ElectronicTransactionsonNumericalAnalysis. ETNA Volume45,pp.183–200,2016. KentStateUniversity Copyright(cid:13)c 2016,KentStateUniversity. http://etna.math.kent.edu ISSN1068–9613. OPERATIONALMÜNTZ-GALERKINAPPROXIMATIONFOR ABEL-HAMMERSTEININTEGRALEQUATIONSOFTHESECONDKIND∗ P.MOKHTARY† Abstract.SincesolutionsofAbelintegralequationsexhibitsingularities,existingspectralmethodsforthese equationssufferfrominstabilityandlowaccuracy.Moreover,fornonlinearproblems,solvingtheresultingcomplex nonlinearalgebraicsystemsnumericallyrequireshighcomputationalcosts.Toovercomethesedrawbacks,inthis paperweproposeanoperationalGalerkinstrategyforsolvingAbel-Hammersteinintegralequationsofthesecond kindwhichappliesMüntz-Legendrepolynomialsasnaturalbasisfunctionstodiscretizetheproblemandtoobtain asparsenonlinearsystemwithupper-triangularstructurethatcanbesolveddirectly.Itisshownthatourapproach yieldsawell-posedandeasy-to-implementapproximationtechniquewithahighorderofaccuracyregardlessofthe singularitiesoftheexactsolution.Thenumericalresultsconfirmthesuperiorityandeffectivenessoftheproposed scheme. Key words. Abel-Hammerstein integral equations, Galerkin method, Müntz-Legendre polynomials, well- posedness AMSsubjectclassifications.45E10,41A25 1. Introduction. Abel’sintegralequation,oneoftheveryfirstintegralequationsseri- ouslystudied,andthecorrespondingintegraloperatorhaveneverceasedtoinspiremathe- maticianstoinvestigateandtogeneralizethem. Abelwasledtohisequationbyaproblemof mechanics,thetautochroneproblem[16]. However,hisequationandsomevariantsofithave foundapplicationsinsuchdiversefieldsasstereologyofsphericalparticles[3,18],inversion ofseismictraveltimes[4],cyclicvoltametry[5],waterwavescatteringbytwosurface-piercing barriers[12],percolationofwater[15],astrophysics[19],theoryofsuperfluidity[22],heat transferbetweensolidsandgasesundernonlinearboundaryconditions[25],propagationof shock-wavesingasfieldstubes,subsolutionsofanonlineardiffusionproblem[29],etc. SeveralanalyticalandnumericalmethodshavebeenproposedforsolvingAbelintegral equationssuchasrationalinterpolation[2],non-polynomialsplinecollocation[6],Adomian decomposition[8],productintegration[9],homotopyperturbation[20],trapezoidaldiscretiza- tion[13],waveformrelaxation[11],JacobispectralcollocationandTaumethods[14,21,27], Taylorexpansion[17],Laplacetransformation[19],fractionallinearmultistepmethods[23], Runge-Kuttamethods[24],modifiedTaumethods[26],LegendreandChebyshevwavelets [31,33],etc.Almostallaforementionedmethodshavebeenappliedtothelinearcase,andvery fewapproachesintheliteratureutilizeapproximationsforanumericalsolutionofnonlinear Abelintegralequations. Thus,providingasuitablenumericalstrategywhichapproximates solutionsofnonlinearAbelintegralequationscanbeworthwhileandnewinthearea. Inthis paper,weconsideraHammerstein-typeofnonlinearityintheAbelintegralequation. TheGalerkinmethodisoneofthemostpopularandpowerfulprojectiontechniquefor solving integral equations. It belongs to the class of weighted residual methods, in which approximationsaresoughtbyforcingtheresidualtobezerobutonlyinanapproximatesense. Thismethodhastwomainadvantages. First,itreducesthegivenlinear(nonlinear)problem tothatofsolvingalinear(nonlinear)systemofalgebraicequations. Second,ithasexcellent errorestimateswiththeso-called"exponential-likeconvergence"beingthefastestpossible whenthesolutionisinfinitelysmooth;see[10,30]. ∗ReceivedNovember3,2015.AcceptedMarch1,2016.PublishedonlineonMay6,2016.Recommendedby R.Ramlau. †DepartmentofMathematics,FacultyofBasicSciences,SahandUniversityofTechnology,Tabriz,Iran ([email protected], [email protected]). 183 ETNA KentStateUniversity http://etna.math.kent.edu 184 P.MOKHTARY Inthispaper,weintroduceanumericalschemebasedontheGalerkinmethodtoapproxi- matethesolutionsofthefollowingAbel-Hammersteinintegralequationofthesecondkind x (cid:90) K(x,t) (1.1) u(x)=f(x)+ √ G(t,u(t))dt, x∈Λ=[0,1], x−t 0 usingsomesimplematrixoperations. Throughoutthepaper,C willdenoteagenericpositive i constant. Thefollowingtheoremstatestheexistenceanduniquenessresultfor(1.1). THEOREM1.1([7]). Letthefollowingconditionsbefulfilled: • f(x)isacontinuousfunctiononΛ, • K(x,t)isacontinuousfunctiononD :={(x,t)|0≤t≤x≤1}withK(x,x)(cid:54)=0, and • G:Λ×R→RisaLipschitz-continuousfunctionwithrespecttothesecondvariable, i.e., |G(t,u (t))−G(t,u (t))|≤C |u (t)−u (t)|. 1 2 1 1 2 Thenequation(1.1)hasauniquecontinuoussolutionu(x)onΛ. Here,Rdenotesthesetof allrealnumbers. However,fromwell-knownexistenceanduniquenesstheorems[7,21,26,27],wecan concludethat(1.1)typicallyhasasolutionwhosefirstderivativeisunboundedattheorigin andbehaveslike 1 (1.2) u(cid:48)(x)(cid:39) √ · x After providing criteria for the existence and uniqueness of solutions of (1.1) in the previoustheorem,weinvestigatethewell-posednessoftheproblem. Itiswellknownthat linearAbelintegralequationsofthesecondkindarewell-posedinthesensethatsolutions dependcontinuouslyonthedata. Inthefollowingtheoremweprovethatthisalsoholdstrue for(1.1). THEOREM1.2. Considertheequation(1.1)andletu˜(x)bethesolutionoftheperturbed problem x (cid:90) K˜(x,t) (1.3) u˜(x)=f˜(x)+ √ G(t,u˜(t))dt. x−t 0 IftheassumptionsofTheorem1.1holdfor(1.3),thenwehave (1.4) (cid:107)u(x)−u˜(x)(cid:107) ≤C (cid:107)f −f˜(cid:107) +C (cid:107)K−K˜(cid:107) , ∞ 3 ∞ 4 ∞ where(cid:107).(cid:107) denotesthewell-knownuniformnorm. ∞ Proof. Subtracting(1.1)from(1.3)yields x x (cid:90) K(x,t) (cid:90) K˜(x,t) u(x)−u˜(x)=f(x)−f˜(x)+ √ G(t,u(t))dt− √ G(t,u˜(t))dt x−t x−t 0 0 x (cid:90) K(x,t) =f(x)−f˜(x)+ √ (G(t,u(t))−G(t,u˜(t)))dt x−t 0 (cid:16) (cid:17) (cid:90)x K(x,t)−K˜(x,t) + √ G(t,u˜(t))dt. x−t 0 ETNA KentStateUniversity http://etna.math.kent.edu OPERATIONALMÜNTZ-GALERKINAPPROXIMATION 185 SinceK(x,t)andG(x,t)arecontinuousfunctions,wecanwrite x (cid:90) |G(t,u(t))−G(t,u˜(t))| |u(x)−u˜(x)|≤|f(x)−f˜(x)|+(cid:107)K(x,t)(cid:107) √ dt ∞ x−t 0 x (cid:90) |K(x,t)−K˜(x,t)| +(cid:107)G(t,u˜(t))(cid:107) √ dt. ∞ x−t 0 SinceG(t,u(t))satisfiestheLipschitzconditionwithrespecttothesecondvariable,weobtain x (cid:90) |u(t)−u˜(t)| |u(x)−u˜(x)|≤|f(x)−f˜(x)|+C (cid:107)K(x,t)(cid:107) √ dt 2 ∞ x−t 0 x (cid:90) |K(x,t)−K˜(x,t)| +(cid:107)G(t,u˜(t))(cid:107) √ dt. ∞ x−t 0 Finally,usingtheGronwallinequality(see[26,Lemma4.2]),wecandeducethat (cid:107)u(x)−u˜(x)(cid:107) ≤C (cid:107)f(x)−f˜(x)(cid:107) +C (cid:107)K−K˜(cid:107) , ∞ 3 ∞ 4 ∞ whichgivesthedesiredresult(1.4). FromTheorems1.1and1.2,wecandeducetheexistenceanduniquenessofsolutions of(1.1)andalsothewell-posednessoftheproblembyassumingLipschitz-continuityofthe nonlinearfunctionG(t,u(t)). However,animplementationofspectralmethodscanleadto some difficulties from the numerical point of view such as a complex nonlinear algebraic systemthathastobesolved,highcomputationalcosts,andtherebypossiblylowaccuracy. In thispaper,weshowthatifG(t,u(t))isasmoothfunction,thenwecanobtainitsGalerkin solutionbysolvingawell-posedupper-triangularnonlinearalgebraicsystemusingforward substitution. ItiswellknownthattheGalerkinmethodisanefficienttooltosolveintegralequations with smooth solutions. However, from (1.2) we can conclude that for (1.1) this approach leadstoanumericalmethodwithpoorconvergencebehaviour. Moreover,aswementioned above, for nonlinear problems, its implementation produces a numerical scheme with a highcomputationalcost. Thereforetomakeitapplicablefor(1.1),wemustprospectfora well-conditioned,easytouse,andhighlyaccuratetechnique. Tothisend,inthispaperwe employsuitablebasisfunctionswhichhavegoodapproximationpropertiesforfunctionswith singularitiesattheboundaries. HereweconsiderMüntz-Legendrepolynomials[28,32]as naturalbasisfunctionstodefinetheGalerkinsolutionof(1.1). Thesefunctionsareofnon- polynomialnatureandaremutuallyorthogonalwithrespecttotheweightfunctionw(x)=1. WewillshowthatifwerepresenttheGalerkinsolutionof(1.1)asalinearcombinationofthese polynomials,wecanproduceanumericalschemewithasatisfactoryorderofconvergence, andtheunknowncoefficientsoftheapproximatesolutioncanbecharacterizedbyawell-posed upper-triangularsystemofnonlinearalgebraicequations. Wewillsolveitdirectlybyapplying thewell-knownforwardsubstitutionmethod. Thereminderofthispaperisorganizedasfollows: inSection2,wedescribetheMüntz- Legendrepolynomials, whicharethebasisforoursubsequentdevelopment. InSection3, weexplaintheapplicationoftheoperationalGalerkinmethodbasedontheMüntz-Legendre polynomials to obtain an approximate solution of (1.1). Here we also give results on the numericalsolvabilityandacomplexityanalysisoftheresultingsystemofnonlinearalgebraic ETNA KentStateUniversity http://etna.math.kent.edu 186 P.MOKHTARY equations. InSection4,weapplytheproposedmethodfromSection3toseveralexamplesand presentsomecrucialnumericalcharacteristicssuchasnumericalerrors,orderofconvergence, and comparison results with other existing numerical techniques and thereby confirm the efficiencyandeffectivenessoftheproposedmethod. Section5,isdevotedtoourconclusions. 2. Müntz-Legendrepolynomials. Inthissection,wegivethedefinitionandthebasic propertiesoftheMüntz-Legendrepolynomialswhichareusedinthesequel. Allthedetailsin thissectionaswellasfurtheronescanbefoundin[28,32]. Then-thMüntz-Legendrepolynomialisdefinedas L (x):= 1 (cid:90) n(cid:89)−1t+ξk+1 xt dt, n 2πi t−ξ t−ξ k n k=0 D wherethesimplecontourDsurroundsallthezerosofthedenominatorintheaboveintegrand ∞ and0=ξ <ξ <...<ξ <...,withξ →∞and (cid:80) ξ−1 =∞. Thesepolynomialsare 0 1 n n k k=1 mutuallyorthogonalwithrespecttotheweightfunctionw(x)=1suchthatwehave (cid:90) δ L (x)L (x)dx= n,m , n≥m, n m 2ξ +1 n D whereδ istheKroneckersymbol. ItcanbeshownthattheMüntz-Legendrepolynomials n,m havethefollowingrepresentation n (cid:88) Ln(x):= ρk,nxξk =Span{1,xξ1,xξ2,...,xξn}, k=0 n−1 (2.1) (cid:81) (ξ +ξ +1) k j ρ = j=0 , forn∈N , k,n n 0 (cid:81) (ξ −ξ ) k j j=0,j(cid:54)=k andtheysatisfytherecursionformula 1 (cid:90) L (x)=L (x)−(ξ +ξ +1)xξn t−ξn−1L (t)dt, x∈(0,1]. n n−1 n n−1 n−1 x Here,N isasusualthesetofnonnegativeintegers. 0 3. TheMüntz-Galerkinapproach. Inthissection,wedevelopanoperationalGalerkin methodwhichappliestheMüntz-Legendrepolynomialsasbasisfunctionstoobtainanapprox- imatesolutionto(1.1). Wepresentourresultsintwoparts. First,usingasequenceofmatrix operations,weobtainasuitablenonlinearalgebraicformoftheMüntz-Galerkindiscretization of(1.1). Second,weexplainhowtheuniquesolutionisfound. Hereweshowthattheresulting nonlinearsystemfromthefirststepcanberepresentedbyanupper-triangularstructureand thisenablesustocomputethesolutiondirectly. 3.1. Outlineofthemethod. Inthissection,weapplytheMüntz-Galerkinapproachto convert(1.1)intoasuitablenonlinearalgebraicform. Tothisend,wesupposethat i (3.1) ξ = , i=0,1,..., i 2 ETNA KentStateUniversity http://etna.math.kent.edu OPERATIONALMÜNTZ-GALERKINAPPROXIMATION 187 anddefineu (x)asMüntz-Galerkinapproximationoftheexactsolutionu(x)inthefollowing N way: ∞ (cid:88) (3.2) u (x):= u L (x)=uL=uLX, N i i i=0 where u := [u ,u ,...,u ,0,...] and L := [L (x),L (x),...,L (x),...]T is a Müntz- 0 1 N 0 1 N Legendrepolynomialbasis. Fromtherelations(1.2),(2.1),and(3.1),weconcludethatour approximatesolution(3.2)hasthesameasymptoticbehaviorastheexactones,whichisthe crucialfactforachievingasatisfactoryaccuracyintheGalerkinmethod. Clearly,wecanwrite L := LX whereL = {L }∞ isaninfinitelynon-singularlower-triangularcoefficient i,j i,j=0 matrixwithdegreedeg(Li(x)) ≤ ξi i = 0,1,...,andX := [1,xξ1,xξ2,...,xξN,...]T are thestandardMüntzbasisfunctions. Assumethat Nf (cid:88) f(x)(cid:39) f xξi =f X =fL−1L, f :=[f ,f ,...,f ,0,...]T, i 0 1 Nf i=0 (cid:88)NG (3.3) G(t,u(t))(cid:39) s (t)up(t). p p=0 Substituting(3.2)into(1.1)andusing(3.3),ourMüntz-Galerkinmethodistoseeku (x) N suchthatwehave u (x)=fX+(cid:88)NG (cid:90)x K(√x,t)sp(t)up (t)dt N x−t N p=0 0 (3.4) =fX+(cid:90)x K(√x,t)s0(t)dt+(cid:88)NG (cid:90)x K(√x,t)sp(t)up (t)dt. x−t x−t N p=1 0 0 LetusdefineK (x,t)=K(x,t)s (t)forp≥1,andassumethat p p ∞ ∞ (cid:88)(cid:88) (3.5) K (x,t)= kp xitj, p≥1. p i,j i=0j=0 Byinserting(3.5)into(3.4),weobtain (3.6) u (x)=fX+(cid:90)x K(√x,t)s0(t)dt+(cid:88)∞ (cid:88)∞ (cid:88)NG (cid:90)x k√ip,jxitjup (t)dt. N x−t x−t N 0 i=0j=0p=10 Now,weintendtoderiveamatrixrepresentationfortheintegraltermsin(3.6). Forthis, wefirstgivethefollowinglemmawhichtransformup (t)intoasuitablematrixform. Our N strategy is to extend the proof in [14, Theorem 2.1] to the case of Müntz-Legendre basis functions. LEMMA3.1. SupposethatuN(x)isgivenby(3.2). Thenwehave up (x)=uLQp−1X, N ETNA KentStateUniversity http://etna.math.kent.edu 188 P.MOKHTARY whereQisthefollowinginfiniteupper-triangularmatrix uL uL uL ··· 0 1 2 0 uL0 uL1 ··· Q:= 0 0 uL0 ···, ... ... ... ... withL ={L }∞ , j =0,1,... . j i,j i=0 Proof. Weproceedusingmathematicalinductiononp. Forp=1thelemmaisvalid. We assumethatitholdsforpandtransittop+1asfollows: up+1(x)=up (x)×u (x) (3.7) N N N =(cid:0)uLQp−1X(cid:1)×(uLX)=uLQp−1(X×(uLX)). Now,itissufficienttoshowthat (3.8) X×(uLX)=QX. Tothisend,wecanwrite (cid:32) ∞ ∞ (cid:33) (cid:40) ∞ ∞ (cid:41)∞ X×(uLX)=X× (cid:88)(cid:88)urLr,sx2s = (cid:88)(cid:88)urLr,sxs+2i s=0r=0 s=0r=0 i=0 (cid:88)∞ (cid:32)(cid:88)∞ (cid:33) j∞ (cid:88)∞ (cid:32)(cid:88)∞ (cid:33) j∞ = urLr,j−i x2 = urLr,j−i x2 j=0 r=0 j=i r=0 i=0 i=0 =QX, whichproves(3.8). Clearly,inserting(3.8)into(3.7)givesthedesiredresult. NowapplyingLemma3.1inthethirdtermontheright-handsideof(3.6)yields (cid:88)∞ (cid:88)∞ (cid:88)NG (cid:90)x k√ip,jxitjup (t)dt=(cid:88)∞ (cid:88)∞ (cid:88)NG (cid:90)x k√ip,jxitjuLQp−1X dt x−t N x−t t i=0j=0p=10 i=0j=0p=10 (3.9) =uL(cid:88)NG Qp−1(cid:88)∞ (cid:88)∞ kp xi(cid:90)x √tj+m2 dt∞ , i,j x−t p=1 i=0j=0 0 m=0 whereXt :=[1,tξ1,tξ2,...,tξN,...]T. Usingtherelation[27] (cid:90)x √tj+m2 dt∞ =(cid:26)√πΓ(1+j+ m2) x1+22j+m(cid:27)∞ , x−t Γ(3+m +j) 2 m=0 0 m=0 ETNA KentStateUniversity http://etna.math.kent.edu OPERATIONALMÜNTZ-GALERKINAPPROXIMATION 189 wecanrewrite(3.9)as (cid:88)∞ (cid:88)∞ (cid:88)NG (cid:90)x k√ip,jxitjup (t)dt x−t N i=0j=0p=10 √ =uL(cid:88)NG Qp−1(cid:88)∞ (cid:88)∞ kip,j(cid:26) πΓΓ((31+m++j+j)m2) x1+2(i+2j)+m(cid:27)∞ p=1 i=0j=0 2 m=0 (3.10) =uL(cid:88)NG Qp−1(cid:88)∞ (cid:88)∞ kip,j(cid:110)Amj x1+2(i+2j)+m(cid:111)∞ m=0 p=1 i=0j=0 (cid:32)(cid:88)NG (cid:33) =uL Qp−1A X p p=1 =uLQ X, p where √ πΓ(1+j+ m) (cid:88)NG Am = 2 , Q = Qp−1A , j Γ(3+m +j) p p 2 p=1 andA isaninfiniteupper-triangularmatrixwithnonzeroentries p l (cid:88) (3.11) (A ) := kp As , s,l=0,1,2,... . p s,2l+s+1 j,l−j l−j j=0 Itcaneasilybeseenthatbyproceedinginthesamemannerasin(3.9)–(3.11),wefind that x x (cid:90) K(x,t)s (t) (cid:90) K(x,t) (3.12) √ 0 dt=s √ X dt=s AX, 0 t 0 x−t x−t 0 0 where the infinite upper-triangular matrix A is obtained from (3.11) with k in place j,l−j ofkp . j,l−j Now,togetthealgebraicformoftheMüntz-Galerkindiscretizationof(1.1),itissufficient thatweinserttherelations(3.2),(3.10),and(3.12)into(3.6). Thuswehave (cid:0) (cid:1) (3.13) uL(id−Q )X = f +s A X, p 0 whereidistheinfinite-dimensionalidentitymatrix. UsingX =L−1L,wecanrewrite(3.13) as (3.14) uL(id−Q )L−1L=(cid:0)f +s A(cid:1)L−1L. p 0 Becauseoftheorthogonalityof{L (x)}∞ ,projecting(3.14)onto{L (x)}N yields k k=0 k k=0 (3.15) uNLN(cid:16)idN −QN(cid:17)(cid:0)LN(cid:1)−1 =(cid:16)fN +s NAN(cid:17)(cid:0)LN(cid:1)−1, p 0 whereuN =[u ,u ,...,u ], fN =[f ,f ,...,f ], s N =[s0,s1,...,sN],andLN,idN, 0 1 N 0 1 N 0 0 0 0 QN,(cid:0)LN(cid:1)−1,AN aretheprincipalsubmatricesoforderN+1ofthematricesL,id,Q ,L−1, p p ETNA KentStateUniversity http://etna.math.kent.edu 190 P.MOKHTARY andA,respectively. Sincetheproductofupper-triangularmatricesgivesanupper-triangular matrix,thematrixQ definedin(3.11)hasanupper-triangularstructure. Consequently,the p nonlinearalgebraicsystem(3.15)hasanupper-triangularstructure,whosesolutionyieldsthe unknowncomponentsofthevectoruN. Inthenextsectionwepresentmoredetailsregarding thecomplexityanalysisanduniquesolvabilityofthissystem. REMARK3.2. Clearly,forG(t,u(t))=up(t),thesystem(3.15)canberepresentedas (3.16) uNLN(cid:16)idN −(cid:0)Qp−1(cid:1)NAN(cid:17)(cid:0)LN(cid:1)−1 =fN(cid:0)LN(cid:1)−1, p(cid:54)=1, (3.17) uNLN(cid:16)idN −AN(cid:17)(cid:0)LN(cid:1)−1 =fN(cid:0)LN(cid:1)−1, p=1(linearcase), where(cid:0)Qp−1(cid:1)N istheprincipalsubmatrixoforderN +1fromQp−1. 3.2. Numericalsolvabilityandcomplexityanalysis. Themainobjectofthissectionis toprovideanexistenceanduniquenesstheoremforthenonlinearalgebraicsystem(3.16)and itscomplexityanalysis. Inotherwords,weexplainhowwecancomputetheunknownvector ubysolving(3.16)byawell-posedtechnique. Furthermore,weextendthefollowinganalysis alsotothesystem(3.15). Multiplyingbothsidesof(3.16)byLN yields (3.18) uNLN(cid:16)idN −(cid:0)Qp−1(cid:1)NAN(cid:17)=fN. Bydefining (3.19) u=uNLN =[u ,u ,...,u ], 0 1 N wecanrewrite(3.18)as u(cid:16)idN −(cid:0)Qp−1(cid:1)NAN(cid:17)=fN. FromthestructureofthematrixQinLemma3.1,wehave uL0 uL1 uL2 ··· u0 u1 u2 ··· Q:= 00 uL00 uuLL10 ······=00 u00 uu10 ······. ... ... ... ... ... ... ... ... From[14],weobservethat(cid:0)Qp−1(cid:1)N hasthefollowingupper-triangularToeplitzstruc- ture: (cid:0)Qp−1(cid:1)N (cid:16) (cid:17)p−1 (cid:16) (cid:17)p−2 (cid:16) (cid:17)p−3(cid:18) (cid:16) (cid:17)2 (cid:19) u (p−1) u u 1(p−1) u (p−2) u +2u u ··· 0 0 1 2 0 1 0 2 (cid:16) (cid:17)p−1 (cid:16) (cid:17)p−2 0 u0 (p−1) u0 u1 ··· = (cid:16) (cid:17)p−1 0 0 u ··· 0 . . . . .. .. .. .. (cid:16) (cid:17)p−1 0 ··· 0 u 0 ETNA KentStateUniversity http://etna.math.kent.edu OPERATIONALMÜNTZ-GALERKINAPPROXIMATION 191 Qp−1(u ) Qp−1(u ,u ) Qp−1(u ,u ,u ) ··· Qp−1(u ,u ,...,u ) 0,0 0 0,1 0 1 0,2 0 1 2 0,N 0 1 N 0 Qp−1(u ) Qp−1(u ,u ) ··· Qp−1 (u ,u ,...,u ) 0,0 0 0,1 0 1 0,N−1 0 1 N−1 = . . . . , . . . . . . . ··· . 0 0 0 ··· Qp−1(u ) 0,0 0 whereQp−1(u ,u ,...,u ),i,j =0,1,...,N,arenonlinearfunctionsoftheelementsu , i,j 0 1 j 0 u ,...,u . Thus,fromthestructureoftheupper-triangularmatrixAdefinedby(3.11),we 1 j obtainthat 0 A 0 A ··· ··· 0,1 0,3 0 0 A1,2 0 A1,4 ··· (3.20) (cid:0)Qp−1(cid:1)NAN =(cid:0)Qp−1(cid:1)N0 0 0 A2,3 ... ... ... ... ... ... ... ... 0 0 0 ··· 0 AN−1,N 0 0 0 0 0 0 0 Qp0,−01(u0)A0,1 Qp0,−11(u0,u1)A1,2 Qp0,−01(u0)A0,3+Qp0,−21(u0,u1,u2)A2,3 ··· 0 0 Qp0,−01(u0)A1,2 Qp0,−11(u0,u1)A2,3 ··· =0.. 0.. 0.. Qp0,−01(u..0)A2,3 ··..· . . . . . . 0 0 0 0 Qp0,−01(u0)AN−1,N 0 0 0 0 0 Nowwiththeaboverelation,wecanwrite (3.21) uQp−1A=[0,F (u ),F (u ,u ),...,F (u ,u ,...,u )], 1 0 2 0 1 N 0 1 N−1 whereF (u ,u ,...,u ),fori=1,2,...,N,arenonlinearfunctionsoftheelementsu , i 0 1 i−1 0 u ,...,u . Substituting(3.21)into(3.16)yields 1 i−1 u0 f0 0 u...1=f...1+ F1(...u0) , uN fN FN(u0,u1,...,uN−1) andtherefore u =f , 0 0 u =f +F (u ), 1 1 1 0 (3.22) . . . u =f +F (u ,u ,...,u ), N N N 0 1 N−1 givestheunknowncomponentsofthevectoru. Finally,(3.19)yieldstheunknownvectoruN intheGalerkinrepresentation(3.2). Theanalysisaboveissummarizedinthenexttheorem. ETNA KentStateUniversity http://etna.math.kent.edu 192 P.MOKHTARY THEOREM3.3. Thenonlinearsystem(3.18)hasauniquesolutionuN whichisobtained by(3.22)and(3.19). Obviously, this analysis can be extended similarly to the system (3.15) yielding the followingresult: THEOREM3.4. Thenonlinearsystem(3.15)hasauniquesolutionuN. Proof. ByproceedinginasimilarmannerasinSection3.2,wecanrewrite(3.15)as (cid:16) (cid:17) u idN −QN =fN, p wherefN =fN +s NAN. From(3.11),(3.20),theupper-triangularstructureofthematrix 0 (cid:0)Qp−1(cid:1)NAN,andsinceasummationofupper-triangularmatricesyieldsanupper-triangular p matrix,wesimilarlyobtainthat (3.23) uQN =[0,F˜ (u ),F˜ (u ,u ),...,F˜ (u ,u ,...,u )], p 1 0 2 0 1 N 0 1 N whereF˜(u ,u ,...,u ),fori=1,2,...,N,arenonlinearfunctionsoftheelementsu , i 0 1 i−1 0 u ,...,u . Byadoptingthesamestrategyasin(3.21)–(3.22),wecanconcludetheresult. 1 i−1 4. Numerical results. In thissection, we apply theproposed methodof the previous sectiontoapproximatethesolutionof(1.1)andprovidesomeexamples. Thecomputations wereperformedusingMathematicawithdefaultprecision. Inthetablesbelow,thelabels"Nu- mericalerrors"and"Order"alwaysrefertotheL2-normoftheerrorfunctionandtheorderof convergence,respectively. Wealsocompareourresultswiththoseobtainedbyseveralexisting methodsforthisclassofproblemsandtherebyconfirmthesuperiorityandeffectivenessofour scheme. Wealsoillustratethewell-posednessoftheproblemandthusnumericallyverifythe theoreticalresultofTheorem1.2. InallexampleswehaveN =N =N. G f EXAMPLE4.1. Considerthefollowingintegralequations: √ √ x √ 4 x3 12 x5 (cid:90) 1+x+t (4.1) u(x)= x− − + √ u2(t)dt, 3 5 x−t 0 x πx √ (cid:90) u(t) (4.2) u(x)= + x− √ dt, 2 x−t 0 x √ 3πx2 (cid:90) u3(t) (4.3) u(x)= x+ − √ dt, 8 x−t 0 √ whichallhavethesameexactsolutionu(x)= x. ApplyingthemethoddescribedintheprevioussectionwithN =1,theMüntz-Galerkin approximationoftheseproblemsisgivenby u (x)=u1L1X1, 1 where (cid:20) 1 0(cid:21) √ u1 =[u ,u ], L1 = , X1 =[1, x]T. 0 1 −2 3
Description: