28%) Sedums Noirrigation IGR Roofsofsuitablebuildingsa 251(+28%) Sedums Dripirrigation LV25 25%ofgroundavailableb 100(+11%) Lowvegetation:grassandsmallshrubs Sprinklersystems LV50 50%ofgroundavailableb 199(+23%) LV75 75%ofgroundavailableb 298(+34%) LHV25 25%ofgroundavailableb 100(+11%) Lowandhighvegetation:60%grassand Sprinklersystems smallshrubs40%ofdeciduoustrees LHV50 50%ofgroundavailableb 199(+23%) LHV75 75%ofgroundavailableb 298(+34%) LHV75-IGR 75%ofgroundavailableb 549(+62%) Lowandhighvegetation Sprinklersystems Roofsofsuitablebuildingsa Sedums Dripirrigation a “Suitablebuildings”fortheimplementationofextensivegreenroofsrefertobuildingtypeswithflatroofsforwhichtheenergeticalperformancehasbeen demonstratedintheliterature,i.e.individualanddensehousingandwarehouses. b “Groundavailable”referstogroundsurfaceswhichareneithernatural,norbuiltasbuildingsorroads.Inarealcityitcorrespondstopavements,carparks, squares,roundabouts,etc. C.Muncketal. /UrbanClimate23(2018)260–286 265 is converted to green space, either 25, or 50, or 75%. This greening is realised with either low vegetation (grass and small shrubs)oramixoflowandhigh(10m)vegetationcomposedof40%ofdeciduoustrees(oftenreferredtohereafterasmixed wooded vegetation). At roof level, the surfaces available for greening are those of roofs of low-rise buildings (following the conclusionsofNgetal.,2012)forwhicharchitectureorregulationwouldallowfortheirinstallation,whichmeansinTEB,roofs ofIndividualandDensecollectivebuildingsandWarehouses(seeAppendixA).RoofsofHaussmannianbuildingsareexcluded forarchitecturalandregulatoryreasonsandroofsofofficetowersfortheirinefficiency.Ontheroofsofthethreetypesofsuitable buildingsareimplementedextensivegreenroofs(plantedwithsedum),whicharerecognizedfortheirenergeticalperformance. ThecharacteristicssimulatedinTEBforthistypeofgreenroofaredescribedindeMuncketal.(2013a).Followingprevious studieshighlightingthatvegetationisaneffectiveadaptationmeasureonlyifitiswatered(Danieletal.,2016;Kounkou-Arnaud etal.,2013),wechosetowatergroundvegetationinsummerwhateverthescenario.Inthecaseofgreenroofstwoscenariosare tested,withorwithoutirrigationinsummer.Alastscenario,consistingincombiningimplementationofirrigatedgreenroofs andgreeningof75%withamixedwoodedvegetationisalsosimulated. Forsummerirrigation,thechoiceofwateringvolumeandscheduleisbasedonasensitivityanalysisundertakenwithTEB underthemeteorologicalconditionsofthe2003heatwave(deMunck,2013),whichaimwastooptimizeplantwaterusefor anon-restrictedevapotranspiration,henceaircoolingeffect.Withregardtovolumes,wechoseforgreenroofs25Lperm2 perweek,avaluederivedaftertheguidelinesprovidedbySOPREMA(internationalmanufacturerspecializedinwaterproofing solutionsforurbaninfrastructuresincludinggreenroofsandwalls,SOPREMA,2011)forFranceandindroughtconditions.For groundvegetation,wetestedthreevolumes(25,50and75Lperm2 perweek),aswellasthreewateringschedules(in3,6 or8h),allthreeatnight,inordertooptimizebothplantwateruseandthenighttimeaircoolingeffect.Night-timewatering waschosentoimprovenight’srestandreducenighttimethermalstress,amajorfactorrelatedtoexcessmortalityduringthe 2003heatwaveinFrance(Doussetetal.,2011;Ledransetal.,2005).Weconcludedthatauniquewateringschedule,overeight hoursbetween21:00and05:00localtime,providingtheequivalentof25Lm−2 week−1 (i.e.410−5kgofwaterm−2 s−1) wouldbesuitableforbothgroundandroofvegetation,theonlydifferencebeingthewateringsystem,withsprinklersforground vegetationanddripirrigationforgreenroofs.ThewateringwithsprinklersisparameterizedinTEBasrain,whichisrealisticfor lowvegetationbutmayslightlyoverestimatetheamountsofwaterinterceptedinthecaseoftrees. Forpracticalreasons,acronymsweregiventothosescenarios.TheyareprovidedinTable2alongsideasummaryoftheir characteristics,andusedthereafter.Inallcases,scenariosincreasedthedensityofexistingurbanvegetation(representedbythe REFscenario)intheproportionswhichareprovidedinTable2andillustratedbythemapsofFig.1.Overtheentiresimulation domain,greening25,50of75%ofavailableground-basedurbansurfacescorrespondstoincreasingexistinggreenspacedensity byrespectively11,23and34%.Also,ascanbeseenonFig.1,becausethegroundsurfaceavailableforgreeningisquitelow inthecitycentre,themorewegreentheground(from25to75%),themorethegreeningisonlypossibleontheoutskirtsof Paris.Onthecontrarygreeningsuitableroofs(GRandIGRscenarios)allowswithinParistocompensateforthelackofground space.Theincreaseinurbanvegetationdensityobtainedthroughthesetwoscenariosisfarfromnegligibleatthescaleofthe simulationdomain(+28%)andishigherlocallywithinPariscity(between+30to+40%).Thescenariocombiningthegreening ofbothgroundandroofs(LHV75-IGR)presentsthemaximumvegetationdensityincreasewith+62%. 2.3. Choiceofindicators Theimpactsofgreeningstrategiesareanalyzedbycomparingthreetypesofindicatorsofinterestwhicharecomputedby TEB:levelsofthermalheatstressreached,energyconsumptionsforcoolingandheatingbuildings,waterresourcesrequiredfor summerwateringaswellasurbansurfacerunoff(fromartificialandnaturalurbansurfaces)allyearround. The 2-m air temperature is compared between scenarios as a first indicator of greening impact. Then levels of thermal comfortorheatstress(andtimespentateachlevel)areevaluatedthroughtheUniversalThermalClimateIndex(UTCI,Fiala etal.,2012)andthethresholdsestablishedbytheGlossary ofTermsforThermalPhysiology(TheCommissionforThermal PhysiologyoftheInternationalUnionofPhysiologicalSciences,2003)andindicatedinTable3.TheUTCIiscalculatedinTEB takingintoaccounttheclimaticconditionsforapersonplacedinthemiddleoftheurbancanyon(airtemperatureandhumidity, windspeed,directandreflectedsolarradiationandinfraredsolarradiationemittedbythewallsofthecanyon).TheUTCIcan becalculatedforapersonwhostandsinthesunorintheshade.Inthelattercase,thecalculationoftheUTCIwillnottakeinto accountthedirectsolarradiation. Tocomparetheenergeticalperformancesofthegreeningscenariosinthecontextofthe2003heatwave,wechoosefor indicatorstheenergyconsumptioncumulatedaswellasthepeakofenergydemandduringtheheatwave(air-conditioning). Table3 AssessmentscaleofUTCIforhightemperatures.Source:www.utci.org. UTCI(◦C) Thermalstresslevel Above+46 Extremeheatstress(EXS) +38to+46 Verystrongheatstress(VSHS) +32to+38 Strongheatstress(SHS) +26to+32 Moderateheatstress(MHS) +9to+26 Thermalcomfort 266 C.Muncketal. /UrbanClimate23(2018)260–286 Fig.2. Boxplotsofaverageimpactsofgreeningscenariosonminimumandmaximumdailyurban2m-temperaturesovertheentiresimulationdomainduring the2003heatwaveforeachscenarioandcomparedtothesimulationbeforegreening(REF). Fortheseasonalanalysis,wecomparethe10-yearmeanenergyconsumptioncumulatedduringeachofthefourseasons(air- conditioningandheating). 3. Impactsinthecontextofheatwave TheimpactsofgreeningscenariosareestimatedfortheheatwaveofAugust2003,andmorespecificallyforasix-dayperiod, extendingfromthe8thtothe13thofAugust,chosentobethehottestperiodofthisexceptionalheatwavefortheregionIle-de- France.Thesesixdaysweremarkedbysettledanticyclonicconditions,withdryandstableairmassesinthelowerlayersofthe atmosphere,whichgotwarmerandwarmeruntilthe14thofAugust,markingtheendoftheheatwave. 3.1. Thermalimpacts 3.1.1. 2-mairtemperatures Tohaveinmindtheorderofmagnitudesbetweentheimpactsofgreeningstrategiesintermsof2-mairtemperaturesand theindicatorspresentedpreviously,wecomparedtheminimumandmaximum2-mairtemperaturesthroughtheanalysisof thetemperatureanomaliesbetweeneachgreeningscenarioandthesimulationbeforegreening(namedREF). Basedonoursimulations,ourresults(Figs.2,3and4)suggestthatgreeningsuitableroofsdoesnothaveanimpacton2-m airtemperaturesunlessthoseareirrigatedandthatthisimpactonlyreallyappearsatdaytime.Andeveninthiscase,theaverage daytimecoolinginducedduringthesixdaysoftheheatwaveatthescaleoftheentiresimulationdomainisrelativelylimited, withamediancoolingof−0.17◦C(Fig.2).Lookingatthespatialdistributionofthiscooling,thepotentialofirrigatedgreen roofsforcoolingmaximumtemperaturesgenerallyrangesfrom−0.25to−0.5◦Cdependingonbuildingtype,respectivelyfor individualanddensecollectivehousing.ItisnoticeableeveninthecentreofParisandcanreachupto−0.67◦Clocally(Fig.4). Themaximumcoolinginducedbyirrigatedgreenroofsinthesimulationdomaininthecourseoftheheatwaveis−0.97◦C. Thetemperatureanomaliesgeneratedbytheincreaseingroundvegetation(systematicallywatered)areshownonFig.2. Thesescenariosshow,asexpected,agreatercoolingof2-mtemperaturesthanthatgeneratedbyrooflevelvegetationwith threesignificantresults: 1. Foragiventypeofvegetation(LVorLHV)nightanddaytimecoolingdonothavethesamemagnitude(Fig.2).Amaximum effectisobservedatdaytimeforscenarioswiththeadditionoflowvegetation,withamediancoolingof−0.19◦C,−0.37◦C C.Muncketal. /UrbanClimate23(2018)260–286 267 Fig.3. Spatialdistributionoftheimpactsofgreeningoverminimumdailyurban2m-temperaturesforintermediategroundgreening(LV50andLHV50),roof greening(IGR)andmaximumgreening(LHV75-IGR),expressedastheaverageimpactsduringthesixdaysoftheheatwave. and−0.55◦CrespectivelyforLV25,LV50andLV75(Fig.2).Conversely,theimplementationofamixedwoodedvegetation leadstoamaximumeffectatnighttime,withamediancoolingof−0.38◦C,−0.45◦Cand−0.50◦CrespectivelyforLV25,LV50 andLV75(Fig.2).Whileitislogicalforthecoolingeffecttobeoptimumatdaytimewhenthevegetationisphotosynthetically active(andthereforeevapotranspirationratesattheirmaximum),asisthecaseforlowvegetationscenarios,weobtain ahighercoolingpotentialatnightforthemixedwoodedvegetationscenariosthatisexplainedbythewateringschedule andthevegetationtype.Indeed,whenthetreesarewateredatnight,sprinklersbeingsimulatedinTEBasartificialrain, alargepartofthewaterinterceptedbythefoliageandthesoilisdirectlyevaporatedandisnolongeravailableduring theday,generatinglesscoolingatthattimeofday.Thisoccursalsoforlowvegetation,buttoalesserextentduetoits smallerinterceptionsurfacesandlowertransferturbulentcoefficients.Notethatfortrees,thisphenomenonisprobably morepronouncedthaninrealityduetosprinklerwateringsincegreateramountsofwaterareinterceptedbytreeleaves andaredirectlyevaporated,hencearenotstoredintheground.Thisshowsthelimitsofthecurrentparametrization forthewateringofgroundvegetation(thatwasduetoconstraintsinthecodestructureoftheISBAscheme),whichis undifferentiatedforgrassesandtrees.Thesetimingandmagnitudedifferencesinthecoolinggeneratedbylowandmixed woodedvegetationscenariosarewellvisibleonthemapsofFigs.3and4whencomparingLV50andLHV50scenarios. Duringthenight,thestrongestcoolingisgeneratedbytheLHV50scenarioandrangesonaverageduringtheheatwave between−0.25and−2◦C,withamaximumcoolingpotentialobservedinareasofdensecollectivehousing.Meanwhile, theLV50scenarioonlygeneratedacoolingofaround−0.25to−0.5◦C.Inthecourseoftheheatwave,thegreatestcooling ofminimumtemperaturesgeneratedbytheLVH50andLV50scenariosamountsrespectivelyto−2.2and−1.1◦C. 2. Whenlookingateachtypeofgroundvegetationsimulatedseparately,thehigherthesurfacegreeningrate,thegreater the cooling generated. When greening 25, 50 or 75% of available surfaces with low vegetation, this corresponds to a daytimecoolingof−0.19,−0.37and−0.55◦Candanighttimecoolingof−0.04,−0.08and−0.12◦C(medianvaluesof boxplotsonFig.2).Similarly,foramixedvegetation,thiscorrespondstoadaytimecoolingof−0.08,−0.31and−0.49◦C andanighttimecoolingof−0.38,−0.45and−0.50◦C.Lookinglocally,iftakingLVscenariosasanexample,thegreatest 268 C.Muncketal. /UrbanClimate23(2018)260–286 Fig.4. Spatialdistributionoftheimpactsofgreeningovermaximumdailyurban2m-temperaturesforintermediategroundgreening(LV50andLHV50),roof greening(IGR)andmaximumgreening(LHV75-IGR),expressedastheaverageimpactsduringthesixdaysoftheheatwave. reductioninmaximumtemperaturesestimatedatthescaleofthesimulationdomainamountstoabout−0.5◦CforLV25, −1◦CforLV50and−2◦CforLV75. 3. Nighttimeresultssuggestthatforsimilargroundsurfacegreeningrates,thecoolingpotentialofamixedvegetationcom- posedof40%oftreesismoreeffectivethanthatofavegetationcomposedonlyofgrassesandsmallshrubs.Forthetime beingitishardertodrawconclusionsfromdaytimeresultssincethemodeldoesnotyetaccountfortreeshadingeffects. AsforthemaximumgreeningscenariocombiningLHV75andIGRhypothesis,itsimpacton2-mtemperaturesisquitesimilar tothatoftheLHV75sincethecoolingpotentialofIGRonstreetleveltemperaturesislimited(Fig.2).Itisonlyperforming sensiblybetteratdaytimeinareasaroundPariscitycentrewithdensecollectivehousingwhereIGRmanagetofurtherenhance thecooling,resultinginadomainmedianimpactof−0.65◦C. 3.1.2. UHIintensity Alongthecross-sectiondefinedonthemapofFig.5,the2-mnighttimeUHIintensitybetweenPariscitycentreandthe50- mawaycountrysidewasestimatedbeforegreeningataround5◦Cwiththestandardspatialstructurerepresentedbythegrey line.Asexpectedfromprevioustemperatureresults,thegreeningofroofsdoesnotmodifytheUHIintensityatallsinceIGR andREFtemperatureprofilesareidentical.ToevaluatethemaximumimpactofurbangroundgreeningontheUHI,previous temperatureprofileswerecomparedtothescenarioswiththegreatestgreeningrate(75%,i.e.LV75,LHV75andLHV75-IGR).As expectedfrompreviousresults,thescenariowithamixedwoodedvegetation(LHV75)inducedthegreatestreductioninUHI intensity(−1.2◦C),whichlowerstheUHIto3.8◦C.TheimpactoflowvegetationonUHIisrelativelylowincomparison(inthe rangeof0.25◦C).Asforirrigatedgreenroofs,theydonotallowforafurtherreductionoftheUHIintensityinducedbygreening thegrounds(LHV75-IGR). C.Muncketal. /UrbanClimate23(2018)260–286 269 Fig.5. 2-mmeannighttimeairtemperatureprofilesduringthesixdaysoftheheatwaveforthewest-to-eastcrosssectionidentifiedonthemapoftempera- turespresentedfortheREFsimulation,estimatedacrossthreehourlyterms-2,3and4UTC.Theprofileforthebaselinesimulation(REF)showsaheatisland intensityofaround5◦C. 3.1.3. Thermalcomfort Toanalyzetherespectiveimpactsofthegreeningscenariosintermsofoutdoorthermalcomfortorstressexperiencedduring theheatwaveviatheUTCI,wefirstcomputedtheUTCIforeveryhourofthesixdaysofthe2003heatwave(seeSection2.3). TheUTCIvaluesobtainedwerethensortedinthefiveheatstressclassesdescribedearlier(Table3)tofinallycomputethemean timespentdailyineachheatstressclass(overthe6:00to22:00timeslot)forapersonoutsideinthesunorintheshade. Consideringlookingforshelterintheshadeafairlynaturalreflexinheatwaveconditions,wefocusedtheanalysisofour greeningscenariosonthedailyimpactsthattheywouldhaveonthetimespentatleastinverystrongheatstress(referredto asVSHSandcorrespondingtoUTCI>38◦C)byapersonintheshade,acrosstheentiresimulationdomainandacrossthethree maintypesofurbanfabric.TheseresultsarepresentedinTable4. Asexpectedfrompreviousimpactsonstreetleveltemperatures,non-wateredgreenroofs(GR)donotimproveoutdoor thermalcomfort.Nevertheless,withoutmodifyingthetotaltimespentinthermalheatstress,theirwatering(IGR)allowsfor thetimespentatleastinVSHStobemarginallydecreased(by15minonaverageacrossthewholecity).Notethatwatered greenroofsappearmoreeffectivetoimprovestreetlevelthermalcomfortinthedensecollectivehousingfabricthaninany otherurbanfabrics(22minlessspentatleastinVSHScomparedto11and9minlessrespectivelyintheHaussmannianand individualhousingfabrics).Thisisexplainedbythehighroofgreeningrate(Fig.1)andtherathersmallstreetaspectratiosin thisurbanfabric(seeAppendixA). Onthecontrary,increasinggroundvegetationinthecityimprovesoutdoorthermalcomfort,bybothincreasingthetime spentinthermalcomfortandbyreducingthatspentinthevariousheatstresslevels,withthemostmarkedeffectonVSHS.And Table4 Meantime(inhoursandminutes)spentdailyduringthe2003heatwaveatleastinverystrongheatstress(UTCI>38◦C)forapersonintheshadebefore greening(REF)andtimereductionsimulatedforeachgreeningscenarios.Meansarecalculatedoverdaytimehours(06:00–22:00LST),integratedacrossthe entireurbanzoneandacrossthethreemainhousingtypesandweightedbypopulationdensity(estimatedfromnationalandpublicdatabasesbyBonhomme, 2013). Scenario Town Haussmannianbuildings Densecollectivehousing Individualhousing Meantimespentatleastinverystrongheatstress REF 5:37 5:15 6:34 4:55 Impactofscenario GR – −0:01 +0:02 – IGR −0:15 −0:11 −0:22 −0:09 LV25 −0:20 −0:18 −0:26 −0:15 LV50 −0:39 −0:39 −0:49 −0:30 LV75 −0:55 −0:43 −1:10 −0:45 LHV25 −0:15 −0:21 −0:19 −0:10 LHV50 −0:37 −0:37 −0:49 −0:28 LHV75 −0:56 −0:51 −1:12 −0:43 LHV75-IGR −1:04 −0:53 −1:24 −0:50

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.