ebook img

euclidean and non-euclidean geometries PDF

502 Pages·2008·17.67 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview euclidean and non-euclidean geometries

EUCLIDEAN AND NON-EUCLIDEAN GEOMETRIES EUCLIDEAN AND NON-EUCLIDEAN GEOMETRIES Development and History Third Edition Marvin .Jay Greenberg UniversityofCalifornia, Santa Cruz II w. H. Freeman and Company NewYork Coverimage:Thistessellationofthe hyperbolicplane byalternatelycol ored 30·-45·-90· triangles,whichappeared inapaperbyH. S. M. Coxeter (Figure 7in "CrystalSymmetryand ItsGeneralizations," TransactionsoftheRoyalSocietyofCanada3 (51), 1957, pp. 1-11),in spired the Dutchartist M. C. Eschertocreate his (hyperbolic) "Circle Limit" patterns. Infact, bycombiningpairsoftrianglesthatsharelong sides, oneobtainsadifferenttessellation by45·-45·-60· triangles, whichcanalsobealternatelycolored. Itiseasytomodifythislattertes sellationtoobtain CircleLimitIV(whichappearson thefront cover). Copyright© 1960M. C. EscherFoundation, Baarn,Holland. All rights reserved. Backcoverimage:Thistessellationwasgenerated byDouglasDunham (DepartmentofComputerScience,UniversityofMinnesota, Duluth, MN55812-2496). LibraryofCongressCataloging-in-Publication Data Greenberg, MarvinJ. Euclideanand non-Euclideangeometries:developmentand historyI MarvinJayGreenberg.- 3rded. p. em. Includes bibliographical referencesand indexes. ISBN 0-7167-2446-4 : 1. Geometry. 2. Geometry, Non-Euclidean. 3. Geometry History. 4. Geometry, Non-Euclidean-History. I. Title. QA445.G84 1994 516-dc20 93-7207 CIP Copyright© 1974, 1980, 1993 byW. H. FreemanandCompany Nopartofthisbook maybe reproduced byany mechanical, photo graphic, orelectronicprocess,orin the form ofaphonographicrecord ing, nor may itbestored inaretrievalsystem, transmitted,orotherwise copiedfor publicorprivate use,withoutwrittenpermissionfrom the publisher. Printed in the United StatesofAmerica 2 3 4 5 6 7 8 9 0 VB 9 9 8 7 6 5 4 To MosesMa, PresidentofVelocity Development, without whosetechnical andemotionalsupportthisthirdedition couldnothavebeen written. Andto the memory ofStanford ProfessorKarelDeLeeuw, inspiringteacherandoutrageous friend. The moralofthisbookis: Checkyour premises. CONTENTS PREFACE xl INTRODUCTION I I EUCLID'S GEOMETRY 6 The originsofgeometry 6 Theaxiomatic method 10 Undefined terms 11 Euclid's first four postulates 14 The parallel postulate 18 Attempts to prove the parallel postulate 21 The danger in diagrams 23 The powerofdiagrams 25 Reviewexercise 26 Exercises 27 Majorexercises 31 Projects 35 2 LOGIC AND INCIDENCEGEOMETRY 38 Informal logic 38 Theorems and proofs 40 RAA proofs 42 Negation 44 Quantifiers 45 Implication 48 Lawofexcluded middle and proofbycases 49 Incidence geometry 50 Models 52 Isomorphismofmodels 56 Projective and affine planes 58 Reviewexercise 62 Exercises 63 Majorexercises 65 Projects 68 3 HILBERT'S AXIOMS 70 Flaws in Euclid 70 Axiomsofbetweenness 7Z Axiomsofcongruence 82 Axioms ofcontinuity 93 Axiom ofparallelism 102 III viII Contents Reviewexercise 103 Exercises 104 Majorexercises 111 Projects 114 4 NEUTRALGEOMETRY lIS Geometrywithout the parallel axiom 115 Alternate interior angle theorem 116 Exterior angle theorem 118 Measureofangles and segments 122 Saccheri-Legendre theorem 124 Equivalence ofparallel postulates 128 Angle sum ofatriangle 130 Reviewexercise 134 Exercises 136 Majorexercises 143 Projects 146 S HISTORY OFTHEPARALLELPOSTULATE 148 Proclus 149 Wallis 151 Saccheri 154 Clairaut 156 Legendre 157 Lambertand Taurinus 159 Farkas Bolyai 161 Reviewexercise 163 Exercises 164 Majorexercises 174 Projects 176 6 THE DIS£OVERY OF NON-EU£LIDEAN GEOMETRY 177 Janos Bolyai 177 Gauss 180 Lobachevsky 183 Subsequentdevelopments 185 Hyperbolicgeometry 187 Angle sums (again) 189 Similartriangles 189 Parallels that admitacommon perpendicular 191 Limiting parallel rays 195 Classification ofparallels 198 Strange new universe? 200 Reviewexercise 201 Exercises 203 Major exercises 209 Projects 221 Contents 1[1 Ix 7 INDEPENDENCE OFTHE PARALLEL POSTULATE 223 Consistencyofhyperbolicgeometry 223 The Beltrami-Klein model 227 The Poincare models 232 Perpendicularity in the Beltrami-Klein model 238 Amodel ofthe hyperbolic plane from physics 241 Inversion in circles 243 The projective nature ofthe Beltrami-Klein model 258 Reviewexercise 270 K-Exercises 271 P-Exercises 279 H-Exercises 286 8 PHILOSOPHICAL IMPLICATIONS 290 Whatis the geometryofphysical space? 290 Whatis mathematics about? 293 The controversyabout the foundations ofmathematics 295 The mess 299 Reviewexercise 301 Some topicsfor essays 302 9 GEOMETRIC TRANSFORMATIONS 309 Klein'sErlangerProgramme 309 Groups 311 Applications to geometric problems 315 Motions and similarities 321 Reflections 324 Rotations 327 Translations 330 Half-turns 333 Ideal points in the hyperbolic plane 334 Parallel displacements 336 Glides 338 Classification ofmotions 340 Automorphismsofthe Cartesian model 344 Motions in the Poincare model 349 Congruence described bymotions 358 Symmetry 363 Reviewexercise 369 Exercises 372 10 FURTHER RESULTS IN HYPERBOLIC GEOMETRY 386 Area and defect 386 The angleofparallelism 391 III x Cycles 392 The pseudosphere 394 Hyperbolictrigonometry 398 Circumference and area ofacircle 407 Saccheri and Lambertquadrilaterals 411 Coordinates in the hyperbolic plane 417 The circumscribed cycle ofa triangle 423 Reviewexercise 428 Exercises 429 Appendix A Elliptic and Other Riemannian Geometries 428 Ellipticgeometry 438 Riemanniangeometry 443 Appendix B Geometry WithoutContinuity 454 Suggested Further Reading 461 Bibliography 463 ListofAxioms 469 ListofSymbols 472 Name Index 474 SubjectIndex 478

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.