ebook img

(EUROPA) DW Allen, M. Jones, L. McCue, CA Woolsey, & W. B PDF

169 Pages·2013·10.81 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview (EUROPA) DW Allen, M. Jones, L. McCue, CA Woolsey, & W. B

EXPLORATION OF UNDER-ICE REGIONS WITH OCEAN PROFILING AGENTS (EUROPA) D. W. Allen, M. Jones, L. McCue, C. A. Woolsey, & W. B. Moore aCAS VirginiaCenterforAutonomousSystems VirginiaPolytechnicInstitute&StateUniversity Blacksburg,VA24060 www.unmanned.vt.edu September14,2013 TechnicalReportNo.VaCAS-2013-01 Copyright(cid:13)c 2013 Summary Europa is an incredibly enticing target for exploration – the nearest reaches of what may be a vast new “habitable zone” of interior oceans warmed and stirred by tidal forces. Decades of NASA and National Academy studies including the most recent planetary science decadal survey [1] have affirmed the pre- eminence of Europa as a destination for astrobiology research. This report provides a comprehensive technology roadmap and an assessment of current state of the art and future technologies to enable an under-ice mission to Europa. In this study, the authors provide an overview of key mission objectives, a profileofEuropa,andamissionoverview. Theauthorsthendelveintoadiscussionofthekeyfundamental science objectives and design tradeoffs to arrive at a comprehensive science traceability matrix and value system for design of a multi-vehicle, under-ice mission to Europa. The current state of the art is assessed and design alternatives discussed. The report culminates in a concept of operations for the mission and a recommendedmissionarchitectureutilizingthreesurfaceunits,eachdeployingasinglecryobot,witheach cryobot carrying three biologically inspired, gliding under-ice hydrobots equipped with sensor packages thatwillcharacterizethephysicalandchemicalstateofEuropa’soceanoveritsentiredepth. i Contents ListOfAbbreviations xi 1 Introduction 1 1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 ScienceObjectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 MissionObjectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.3 PlanetaryProtection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Europa 6 3 MissionOverview 9 3.1 MissionPhases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1.1 LaunchfromEarth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1.2 TransittoEuropa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1.3 SurfaceOperations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.4 PenetrationoftheIce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.5 ExplorationoftheOcean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 PreviousandUpcomingMissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2.1 Juno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2.2 “Clipper” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4 FundamentalScience 15 4.1 Biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2 OceanMechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.3 Ocean/IceInteraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.4 IceMechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 ii 4.5 OceanFloorMechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.6 Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.7 SurfaceGeology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.8 ScienceTraceabilityMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5 ValueSystemDesign 23 5.1 TheAnalyticalHierarchyProcess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.1.1 ExampleofAHPtoaBasicSystem . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.2 SystemDescription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.3 DesignCriteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.3.1 HydrobotPerformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.3.2 HydrobotScience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.3.3 HydrobotCommunication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.3.4 CryobotPerformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.3.5 CryobotScience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.3.6 CryobotCommunication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.3.7 SurfaceUnitPerformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.3.8 SurfaceUnitScience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.3.9 SurfaceUnitCommunication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.3.10 LandingSystemPerformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.4 CompleteValueSystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6 CurrentState-of-the-ArtTechnologiesandDevelopment 37 6.1 UnderwaterGliders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.1.1 PrinciplesofOperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.1.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.1.3 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.1.4 PowerSystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.1.5 PerformanceAttributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.1.6 PerformanceLimitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6.1.7 NewHorizons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 6.2 MeltProbes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 iii 6.2.1 PrinciplesofOperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.2.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.3 SpacecraftPowerSources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.3.1 NuclearPowerSources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.3.2 Batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.3.3 FuelCells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.4 HydrobotSensorPackages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.4.1 Package3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.4.2 Package2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.4.3 Package1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.4.4 ScienceTraceabilityMatrixofSensorPackages . . . . . . . . . . . . . . . . . . . 65 6.4.5 DataRate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.4.6 Sonar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 7 DesignAlternatives 68 7.1 TransitandLanding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 7.1.1 LaunchVehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7.1.2 LandingSystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7.2 SurfaceOperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 7.2.1 ImportanceofRPSinLander . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 7.2.2 TechnologyNeedsforLander . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 7.2.3 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 7.2.4 Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 7.3 IceOperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 7.3.1 PayloadCapacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 7.3.2 PowerSource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 7.3.3 DescentTime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7.3.4 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 7.3.5 Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.4 OceanOperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 7.4.1 HydrobotDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 iv 7.4.2 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7.4.3 Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7.5 EvaluationofDesignAlternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7.5.1 TransitandLanding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.5.2 SurfaceUnit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 7.5.3 Cryobot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 7.5.4 Hydrobot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 7.5.5 CommunicationMenu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 8 MissionArchitectures 93 8.1 ProposedMissionArchitectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 8.2 EvaluationofMissionArchitectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 9 Roadmap,Timeline,NotionalVehicleDesign,andProposedConceptofOperations 97 9.1 RoadmapandTimeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 9.2 NotionalDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 9.2.1 SurfaceUnitwithLandingSystem . . . . . . . . . . . . . . . . . . . . . . . . . . 99 9.2.2 Cryobot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 9.2.3 Hydrobot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 9.3 ProposedConceptofOperations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 10 Conclusions 107 11 Acknowledgements 109 A OtherIce-CoveredWorlds 110 B ExplanationofScienceTraceabilityMatrix 112 B.1 Biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 B.2 OceanMechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 B.3 Ocean/IceInterface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 B.4 IceMechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 B.5 OceanFloor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 B.6 Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 v B.7 SurfaceGeology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 C ExplanationoftheValueSystem 118 C.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 C.2 ExplanationofSystemDescription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 C.3 DesignCriteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 C.3.1 HydrobotPerformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 C.3.2 HydrobotScience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 C.3.3 HydrobotCommunication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 C.3.4 CryobotPerformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 C.3.5 CryobotScience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 C.3.6 CryobotCommunication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 C.3.7 SurfaceUnitPerformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 C.3.8 SurfaceUnitScience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 C.3.9 SurfaceUnitCommunication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 C.3.10 LandingSystemPerformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Bibliography 146 vi List of Figures 2.1 Europa’s interior structure (left) consisting of a metallic core, rock mantle, and water/ice shell[16]. Theequilibriumtemperaturestructureoftheiceshellisshownontheright,for threedifferentshellthicknesses: 20km(black),40km(red),and60km(blue). . . . . . . 7 2.2 An illustration of possible structures in the ice shell (after [25]). Warm upwellings and cold downwellings with scales of about 10 km result in lateral temperature variations of about 10 degrees C. Near the surface, re-freezing of impact- or friction-generated melts mayleavelensesorsheetsofprecipitatedsalts. Inwarmerregionsthesemayremainliquid ashyper-salinebrines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1 The configuration of the SLS. Image from NASA, available at http://www.nasa. gov/pdf/623766main_8143_Singer-AD_industry_day-021312_FINAL3. pdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Costsandmassesofpastandupcomingmissionstotheouterplanets. . . . . . . . . . . . 13 3.3 Powersandmassesofmissionstoouterplanets. . . . . . . . . . . . . . . . . . . . . . . 13 5.1 LegendfordesigncriteriatreesshowninFigures5.2,5.3,5.4,and5.5. . . . . . . . . . . . 27 5.2 Designcriteriatreeforthehydrobot. ThelegendisshowninFigure5.1. . . . . . . . . . . 27 5.3 Designcriteriatreeforthecryobot. ThelegendisshowninFigure5.1. . . . . . . . . . . . 28 5.4 Designcriteriatreeforthesurfaceunit. ThelegendisshowninFigure5.1. . . . . . . . . . 29 5.5 Designcriteriatreeforthelandingsystem. ThelegendisshowninFigure5.1. . . . . . . . 30 6.1 Freebodydiagramforwings-levelglidingflight[57]. . . . . . . . . . . . . . . . . . . . . 38 6.2 AnnotatedschematicoftheVirginiaTechunderwaterglider[62]. . . . . . . . . . . . . . . 40 6.3 Neutraldisplacementofacylindricalhullinwaterversuslength. (Finenessratio: l/d = 7) 43 6.4 DragpolarforamodeloftheSlocumglider[57]. . . . . . . . . . . . . . . . . . . . . . . 44 6.5 Exampleofvehiclepathoptimizationinasteady,uniformflow[70]. . . . . . . . . . . . . 45 6.6 Comparison of the relation of tail fin span and area with the body length of various ma- rine mammals (primarily dolphins). The corresponding values for Deepglider [74], Spray Glider [75], and SLOCUM [68] are included. Original figure from Review of Dolphin HydrodynamicsandSwimmingPerformancebyFrankEFish[73]. . . . . . . . . . . . . . 47 vii 6.7 Relationship between sweep angle and aspect ratio of the tail fin of marine mammals. The corresponding values for Seaglider(cid:63)[76] and SLOCUM [68] are included. Original figure from Review of Dolphin Hydrodynamics and Swimming Performance by Frank E Fish[73]. (cid:63)Estimatedfromphotograph. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.8 The specific energies and operating frequencies of several smart materials [79]. The di- agonal lines indicate specific powers, which are the product of the specific energy and frequency. The region corresponding to dolphin-like specific power is indicated by the orange line. These specific powers are based on the total mass of the animal, so is likely lessthanthepropulsivespecificpower[73]. . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.9 A diagram of the structure of the Philberth probe. From Heat Transfer and Performance AnalysisofaThermalProbeforGlaciersbyHaldorW.C.Aamot.[90] . . . . . . . . . . . 51 6.10 Descent rate for various sizes of cylindrical probes with various powers, represented by the color contours. This used equation (6.8) with the following parameters: c =2.2 kJ/kg p K,t =273K,t=175K,ρ =920kg/m3,L =330kJ/kg. Thisassumesconstantproperties. . 52 F i ν 6.11 Relationship between performance number and efficiency and non-dimensional tempera- ture. FromTheoryofPerformanceofIsothermalSolid-NoseHotpointsBoringinTemper- ateIcebyR.L.Shreve(1962)[93]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.12 SpecificPowerofRTGsovertimewithanexponentialfit. Historicaldataper[101];ASRG dataper[102]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.13 Thisfigureshowsthepracticalspecificenergiesofprimary,reserve,andsecondarybatter- ies. Dataper[105]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.14 Thisfigureshowsthepracticalenergydensitiesofprimary,reserve,andsecondarybatter- ies. Dataper[105]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.15 This figure shows the theoretical specific energies of primary, reserve, and secondary bat- teries. Dataper[105]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.16 Specificenergiesoffuelcellfuels[109]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 7.1 From 2006 mission architecture study [126]. Radioisotope power is preferable to battery powerforaEuropanlander. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 7.2 The mass and thermal power cylinders of varying diameter and different heights made of GPHS modules. Note that GPHS modules are parallelopipeds, so this is approximated as acylinderwithmassandpowerdensitiesequivalenttoGPHSmodules. . . . . . . . . . . 73 7.3 Descent time and temperature profile for a linear profile in 10 km thick ice. The ice has constantpropertieslistedinTable7.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 7.4 Descent time and temperature profile for a two-step linear profile in 10 km thick ice. The icehasconstantpropertieslistedinTable7.1. . . . . . . . . . . . . . . . . . . . . . . . . 75 7.5 Comparison of the propulsive efficiency of marine mammals and a notional propeller re- produced from Passive and Active Flow Control By Swimming Fishes and Mammals by FrankE.FishandGeorgeV.Lauder[135]. . . . . . . . . . . . . . . . . . . . . . . . . . . 78 viii

Description:
Summary. Europa is an incredibly enticing target for exploration – the nearest reaches of what may be a vast new. “habitable zone” of interior oceans warmed and stirred by tidal forces. Decades of NASA and National. Academy studies including the most recent planetary science decadal survey [1
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.