ebook img

Euler-Poisson-Newton approach in Cosmology PDF

0.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Euler-Poisson-Newton approach in Cosmology

Euler-Poisson-Newton approach in Cosmology R. Triay and H. H. Fliche† ∗ CentredePhysiqueThéorique1 ∗ CNRSLuminyCase907,13288MarseilleCedex9,France †LMMT2,Fac.desSciencesetTechniquesdeStJérôme av.Normandie-Niemen,13397MarseilleCedex20,France 7 0 Abstract. ThislectureprovidesuswithNewtonianapproachesfortheinterpretationoftwopuzzlingcosmologicalobserva- 0 tionsthatarestilldiscussedsubject:abulkflowandafoamlikestructureinthedistributionofgalaxies.Forthefirstone,we 2 modelthemotionsdescribingallplanar distortionsfromHubbleflow,inadditionoftwoclassesofplanar-axialdistortions n withorwithoutrotation,whenspatialdistributionofgravitationalsourcesishomogenous.Thisprovidesuswithanalternative a tomodelswhichassumethepresenceofgravitationalstructuressimilartoGreatAttractorasoriginofabulkflow.Forthe J secondone,themodelaccountsforanisotropicuniverseconstitutedbyasphericalvoidsurroundedbyauniformdistribution of dust. It does not correspond tothe usual embedding of avoidsolution intoacosmological background solution, but to 9 aglobal solutionof fluidmechanics. Thegeneral behavior of thevoidexpansion showsahugeinitialburst,whichfreezes 1 asymptotically up to match Hubble expansion. Whilethe corrective factor to Hubble law on the shell depends weakly on cosmologicalconstantatearlystages,itenablesustodisentanglesignificantlycosmologicalmodelsaroundredshiftz 1.7. 1 ∼ Themagnificationofsphericalvoidsincreaseswiththedensityparameterandwiththecosmologicalconstant.Aninterest- v ingfeatureisthatforspatiallyclosedFriedmannmodels,theemptyregionsaresweptout,whatprovidesuswithastability 7 criterion. 0 1 Keywords: CosmicVelocitiesFields,GreatAttractor,LargeScaleMotions,Voids,CosmologicalConstant 1 PACS: 45.20.D-,45.50.Dd,95.30.Sf,98.80.Ðk,98.80.Es 0 7 0 INTRODUCTION / c q Ononehand,itisamatteroffactthattheuseofNewtonstheoryofgravityforunderstandingcosmologystructuresis - easierthangeneralrelativity.Ontheotherhand,itishoweverclearthatsuchanapproachmustbetakenwithcaution r g at largescales althoughit “is much closer to generalrelativity (GR) than commonlyappreciated”[39]. With thisin : mind,wefocusonNewtonianinterpretationoftwocosmologicalstructuresthathavebeenmentionedintheliterature, v i namely:thepresenceofabulkflowandafoamlikestructureintheobserveddistributionofgalaxies.Forthat,wewrite X Euler-Poissonequationssysteminadaptedcoordinates,whatenablesustodefineinastraightforwardwaysolutions, r asNewton-Friedmannandthevacuum(deSitter)models.Thebulkflowisanalysedwithinanan-isotropicextension a ofHubblemodel,see([16]).Subsequently,themodelofasinglesphericalvoidisderivedwithinacovariantapproach, see([17]). EULER-POISSON EQUATIONSSYSTEM As usual, for modelling the dynamics of the cosmological expansion, the distribution of gravitational sources is supposed to behave as dust (i.e., such a description does not accountfor shear, collision, etc...and the presence of radiations).Themotionsofsucha pressurelessmediumaredescribedatposition~r andtimet byitsspecificdensity r =r (~r,t)andvelocity~v=~v(~r,t).ThesefieldsareconstraintbyEulerequationssystem ¶r +div(r ~v) = 0 (1) ¶ t 1 UnitéMixtedeRecherche(UMR6207)duCNRS,etdesuniversitésAix-MarseilleI,Aix-MarseilleIIetduSudToulon-Var.Laboratoireaffiliéà laFRUMAM(FR2291). 2 UPRESEA2596 ¶ ~v ¶ ~v + ~v = ~g (2) ¶ t ¶~r where~g=~g(~r,t)standsforthegravitationalfield.ItsatisfiesthemodifiedPoisson-Newtonequations −ro→t~g = ~0 (3) div~g = 4p Gr +L (4) − whereGisNewtonconstantofgravitationandL thecosmologicalconstant. Fortheinvestigationofanexpandingmedium,itisconvenienttowritetheseequationswithnewcoordinates,herein namedreferencecoordinates.Theyaredefinedby ~r (t, ~x= ), a>0 (5) a wherea=a(t)isanonconstantmonotonicfunctionwitha =a(t )=1.Suchamethodismotivatedbytheproper dynamicsofmedium,sothattheequationssystemwhichacc◦ountsf◦orthemotiontranslatesintoitssimplestform. Fromnow,letdivand−ro→tdenotethedifferentialoperatorswithrespectto~x.Euler-Poisson-Newton(EPN)equations systemreadsintermofreferencecoordinatesasfollows ¶r c +div(r ~v ) = 0 (6) ¶ t c c ¶ ~v ¶ ~v c c + ~v +2H~v = ~g (7) ¶ t ¶ ~x c c c −ro→t~g = ~0 (8) c 4p G L div~g = r 3 H˙+H2 (9) c − a3 c− − 3 (cid:18) (cid:19) wherethedottedvariablesstandfortimederivatives, d~x 1 a˙ r =r a3, ~v = = (~v H~r), H= (10) c c dt a − a actrespectivelyasthedensityandthevelocityfieldsofmediuminthereferenceframe,and 1 ~g = ~g H˙+H2 ~r (11) c a − (cid:0) (cid:0) (cid:1) (cid:1) astheaccelerationfield.Letusnotethatthismodeldependsontwodimensionlessparameter 8p G L W = r , l = (12) ◦ 3H2 c ◦ 3H2 ◦ ◦ whereH =H(t ). ◦ ◦ Newton-Friedmann and Vacuum models Forthesemodels,themostadaptedfamilyoffunctionsa=a(t)verifyaFriedmanntypeequation L 4p G H˙+H2 + r a−3=0 (13) − 3 3 ◦ wherer isanarbitraryconstantwhichstandsforaparameteroffunctiona(t).Thisdifferentialequationadmitsthe followin◦gintegrationconstant 8p G L K = r + H2 (14) ◦ 3 ◦ 3 − ◦ ItintegratesforprovidinguswiththefunctionH(t)from L K 8p Gr H2= ◦ + ◦ 0 (15) 3 − a2 3 a3 ≥ Letusdenoteitsasymptoticalvalue L H¥ = limH= (16) a ¥ 3 → r Accordingto eq.(14),a dependsonH andontwo additionalparameterschosenamongL ,r andK . Atthisstep, exceptedL ,thesevariablesdonotidenti◦fytocosmologicalparametersassociatedtoFriedmanns◦olution,◦theyintervene merelyinthecoordinateschoice.Theformalexpressiont aisderivedasreciprocalmappingofaquadraturefrom 7→ eq.(15),itstandsforthereferenceframechronology. ItisobviousthatEPNequationsystemeq.(6,7,8,9)showstwotrivialsolutions: 1. Theonedefinedby r =r , ~v =~0, ~g =~0 (17) c c c ◦ whichaccountsfora uniformdistributionofdust,hereinnamedNewton-Friedmannmodel(NF).Accordingto eq.(15,10), a and H recovernow their usualinterpretationsin cosmologyas expansionparameter and Hubble parameter respectively, r =r a3 identifies to the density of sources in the comoving space and K interprets in GR as its scalar curvat◦ure. We limit our investigation to motions which do not correspond to co◦smological bouncingsolutions,whatrequirestheconstraint K3<(4p Gr )2L (18) ◦ ◦ to be fulfilled, according to analysis on roots of third degree polynomials. Hence, the kinematics shows two distinctbehaviorscharacterizedbythesignofK .Indeed,H decreaseswithtimebyreachingH¥ eitherupward (K 0)ordownward(K >0)fromaminimum◦definedby ◦≤ ◦ K3 Hm=H¥ s1−L (4p G◦r )2 <H¥ (19) ◦ at(epoch)a=4p Gr K 1,whatdefinesaloiteringperiod. − ◦ ◦ 2. Theonedefinedby 4p G r c=0, ~vc=(H¥ −H)~x, ~gc= a3 r ◦~x (20) whichaccountsforvacuumsolution,hereinnamedVacuummodel(V). ANISOTROPICHUBBLE MODEL Thismodelaccountsforcollisionlessmotionswhichsatisfythefollowingkinematics ~r=A~r , A(t )=1l (21) ◦ ◦ whereA=A(t)standsforanonvanishingdeterminantmatrix;itscoefficientscanbedeterminedbyanobserveratrest withrespecttoCosmologicalBackgroundRadiation(CMB).OnehasdetA>0becauseitidentifiestoaunitmatrixat timet=t .Fromeq.(21),thevelocityfield~v=~v(~r,t)reads ◦ d~r d ~v= =A˙A 1~r, A˙ = A (22) − dt dt whereA 1standsfortheinversematrix3.Letuschoose − a(t)=√3detA (23) 3 A−1A=AA−1=1l andwiththeuniquematrixdecomposition4 H a˙ A˙A−1=H1l+ a2◦B, H = a, H◦=H(t◦), trB=0 (24) eq.(9,10,11)provideuswiththeequationsofmotioninthereferenceframe H ~vc = a2◦B~x (25) H H ~gc = a2◦ B˙ + a2◦B2 ~x (26) (cid:18) (cid:19) H2 4p G L a4◦trB2 = − a3 r c−3 H˙+H2− 3 (27) (cid:18) (cid:19) whereastandsforthe(generalized)expansionfactor,thusH=H(t)actsastheusualHubblefactor,andB=B(t)for atracelessmatrixhereinnameddistortionmatrix.Itcharacterisesthedeviationfromisotropyofthe(dimensionless) velocityfield,itsamplitudeisdefinedbythematrixnorm B = tr(BtB) (28) k k wherethesign”t”standsforthematrixtransposition.Accpordingtoeq.(12),eq.(27)readsasfollows 1 W 1 H2 H˙+H2 =−2a◦3+l ◦−3a4b 2 (29) ◦ (cid:0) (cid:1) where b (t)=tr(Bn), n=1,2,3 (30) n Eq(29) shows that W does not depend on spatial coordinates, i.e. the space distribution of gravitationalsources is necessarilyhomogeno◦us r =r (t) (31) andhenceitstandsforaconstantparameterbecauseofeq.(6). Bymultiplyingeachtermofeq.(29)by2a˙a,oneidentifiesthefollowingconstantofmotion W a˙2 2 ab k = ◦ +l a2 2da=W +l 1 (32) ◦ a ◦ −H2 −3 1 a3 ◦ ◦− Z ◦ Itisimportanttonotethatthechronology5,whichisgivenby 1 ada dt= (33) H P(a) ◦ where p 2 ab P(a)=l a4 k a2+W a a2 2da 0, P(1)=1 (34) ◦ − ◦ ◦ −3 1 a3 ≥ Z isdistortiondependent. AClassofpossiblemotions AccordinglytousualHubblemodel,ifweassumearadialaccelerationfield ~g (cid:181) ~x (35) c 4 Byusingthetrace,thedeterminantonehas ddtdetA=Tr A˙A−1 detA. 5 Accordingtoobservations,oneassumesH >0sincethecaseH <0accountsforacollapse,whatisnotenvisaged. ◦ (cid:0) (cid:1)◦ thenthedistortionmatrixsatisfiestheevolutionequation H 1H B˙ + ◦B2= ◦trB2 (36) a2 3 a2 accordingtoeq.(26,27).With dt dt =H (37) ◦a2 eq.(36)readsinadimensionlessform dB 1 = b 1l B2 (38) dt 3 2 − Witheq.(25,26,33,36),theequationsofmotionread d~x d2~x 1 = B~x, = b ~x (39) dt dt 2 3 2 da dt = (40) a P(a) The resolution of these equations can be performed bpy mean of numerical techniques : the evolution with time of distortionmatrixBisderivedfromeq.(38),theparticlestrajectoriest ~x(t )areobtainedbyintegratingeq.(39)and 7→ theevolutionofthegeneralizedexpansionfactorafromeq.(40). Analysisofanalyticsolutions Analytic solutions of eq.(39,40,38) can be obtained thanks to particular properties of distortion matrix B. The parameters l , W and H given in eq.(12) correspond to cosmological parameters of Friedmann-Lemaître (FL) solution. The◦cons◦traint b ◦ =0 in eq.(33,34) provides us with the FL chronology, where k in eq.(32) represents 2 thecurvatureparameterintheFLmodel(i.e.thedimensionlessscalarcurvatureW ofthecom◦ovingspace,see[49]), k while the flatness of (simultaneousevents) Newtonspace. Itmust be noted thatthe particle position~x as definedin eq.(5)doesnotidentifytotheusualFLcomovingcoordinatebecausethe(generalized)expansionfactoradependson theanisotropyunlessb =0. 2 Evolutionoffunctionsb . BecauseBisatracelessmatrix,itscharacteristicpolynomialreads n=2,3 1 1 Q(s)=det(s1l B)=s3 b s b (41) 2 3 − −2 −3 according to Leverrier-Souriau’s algorithm [45]. With Cayley-Hamilton’s theorem (i.e. Q(B)=0) and eq.(38) we obtainthefollowingdifferentialequationssystem d b = 2b (42) dt 2 − 3 d 1 b = b 2 (43) dt 3 −2 2 andwenotethatthediscriminantofthirdorderpolynomialQ,itisproportionalto 1 a =3b 2 b 3 (44) 3 −2 2 isaconstantofmotion(i.e.,da /dt =0).Theintegrationofeq.(42,43)gives t =t +e √6 b2(t) dx , e = 1 (45) ◦ 2 Zb2(t ) √2a +x3 ± ◦ Hence,b isdefinedbyaquadrature,andb fromeq.(42);inadditionofthesingularsolution 2 3 b =b =0, (i.e., B3=0) (46) 2 3 definedequivalentlyeitherbyb =0orb =0,accordingtoeq.(42,43). 2 3 Therelateddynamicsdependsonrootsh ofcharacteristicpolynomialQgivenineq.(41),i.e.theeigenvalues i=1,2,3 ofdistortionmatrixB.Theirrealvaluesidentifytodilatationratesattimet towardthecorresponding(timedependent) eigenvectors(notnecessarilyorthogonal).Theirsumisnull(b =0)andtheirproduct(b =3detB)iseitherdecreasing 1 3 withtimeorisnull,accordingtoeq.(43).Thesignofa givenineq.(44)isusedtoclassifythesolutionsasfollows: • ifa =0thenQhasarealdoublerooth 1=h 2 andasimpleoneh 3.Therelatedinstantaneouskinematicshows aplanar-axialsymmetry(eitheracontractionwithinaplanewithanexpansiontowardatransversedirectionor viceversa),seesec..Ifh =h thenbothvanishandtherelatedsolutionidentifiestothesingularonedefinedin 1 3 eq.(46); • ifa >0thenQhasasinglerealrooth 1; • if a <0 then Q has three distinct real roots h i=1,2,3. Their order is conserved during the evolution (since a coincidenceofeigenvaluesmakesa =0),thelargestonemustbepositivewhilethesmallestonemustbenegative (becauseb =0). 1 Planarkinematics. ThesingularsolutionB3=0showsaFLchronologyandthedistortionmatrix B= B2t +B , B3=0 (47) − ◦ ◦ ◦ is solely defined by its initial value B , according to eq.(38). It is neither symmetric nor asymmetric (otherwise it vanishes),seeeq.(28).Hence,eq.(39)◦transforms d~x = B2t +B ~x (48) dt − ◦ ◦ (cid:0) (cid:1) whichaccountsforeternalmotions t 2 ~x=exp B2 +B t ~x =(1+B t )~x (49) − ◦ 2 ◦ ◦ ◦ ◦ (cid:18) (cid:19) The trajectory of a particle located at initial position~x identifies to a straight line toward the direction B~x . The analysisofB range(i.e.,itsimage)providesuswithch◦aracteristicsoftrajectoriesflow.Thenilpotentproper◦ty◦ofB showsthatits◦kernelisnotemptyKer(B )=0/.Itsdimensiondim(Ker(B ))=mcharacterizesthekinematics,which◦ iseitherplanar(m=1)ordirectional(m◦=6 2),i.e.abulkflow.Conversel◦y,ifthekernelofdistortionmatrixBisnot emptythenb =3det(B)=0,andthusb =0,seetoeq.(42,43).Therefore,allplanarkinematicscanbedescribed 3 2 bysuchamodel. Planar-Axialkinematics. Ifb =0thenthechronologydifferentiatesfromFLone.Letusfocusonthea =0with 2 twodistincteigenvaluesh =h cl6assofsolutions.Witheq.(45),eq.(42,43)integrate 1 3 6 6 b n= (t t⋆)n, (n=2,3), t⋆=t◦+√6b 2−1/2(t◦) (50) − whichshowsasingularityatdatet =t >0thatsplitsthemotionintworegimest <t andt >t .Thecomplete ⋆ ⋆ ⋆ investigationofthissingularityproblemdemandstosolveanintegro-differentialequation,seeeq.(33,34).Theroots ofQread 1 h = , h = 2h (51) 1 (t t ) 3 − 1 ⋆ − where h stands for the doubleroot. Among others, two class of solutionsare defined by mean of a constant (time 1 independent)matrixP,theprojectorassociatedtoh ,see[45], 1 P2=P, trP=2 (52) TheydescribedistinctkinematicsdependingonwhethermatrixBisdiagonalizable. • Irrotationalmotions:IfBisdiagonalizablethen B=h (3P 21l) (53) 1 − Fromeq.(39,53),onehas d~x =h (3P 21l)~x (54) dt 1 − andthesolutionreads 1 ~x= h P~x + (1l P)~x (55) − 1 h 2 − 1 where~x isconstant.Iftheeigenvectorsareorthogonalthenthekinematicsaccountsforirrotationalmotions. • Rotationalmotions :IfBisnotdiagonalizablethen 1 B = h (3P 21l)+ N (56) 1 − h 2 1 d~x 1 = h (3P 21l)+ N ~x (57) dt 1 − h 2 (cid:18) 1 (cid:19) whereNisaconstantnilpotentmatrix,whichaccountsforrotationalmotionsontheeigenplaneofP.Thesolution reads 1 1 ~x= h P~x + (1l P)~x + N~x (58) − 1 h 2 − h 2 1 1 where~x isconstant. Discussion As a result, this anisotropicgeneralizationrequiresan homogeneousdistributionsof matter. Because of the pres- ence of strong density inhomogeneities in the sky distribution of galaxies catalogs, one is forced to ask whether it describescorrectlythe dynamicsof observedcosmic structures. In principle,such a remarkshould be also sensible forquestioningHubblelawwhen,regardlesstheisotropy,itisafactthatperturbationsarenotsodominantotherwise itwouldneverhavebeenhighlighted.Actually,homogeneityisimplicitlyassumedinthestandardcosmologyforthe interpretationofCMBisotropyandtheredshiftofdistantsources,whichprovidesuswithanexpandingbackground6. ItiswithsuchaschemainmindthatthisanisotropicHubblelawprovidesuswithanhintonthebehaviorofthecosmic flowfromdecouplingerauptopresentdateinordertoanswerwhethertheobservedbulkflowisdueexclusivelyto tidalforces. Cosmicflow offlatLSS (B3 =0) TheB3=0classofsolutionshasinterestingpropertieswithregardtothestabilityoflargescalestructuresthatshow a flat spatialdistribution.To answerthe questionof whetherobservationsdefineunambiguouslythe kinematics,the distortionmatrixBisdecomposedasfollows B=S+j(w~), trS=0 (59) whereSandj(w~)standforitssymmetricanditsasymmetric7component,and a2 1 w~ = ~s , ~s = −ro→t~v (60) H 2 ◦ accountsforthemotionrotation,~s beingtheswirlvector.Hence,eq.(47)gives Bw~ =Sw~ (61) 6 NamelythecomovingspaceofFLworldmodelontowhichthegravitational instability theoryisapplied forunderstanding theformation of cosmicstructures. 7 Theoperatorjstandsforthevectorproduct,~u w~ =j(~u)(w~). × Theevolutionoftheanisotropywithtimeisdefinedby S = S2+j(w~ )j(w~ ) t +S (62) j(w~) = −(S◦j(w~ )+◦ j(w~◦)S )t +◦j(w~ ) (63) −(cid:0) ◦ ◦ ◦ (cid:1)◦ ◦ whichcouplesthesymmetricandtheantisymmetricpartsofthedistortionmatrix.Theswirlmagnitudereads 1 w = w~,w~ = trS2 (64) h i 2 r q accordingto eq.(60), since b =0. Its orientationcannotbe determinedfrom the data because the aboveequations 2 describetwodistinctkinematicscorrespondingto w~ thatcannotbedisentangle.Accordingtoeq.(59),if(andonly if)therotationw =0thenthedistortionvanishesS±=0◦sinceBiseitherasymmetricorantisymmetric.Inotherwords, aplanardistortionhasnecessarilytoaccountforarotation. Constantdistortion Amongabovesolutionswhichshowplanarkinematics,letusinvestigatethe(simplest)onedefinedbyB2=0.In suchacase,~k (cid:181) w~ andSw~ =~0.Accordingtoeq.(62,63,64),linearcalculusshowsthatthedistortioniscons◦tant ◦ S=S , w =w (65) ◦ ◦ Such a distortion in the Hubble flows produces a rotating planar velocities field with magnitude (cid:181) H a 2. In the − presentcase,themodelparameterscanbeeasilyevaluatedfromdata.Theobservedcosmicvelocityfields◦arepartially determinedbytheirradialcomponent ~r v = ~v, =cz, ~r=~r(m)=r~u=a~x, r=ct (66) r h ri wherem,z,~u,t standrespectivelyfortheapparentmagnitude,theredshift,thelineofsight,thephotonemissiondate ofthegalaxyandcthespeedofthelight.Accordingtoeq.(22,24,59),theradialvelocityofagalaxylocatedatposition ~risgivenby H vr= H+H˜~u r, H˜~u= a2◦~u·S~u (67) BecausetrS=0,itisclearthatthesumofthre(cid:0)eradialv(cid:1)elocitiesv correspondingtogalaxieslocatedintheskytoward r orthogonaldirectionsand atsame distance r providesuswith the quantityH. Hence, simple algebrashowsthat the sampleaverageofradialvelocitieswithinaspherearadiusrisequalto v =H~r (68) r h i h i Therefore,formotionsdescribedbyeq.(21),thestatisticsgivenineq.(68)providesuswithagenuineinterpretation ofHubbleparameterH=H(t).Hence,accordingtoeq.(24,33,34),oneobtainsthe(generalized)expansionfactor t a(t)=exp H(t)dt (69) t Z ◦ Hence,thecosmologicalparameterscanbeestimatedbyfittingthedatatothefunction y (t)l ,k ,W = P(a)=a2H/H , l +k +W =1 (70) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ThecomponentofmatrixScanbeestimatedbpysubstitutingH ineq.(67),andw isobtainedfromeq.(65). ItisclearthattheabovemodelisderivedintheGalileanreferenceframe,wheretheEuler-Poissonequationssystem can be applied. Hence, a non vanishing velocity of the observer with respect to this frame an produces a bipolar harmonicsignalintheH˜ distributionofdatainthesky,whichcanbe(identifiedandthen)subtracted. ~u Discussion The dynamics of a homogenous medium and anisotropic moving under Newton gravity was already studied by describingtheevolutionofanellipsoid[52].Thecurrentapproachenablesustoidentifycharacteristicsofthedynamics ofthedeformationfromisotropicHubblelawinamoresystematicwaybymeanofthedistortionmatrix. Atfirstglance,iftheplanaranisotropicofthespacedistributionofgalaxieswithintheLocalSuperCluster(LSC) isstablethentheabovesolutioncanbeusedforunderstandingitscosmicvelocityfields,~k beingorthogonaltoLSC plane. It is well known however that the distribution of galaxies is not so homogenousas◦ that, whereas this model describesmotionsofanhomogenousdistributionofgravitationalsources.Ontheotherhand,suchanapproximation levelissimilartotheonewhichprovidesuswiththeobservedHubblelaw,thatisincludedinthismodel(S=0). SPHERICALVOIDSINNEWTON-FRIEDMAN UNIVERSE Formodellingthedynamicsofasphericalvoidinauniformdustdistribution,weuseacovariantformulationofEuler- Poisson equationssystem (see Appendix).The modelis obtainedby stickingtogetherthe localsolutionsV and NF of Euler-Poisson equations system as defined previously in the Newton-Friedmannand Vacuum models, where the functionastandsfortheFriedmannexpansionparameter.Suchamodelaccountsforthedynamicsoftheircommon border(i.e. boundariesconditions),whichis a materialshell. For conveniencein writing, the symbolsS, V and NF denotes both the medium and the related dynamical model. A qualitative analysis of solutions is performed and a generaldiscussionisgivensubsequently Dynamicalmodel Weconsiderthreedistinctmedia:amaterialshellwithnullthickness(S),anemptyinside(V)andoutsideauniform dustdistribution(NF).ThesemediabehavesuchthatSmakesthejunctureofVwithNFasgivenbyeq.(17,20).The tension-stressonSisassumedtobenegligible,whatischaracterizedbya(symmetriccontravariant)mass-momentum tensordefinedasfollows T00=(r ) , T0j=(r ) vj, Tjk=(r ) vjvk (71) S S c S S c c S S c c c Thebackgroundisdescribedbythefollowingmass-momentumtensor T00=r , T0j =0, Tjk =0 (72) NF c NF NF AccordingtoAppendix,sincetheeulerianfunction(al) T(x g )= Tmn gmn dtdS+ Tmn gmn dtdV (73) 7→ S NF Z Z vanisheswheng readsintheformgmn = 1 ¶ˆm x n +¶ˆn x m ,onehas 2 (cid:16) (cid:17) ¶ x +gjx +(¶ x +¶ x 2Hx )vj+vjvk¶ x (r ) dtx2dW S 0 0 c j j 0 0 j− j c c c j k S c Z (cid:16)(cid:0) (cid:1) (cid:17) = r ¶ x dtx2dxdW (74) c 0 0 − NF Z wheredW standsforthesolidangleelement.Theradialsymmetryofsolutionsenablesustowritethereducedpeculiar velocityandaccelerationofatestparticlelocatedontheshellasfollows ~v =a ~x, ~g =b ~x (75) c c wherethefunctionsa =a (t)andb =b (t)havetobedetermined.Abypartintegrationofeq.(74)providesuswith t2(¶ (r ) +3(r ) a r a x)x2x dt (76) 0 S c S c c 0 Zt1 − = t2 ¶ 0((r S)ca )+4(r S)ca 2+2H(r S)ca (r S)cb x−1 x3x˜dt Zt1 − (cid:0) (cid:1) wherex= ~x standsfortheradiusofSandx˜ = x 2+x 2+x 2.Thisequalitymustbefulfilledforallboundedtime k k 1 2 2 intervalandcompactsupport1-form.Hence,weeqasilyderivetheconservationequationsforthemass ¶ (r ) +(3(r ) r x)a =0 (77) 0 S c S c c − andforthemomentum da r b + 1+ c x a 2+2Ha + =0 (78) dt (r ) x (cid:18) S c (cid:19) With eq.(5), the calculationof the gravitationalforce fromthe entire shell acting on a particularpoint8 providesus with 4p G r (r ) b = c S c (79) a3 3 − 2x (cid:18) (cid:19) Aboutmassconservation,itisnoticeablethat 1 (r ) = r x (80) S c c 3 issolutionofeq.(77),whatensuresthattheamountofmatterwhichformstheshellcomesfromitsinterior.Hence, eq.(78)transforms da 2p Gr +4a 2+2Ha c =0 (81) dt − 3 a3 Itisconvenienttousethedimensionlessvariable a c =4 a2 (82) H ◦ where the ratio a H 1 stands for the expansion rate of S in the reference frame. Hence, eq.(81) transforms into a − Riccatiequation ◦ dc c 2 1 = W (83) da ◦− a P(a) (cid:18) (cid:19) where p K P(a)=l a4 k a2+W a, k = ◦, P(1)=1 (84) ◦ − ◦ ◦ ◦ H2 ◦ wherethedimensionlessparameters9aredefinedineq.(12,14).Accordingtoeq.(10,82),theevolutionoftheradius ofSisgivenby a c da x=x exp (85) i Zai 4a P(a)! wherex anda standsfortheinitialvaluesattimet. i i i p Qualitativeanalysis Theshellexpansionisanalysedintermofdimensionlessquantities:themagnificationX andtheexpansionrateY x a X = , Y = (86) x H i ◦ Their evolution with the expansion parameter a are obtained from eq.(83, 85) by numerical integration10. Let us focusourinvestigationaroundthegenerallyacceptedvaluesl =0.7andW =0.3.Theinitialconditionslieonthe expansionrateY andtheformationdatet,asexpressedbymea◦nsofa =a(t)◦.Thevaluesa =0.003andY =0(void i i i i i i initiallyexpandingwith Hubbleflow) areusedasstandardinourdiscussion.Hereafter,we simplyprovidesuswith synthesisresults,moreinformationcanbefoundin[17]. 8 Themodifiednewtoniangravitationfieldreads~g= L Gm ~r 3− r3 9 ThesenotationsarepreferredtotheusualW L =l a(cid:16)ndW K=(cid:17) k foravoidingambiguitiesontheinterpretationofcosmologicalparameters,see e.g.,[13],[14]. ◦ − ◦ 10 Becausethemappingt a(t)=1/(1+z)isamonotonicfunctioninthepresentinvestigation,theirevolutionwithcosmictimetorwithredshift 7→ zcanbestraightforwardlyderived.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.