ebook img

Euclidean Shortest Paths: Exact or Approximate Algorithms PDF

377 Pages·2011·6.717 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Euclidean Shortest Paths: Exact or Approximate Algorithms

Euclidean Shortest Paths “Beauty on the Path”, a digital painting by Stephen Li (Auckland, New Zealand), September2011,providedasagiftforthisbook. Fajie Li (cid:2) Reinhard Klette Euclidean Shortest Paths Exact or Approximate Algorithms FajieLi ReinhardKlette SchoolofInformationScience Dept.ComputerScience andTechnology UniversityofAuckland HuaqiaoUniversity P.O.Box92019 P.O.Box800 Auckland1142 XiamenFujian NewZealand People’sRepublicofChina [email protected] [email protected] ISBN978-1-4471-2255-5 e-ISBN978-1-4471-2256-2 DOI10.1007/978-1-4471-2256-2 SpringerLondonDordrechtHeidelbergNewYork BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressControlNumber:2011941219 ©Springer-VerlagLondonLimited2011 Apartfromanyfairdealingforthepurposesofresearchorprivatestudy,orcriticismorreview,asper- mittedundertheCopyright,DesignsandPatentsAct1988,thispublicationmayonlybereproduced, storedortransmitted,inanyformorbyanymeans,withthepriorpermissioninwritingofthepublish- ers,orinthecaseofreprographicreproductioninaccordancewiththetermsoflicensesissuedbythe CopyrightLicensingAgency.Enquiriesconcerningreproductionoutsidethosetermsshouldbesentto thepublishers. Theuseofregisterednames,trademarks,etc.,inthispublicationdoesnotimply,evenintheabsenceofa specificstatement,thatsuchnamesareexemptfromtherelevantlawsandregulationsandthereforefree forgeneraluse. Thepublishermakesnorepresentation,expressorimplied,withregardtotheaccuracyoftheinformation containedinthisbookandcannotacceptanylegalresponsibilityorliabilityforanyerrorsoromissions thatmaybemade. Coverdesign:VTeXUAB,Lithuania Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) To Zhixing Li, and to the two youngest in the KlettefamilyinNewZealand Foreword Theworldiscontinuousthemindisdiscrete. DavidMumford(born1937) Recently, I was confronted with the problem of planning my travel from Israel toNewZealand,homeofthetwoauthorsofthisbook.Whentakingtwoantipodal pointsontheglobe,likeHaifaandQueenstown,thereisaninfinitenumberofshort- estpathsconnectingthesepoints.Still,duetoconstraintslikereachableairportsand airlines,findingtheoptimalsolutionwasalmostimmediate. Throughout the long history of geometry sciences, the problem of finding the shortestpathinvariousscenariosoccupiedthemindsofresearchersinmanyfields. Evenin Euclideanspaces,whichare consideredsimple,theintroductionofobsta- clesleadstochallengingproblemsforwhichefficientcomputationalsolversarehard tofind.Theoptimalpathin3Dspacewithpolyhedralobstacleswasamongthefirst geometricproblemsproventobe,atleastformally,computationallyhardtosolve.It tookalmost20yearsforateamof5programmingexpertstoeventuallyimplement amethodapproximatingthecontinuousDijkstraalgorithmthatisreviewedinthis book.Exactproblemsarehardtosolve,andapproximationsareobviouslyrequired. Mypersonallineofworkwhendealingwithgeometricproblemssomewhatdif- fersfromtheschoolofthoughtpromotedbythisbook.Anumericalapproximation inmyvocabularyinvolvesthenotionofaccuracythatdependsonanunderlyinggrid resolution.Thisgridisdefinedbysamplingthedomainoftheproblemandleadsto thefieldofnumericalgeometryinwhichefficientsolversaresimpletodesign. The alternative computational geometry school of thought describes obstacles as polyhedral structures that allegedly define the “exact” problem. The resulting challengesunderthissettingareextremelydifficulttoovercome.Still,theunifying bridgebetweenthesetwophilosophicalbranchesisdefinedbythegeometricprob- lems.Withoutbeingfamiliarwiththedifficultyinvolvedindesigningapathbetween pointsinaweighteddomain,onecouldnotappreciatetheconceptualsimplicityof numericalEikonalsolvers. This book addresses the type of hard problems in the computational geometry flavorwhileinventingconstraintsthatallowforefficientsolverstobedesigned.For example,thecreativerubberbandmethodsexploredinthisbookrestricttheoptimal vii viii Foreword pathstobandsofboundedwidth,therebyredefiningproblemsandsimplifyingthe challenges,provingyetagainAleksandrPushkin’sobservationthat“inspirationis needed in geometry, just as much as in poetry.” I hope that, like me, the reader wouldfindthegeometricalchallengesintroducedinthisbookfascinatingandalso appreciatetheeleganceoftheproposedsolutions. Haifa,Israel RonKimmel Preface AEuclideanshortestpathconnectsasourcewithadestination,avoidssomeplaces (calledobstacles),visitssomeplaces(calledattractions),possiblyinadefinedor- der,andisofminimumlength.Euclideanshortest-pathproblemsaredefinedinthe EuclideanplaneorinEuclidean3-dimensionalspace.Thecalculationofaconvex hull in the plane is an example for finding a shortest path (around the given set ofplanarobstacles).Polyhedralobstaclesandpolyhedralattractions,astartandan endpointdefineageneralEuclideanshortest-pathproblemin3-dimensionalspace. The book presents selected algorithms (i.e., not aiming at a general overview) for the exact or approximate solution of shortest-path problems. Subjects in the firstchaptersofthebookalsoincludefundamentalalgorithms.Graphtheoryoffers shortest-pathalgorithmsfordiscreteproblems.Convexhulls(andtoalesserextent alsoconstrainedconvexhulls)havebeendiscussedincomputationalgeometry.Sei- del’s triangulation and Chazelle’s triangulation method for a simple polygon, and Mitchell’ssolutionofthecontinuousDijkstraproblemhavealsobeenselectedfora detailedpresentation,justtonamethreeexamplesofimportantworkinthearea. The book also covers a class of algorithms (called rubberband algorithms), whichoriginatedfromaproposalforcalculatingminimum-lengthpolygonalcurves incube-curves;ThomasBülowwasaco-authoroftheinitiatingpublication,andhe coinedthename‘rubberbandalgorithm’in2000forthefirsttimeforthisapproach. Subsequent work between 2000 and now shows that the basic ideas of this al- gorithmgeneralisedforsolvingarangeofproblems.Inasequenceofpublications between2003and2010,we,theauthorsofthisbook,describeaclassofrubberband algorithms with proofs of their correctness and time-efficiency. Those algorithms canbeusedtosolvedifferentEuclideanshortest-path(ESP)problems,suchascal- culatingtheESPinsideofasimplecube-arc(theinitialproblem),insideofasimple polygon,onthesurfaceofaconvexpolytope,orinsideofasimplepolyhedron,but also ESP problems such as touring a finite sequence of polygons, cutting parts, or thesafari,zookeeper,orwatchmanrouteproblems. We aimed at writing a book that might be useful for a second or third-year al- gorithms course at the university level. It should also contain sufficient details for students and researchers in the field who are keen to understand the correctness ix x Preface proofs, the analysis of time complexities and related topics, and not just the algo- rithmsandtheirpseudocodes.Thebookdiscussesselectedsubjectsandalgorithms atsomedepth,includingmathematicalproofsformostofthegivenstatements.(This isdifferentfrombookswhichaimatarepresentativecoverageofareasinalgorithm design.) Each chapter closes with theoreticalor programmingexercises, giving students various opportunities to learn the subject by solving problems or doing their own experiments.Tasksare(intentionally)onlysketchedinthegivenprogrammingexer- cises,notdescribedexactlyinalltheirdetails(say,asitistypicallywhenacostumer specifiesaproblemtoanITconsultant),andidenticalsolutionstosuchvaguelyde- scribedprojectsdonotexist,leavingspaceforthecreativityofthestudent. Theaudienceforthebookcouldbestudentsincomputerscience,IT,mathemat- ics,orengineeringatauniversity,oracademicsbeinginvolvedinresearchorteach- ingofefficientalgorithms.Thebookcouldalsobeusefulforprogrammers,mathe- maticians,orengineerswhichhavetodealwithshortest-pathproblemsinpractical applications, such as in robotics (e.g., when programming an industrial robot), in routing (i.e., when selecting a path in a network), in gene technology (e.g., when studyingstructuresofgenes),oringameprogramming(e.g.,whenoptimisingpaths formovesofplayers)—justtocitefourofsuchapplicationareas. Theauthorsthank(inalphabeticalorder)TetsuoAsano,DonaldBailey,Chander- jitBajaj,ParthaBhowmick,Alfred(Freddy)Bruckstein,ThomasBülow,XiaChen, Yewang Chen, David Coeurjolly, Eduardo Destefanis, Michael J. Dinneen, David Eppstein, Claudia Esteves Jaramillo, David Gauld, Jean-Bernard Hayet, David Kirkpatrick, Wladimir Kovalevski, Norbert Krüger, Jacques-Olivier Lachaud, Joe Mitchell,AkiraNakamura,XiuxiaPan,HenrikG.Petersen,NicolaiPetkov,Fridrich Sloboda, Gerald Sommer, Mutsuhiro Terauchi, Ivan Reilly, the late Azriel Rosen- feld, the late Klaus Voss, Jinlong Wang, and Joviša Žunic´ for discussions or com- mentsthatwereofrelevanceforthisbook. TheauthorsthankChengleHuang(ChingLokWong)fordiscussionsonrubber- band algorithms; he also wrote C++ programs for testing Algorithms 7 and 8. We thank Jinling Zhang and Xinbo Fu for improving C++ programs for testing Algo- rithm 7. The authors acknowledge computer support by Wei Chen, Wenze Chen, Yongqian Du, Wenxian Jiang, Yanmin Luo, Shujuan Peng, Huijuan Pi, Huazhen Wang,andJianYu. ThefirstauthorthanksdeanWeibinChenatHuaqiaoUniversityforsupporting the project of writing this book. The second author thanks José L. Marroquín at CIMATGuanajuatoforaninvitationtothisinstitute,thusprovidingexcellentcon- ditionsforworkingonthisbookproject. PartsofChap.4(onrelativeconvexhulls)areco-authoredbyGiselaKlette,who alsocontributedcomments,ideasandcriticismsthroughoutthebookproject. WearegratefultoGarryTeeforcorrectionsandvaluablecomments,oftenadding importantmathematicalorhistoricdetails. Huaqiao,People’sRepublicofChina FajieLi Auckland,NewZealand ReinhardKlette

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.