ebook img

ETNA OPERATIONAL MÜNTZ-GALERKIN APPROXIMATION FOR ABEL-HAMMERSTEIN ... PDF

18 Pages·2016·0.33 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview ETNA OPERATIONAL MÜNTZ-GALERKIN APPROXIMATION FOR ABEL-HAMMERSTEIN ...

ElectronicTransactionsonNumericalAnalysis. ETNA Volume45,pp.183–200,2016. KentStateUniversity Copyright(cid:13)c 2016,KentStateUniversity. http://etna.math.kent.edu ISSN1068–9613. OPERATIONALMÜNTZ-GALERKINAPPROXIMATIONFOR ABEL-HAMMERSTEININTEGRALEQUATIONSOFTHESECONDKIND∗ P.MOKHTARY† Abstract.SincesolutionsofAbelintegralequationsexhibitsingularities,existingspectralmethodsforthese equationssufferfrominstabilityandlowaccuracy.Moreover,fornonlinearproblems,solvingtheresultingcomplex nonlinearalgebraicsystemsnumericallyrequireshighcomputationalcosts.Toovercomethesedrawbacks,inthis paperweproposeanoperationalGalerkinstrategyforsolvingAbel-Hammersteinintegralequationsofthesecond kindwhichappliesMüntz-Legendrepolynomialsasnaturalbasisfunctionstodiscretizetheproblemandtoobtain asparsenonlinearsystemwithupper-triangularstructurethatcanbesolveddirectly.Itisshownthatourapproach yieldsawell-posedandeasy-to-implementapproximationtechniquewithahighorderofaccuracyregardlessofthe singularitiesoftheexactsolution.Thenumericalresultsconfirmthesuperiorityandeffectivenessoftheproposed scheme. Key words. Abel-Hammerstein integral equations, Galerkin method, Müntz-Legendre polynomials, well- posedness AMSsubjectclassifications.45E10,41A25 1. Introduction. Abel’sintegralequation,oneoftheveryfirstintegralequationsseri- ouslystudied,andthecorrespondingintegraloperatorhaveneverceasedtoinspiremathe- maticianstoinvestigateandtogeneralizethem. Abelwasledtohisequationbyaproblemof mechanics,thetautochroneproblem[16]. However,hisequationandsomevariantsofithave foundapplicationsinsuchdiversefieldsasstereologyofsphericalparticles[3,18],inversion ofseismictraveltimes[4],cyclicvoltametry[5],waterwavescatteringbytwosurface-piercing barriers[12],percolationofwater[15],astrophysics[19],theoryofsuperfluidity[22],heat transferbetweensolidsandgasesundernonlinearboundaryconditions[25],propagationof shock-wavesingasfieldstubes,subsolutionsofanonlineardiffusionproblem[29],etc. SeveralanalyticalandnumericalmethodshavebeenproposedforsolvingAbelintegral equationssuchasrationalinterpolation[2],non-polynomialsplinecollocation[6],Adomian decomposition[8],productintegration[9],homotopyperturbation[20],trapezoidaldiscretiza- tion[13],waveformrelaxation[11],JacobispectralcollocationandTaumethods[14,21,27], Taylorexpansion[17],Laplacetransformation[19],fractionallinearmultistepmethods[23], Runge-Kuttamethods[24],modifiedTaumethods[26],LegendreandChebyshevwavelets [31,33],etc.Almostallaforementionedmethodshavebeenappliedtothelinearcase,andvery fewapproachesintheliteratureutilizeapproximationsforanumericalsolutionofnonlinear Abelintegralequations. Thus,providingasuitablenumericalstrategywhichapproximates solutionsofnonlinearAbelintegralequationscanbeworthwhileandnewinthearea. Inthis paper,weconsideraHammerstein-typeofnonlinearityintheAbelintegralequation. TheGalerkinmethodisoneofthemostpopularandpowerfulprojectiontechniquefor solving integral equations. It belongs to the class of weighted residual methods, in which approximationsaresoughtbyforcingtheresidualtobezerobutonlyinanapproximatesense. Thismethodhastwomainadvantages. First,itreducesthegivenlinear(nonlinear)problem tothatofsolvingalinear(nonlinear)systemofalgebraicequations. Second,ithasexcellent errorestimateswiththeso-called"exponential-likeconvergence"beingthefastestpossible whenthesolutionisinfinitelysmooth;see[10,30]. ∗ReceivedNovember3,2015.AcceptedMarch1,2016.PublishedonlineonMay6,2016.Recommendedby R.Ramlau. †DepartmentofMathematics,FacultyofBasicSciences,SahandUniversityofTechnology,Tabriz,Iran ([email protected], [email protected]). 183 ETNA KentStateUniversity http://etna.math.kent.edu 184 P.MOKHTARY Inthispaper,weintroduceanumericalschemebasedontheGalerkinmethodtoapproxi- matethesolutionsofthefollowingAbel-Hammersteinintegralequationofthesecondkind x (cid:90) K(x,t) (1.1) u(x)=f(x)+ √ G(t,u(t))dt, x∈Λ=[0,1], x−t 0 usingsomesimplematrixoperations. Throughoutthepaper,C willdenoteagenericpositive i constant. Thefollowingtheoremstatestheexistenceanduniquenessresultfor(1.1). THEOREM1.1([7]). Letthefollowingconditionsbefulfilled: • f(x)isacontinuousfunctiononΛ, • K(x,t)isacontinuousfunctiononD :={(x,t)|0≤t≤x≤1}withK(x,x)(cid:54)=0, and • G:Λ×R→RisaLipschitz-continuousfunctionwithrespecttothesecondvariable, i.e., |G(t,u (t))−G(t,u (t))|≤C |u (t)−u (t)|. 1 2 1 1 2 Thenequation(1.1)hasauniquecontinuoussolutionu(x)onΛ. Here,Rdenotesthesetof allrealnumbers. However,fromwell-knownexistenceanduniquenesstheorems[7,21,26,27],wecan concludethat(1.1)typicallyhasasolutionwhosefirstderivativeisunboundedattheorigin andbehaveslike 1 (1.2) u(cid:48)(x)(cid:39) √ · x After providing criteria for the existence and uniqueness of solutions of (1.1) in the previoustheorem,weinvestigatethewell-posednessoftheproblem. Itiswellknownthat linearAbelintegralequationsofthesecondkindarewell-posedinthesensethatsolutions dependcontinuouslyonthedata. Inthefollowingtheoremweprovethatthisalsoholdstrue for(1.1). THEOREM1.2. Considertheequation(1.1)andletu˜(x)bethesolutionoftheperturbed problem x (cid:90) K˜(x,t) (1.3) u˜(x)=f˜(x)+ √ G(t,u˜(t))dt. x−t 0 IftheassumptionsofTheorem1.1holdfor(1.3),thenwehave (1.4) (cid:107)u(x)−u˜(x)(cid:107) ≤C (cid:107)f −f˜(cid:107) +C (cid:107)K−K˜(cid:107) , ∞ 3 ∞ 4 ∞ where(cid:107).(cid:107) denotesthewell-knownuniformnorm. ∞ Proof. Subtracting(1.1)from(1.3)yields x x (cid:90) K(x,t) (cid:90) K˜(x,t) u(x)−u˜(x)=f(x)−f˜(x)+ √ G(t,u(t))dt− √ G(t,u˜(t))dt x−t x−t 0 0 x (cid:90) K(x,t) =f(x)−f˜(x)+ √ (G(t,u(t))−G(t,u˜(t)))dt x−t 0 (cid:16) (cid:17) (cid:90)x K(x,t)−K˜(x,t) + √ G(t,u˜(t))dt. x−t 0 ETNA KentStateUniversity http://etna.math.kent.edu OPERATIONALMÜNTZ-GALERKINAPPROXIMATION 185 SinceK(x,t)andG(x,t)arecontinuousfunctions,wecanwrite x (cid:90) |G(t,u(t))−G(t,u˜(t))| |u(x)−u˜(x)|≤|f(x)−f˜(x)|+(cid:107)K(x,t)(cid:107) √ dt ∞ x−t 0 x (cid:90) |K(x,t)−K˜(x,t)| +(cid:107)G(t,u˜(t))(cid:107) √ dt. ∞ x−t 0 SinceG(t,u(t))satisfiestheLipschitzconditionwithrespecttothesecondvariable,weobtain x (cid:90) |u(t)−u˜(t)| |u(x)−u˜(x)|≤|f(x)−f˜(x)|+C (cid:107)K(x,t)(cid:107) √ dt 2 ∞ x−t 0 x (cid:90) |K(x,t)−K˜(x,t)| +(cid:107)G(t,u˜(t))(cid:107) √ dt. ∞ x−t 0 Finally,usingtheGronwallinequality(see[26,Lemma4.2]),wecandeducethat (cid:107)u(x)−u˜(x)(cid:107) ≤C (cid:107)f(x)−f˜(x)(cid:107) +C (cid:107)K−K˜(cid:107) , ∞ 3 ∞ 4 ∞ whichgivesthedesiredresult(1.4). FromTheorems1.1and1.2,wecandeducetheexistenceanduniquenessofsolutions of(1.1)andalsothewell-posednessoftheproblembyassumingLipschitz-continuityofthe nonlinearfunctionG(t,u(t)). However,animplementationofspectralmethodscanleadto some difficulties from the numerical point of view such as a complex nonlinear algebraic systemthathastobesolved,highcomputationalcosts,andtherebypossiblylowaccuracy. In thispaper,weshowthatifG(t,u(t))isasmoothfunction,thenwecanobtainitsGalerkin solutionbysolvingawell-posedupper-triangularnonlinearalgebraicsystemusingforward substitution. ItiswellknownthattheGalerkinmethodisanefficienttooltosolveintegralequations with smooth solutions. However, from (1.2) we can conclude that for (1.1) this approach leadstoanumericalmethodwithpoorconvergencebehaviour. Moreover,aswementioned above, for nonlinear problems, its implementation produces a numerical scheme with a highcomputationalcost. Thereforetomakeitapplicablefor(1.1),wemustprospectfora well-conditioned,easytouse,andhighlyaccuratetechnique. Tothisend,inthispaperwe employsuitablebasisfunctionswhichhavegoodapproximationpropertiesforfunctionswith singularitiesattheboundaries. HereweconsiderMüntz-Legendrepolynomials[28,32]as naturalbasisfunctionstodefinetheGalerkinsolutionof(1.1). Thesefunctionsareofnon- polynomialnatureandaremutuallyorthogonalwithrespecttotheweightfunctionw(x)=1. WewillshowthatifwerepresenttheGalerkinsolutionof(1.1)asalinearcombinationofthese polynomials,wecanproduceanumericalschemewithasatisfactoryorderofconvergence, andtheunknowncoefficientsoftheapproximatesolutioncanbecharacterizedbyawell-posed upper-triangularsystemofnonlinearalgebraicequations. Wewillsolveitdirectlybyapplying thewell-knownforwardsubstitutionmethod. Thereminderofthispaperisorganizedasfollows: inSection2,wedescribetheMüntz- Legendrepolynomials, whicharethebasisforoursubsequentdevelopment. InSection3, weexplaintheapplicationoftheoperationalGalerkinmethodbasedontheMüntz-Legendre polynomials to obtain an approximate solution of (1.1). Here we also give results on the numericalsolvabilityandacomplexityanalysisoftheresultingsystemofnonlinearalgebraic ETNA KentStateUniversity http://etna.math.kent.edu 186 P.MOKHTARY equations. InSection4,weapplytheproposedmethodfromSection3toseveralexamplesand presentsomecrucialnumericalcharacteristicssuchasnumericalerrors,orderofconvergence, and comparison results with other existing numerical techniques and thereby confirm the efficiencyandeffectivenessoftheproposedmethod. Section5,isdevotedtoourconclusions. 2. Müntz-Legendrepolynomials. Inthissection,wegivethedefinitionandthebasic propertiesoftheMüntz-Legendrepolynomialswhichareusedinthesequel. Allthedetailsin thissectionaswellasfurtheronescanbefoundin[28,32]. Then-thMüntz-Legendrepolynomialisdefinedas L (x):= 1 (cid:90) n(cid:89)−1t+ξk+1 xt dt, n 2πi t−ξ t−ξ k n k=0 D wherethesimplecontourDsurroundsallthezerosofthedenominatorintheaboveintegrand ∞ and0=ξ <ξ <...<ξ <...,withξ →∞and (cid:80) ξ−1 =∞. Thesepolynomialsare 0 1 n n k k=1 mutuallyorthogonalwithrespecttotheweightfunctionw(x)=1suchthatwehave (cid:90) δ L (x)L (x)dx= n,m , n≥m, n m 2ξ +1 n D whereδ istheKroneckersymbol. ItcanbeshownthattheMüntz-Legendrepolynomials n,m havethefollowingrepresentation n (cid:88) Ln(x):= ρk,nxξk =Span{1,xξ1,xξ2,...,xξn}, k=0 n−1 (2.1) (cid:81) (ξ +ξ +1) k j ρ = j=0 , forn∈N , k,n n 0 (cid:81) (ξ −ξ ) k j j=0,j(cid:54)=k andtheysatisfytherecursionformula 1 (cid:90) L (x)=L (x)−(ξ +ξ +1)xξn t−ξn−1L (t)dt, x∈(0,1]. n n−1 n n−1 n−1 x Here,N isasusualthesetofnonnegativeintegers. 0 3. TheMüntz-Galerkinapproach. Inthissection,wedevelopanoperationalGalerkin methodwhichappliestheMüntz-Legendrepolynomialsasbasisfunctionstoobtainanapprox- imatesolutionto(1.1). Wepresentourresultsintwoparts. First,usingasequenceofmatrix operations,weobtainasuitablenonlinearalgebraicformoftheMüntz-Galerkindiscretization of(1.1). Second,weexplainhowtheuniquesolutionisfound. Hereweshowthattheresulting nonlinearsystemfromthefirststepcanberepresentedbyanupper-triangularstructureand thisenablesustocomputethesolutiondirectly. 3.1. Outlineofthemethod. Inthissection,weapplytheMüntz-Galerkinapproachto convert(1.1)intoasuitablenonlinearalgebraicform. Tothisend,wesupposethat i (3.1) ξ = , i=0,1,..., i 2 ETNA KentStateUniversity http://etna.math.kent.edu OPERATIONALMÜNTZ-GALERKINAPPROXIMATION 187 anddefineu (x)asMüntz-Galerkinapproximationoftheexactsolutionu(x)inthefollowing N way: ∞ (cid:88) (3.2) u (x):= u L (x)=uL=uLX, N i i i=0 where u := [u ,u ,...,u ,0,...] and L := [L (x),L (x),...,L (x),...]T is a Müntz- 0 1 N 0 1 N Legendrepolynomialbasis. Fromtherelations(1.2),(2.1),and(3.1),weconcludethatour approximatesolution(3.2)hasthesameasymptoticbehaviorastheexactones,whichisthe crucialfactforachievingasatisfactoryaccuracyintheGalerkinmethod. Clearly,wecanwrite L := LX whereL = {L }∞ isaninfinitelynon-singularlower-triangularcoefficient i,j i,j=0 matrixwithdegreedeg(Li(x)) ≤ ξi i = 0,1,...,andX := [1,xξ1,xξ2,...,xξN,...]T are thestandardMüntzbasisfunctions. Assumethat Nf (cid:88) f(x)(cid:39) f xξi =f X =fL−1L, f :=[f ,f ,...,f ,0,...]T, i 0 1 Nf i=0 (cid:88)NG (3.3) G(t,u(t))(cid:39) s (t)up(t). p p=0 Substituting(3.2)into(1.1)andusing(3.3),ourMüntz-Galerkinmethodistoseeku (x) N suchthatwehave u (x)=fX+(cid:88)NG (cid:90)x K(√x,t)sp(t)up (t)dt N x−t N p=0 0 (3.4) =fX+(cid:90)x K(√x,t)s0(t)dt+(cid:88)NG (cid:90)x K(√x,t)sp(t)up (t)dt. x−t x−t N p=1 0 0 LetusdefineK (x,t)=K(x,t)s (t)forp≥1,andassumethat p p ∞ ∞ (cid:88)(cid:88) (3.5) K (x,t)= kp xitj, p≥1. p i,j i=0j=0 Byinserting(3.5)into(3.4),weobtain (3.6) u (x)=fX+(cid:90)x K(√x,t)s0(t)dt+(cid:88)∞ (cid:88)∞ (cid:88)NG (cid:90)x k√ip,jxitjup (t)dt. N x−t x−t N 0 i=0j=0p=10 Now,weintendtoderiveamatrixrepresentationfortheintegraltermsin(3.6). Forthis, wefirstgivethefollowinglemmawhichtransformup (t)intoasuitablematrixform. Our N strategy is to extend the proof in [14, Theorem 2.1] to the case of Müntz-Legendre basis functions. LEMMA3.1. SupposethatuN(x)isgivenby(3.2). Thenwehave up (x)=uLQp−1X, N ETNA KentStateUniversity http://etna.math.kent.edu 188 P.MOKHTARY whereQisthefollowinginfiniteupper-triangularmatrix   uL uL uL ··· 0 1 2  0 uL0 uL1 ··· Q:= 0 0 uL0 ···,  ... ... ... ... withL ={L }∞ , j =0,1,... . j i,j i=0 Proof. Weproceedusingmathematicalinductiononp. Forp=1thelemmaisvalid. We assumethatitholdsforpandtransittop+1asfollows: up+1(x)=up (x)×u (x) (3.7) N N N =(cid:0)uLQp−1X(cid:1)×(uLX)=uLQp−1(X×(uLX)). Now,itissufficienttoshowthat (3.8) X×(uLX)=QX. Tothisend,wecanwrite (cid:32) ∞ ∞ (cid:33) (cid:40) ∞ ∞ (cid:41)∞ X×(uLX)=X× (cid:88)(cid:88)urLr,sx2s = (cid:88)(cid:88)urLr,sxs+2i s=0r=0 s=0r=0 i=0 (cid:88)∞ (cid:32)(cid:88)∞ (cid:33) j∞ (cid:88)∞ (cid:32)(cid:88)∞ (cid:33) j∞ = urLr,j−i x2 = urLr,j−i x2     j=0 r=0 j=i r=0 i=0 i=0 =QX, whichproves(3.8). Clearly,inserting(3.8)into(3.7)givesthedesiredresult. NowapplyingLemma3.1inthethirdtermontheright-handsideof(3.6)yields (cid:88)∞ (cid:88)∞ (cid:88)NG (cid:90)x k√ip,jxitjup (t)dt=(cid:88)∞ (cid:88)∞ (cid:88)NG (cid:90)x k√ip,jxitjuLQp−1X dt x−t N x−t t i=0j=0p=10 i=0j=0p=10 (3.9) =uL(cid:88)NG Qp−1(cid:88)∞ (cid:88)∞ kp xi(cid:90)x √tj+m2 dt∞ , i,j x−t   p=1 i=0j=0 0 m=0 whereXt :=[1,tξ1,tξ2,...,tξN,...]T. Usingtherelation[27] (cid:90)x √tj+m2 dt∞ =(cid:26)√πΓ(1+j+ m2) x1+22j+m(cid:27)∞ , x−t Γ(3+m +j)   2 m=0 0 m=0 ETNA KentStateUniversity http://etna.math.kent.edu OPERATIONALMÜNTZ-GALERKINAPPROXIMATION 189 wecanrewrite(3.9)as (cid:88)∞ (cid:88)∞ (cid:88)NG (cid:90)x k√ip,jxitjup (t)dt x−t N i=0j=0p=10  √  =uL(cid:88)NG Qp−1(cid:88)∞ (cid:88)∞ kip,j(cid:26) πΓΓ((31+m++j+j)m2) x1+2(i+2j)+m(cid:27)∞  p=1 i=0j=0 2 m=0 (3.10)   =uL(cid:88)NG Qp−1(cid:88)∞ (cid:88)∞ kip,j(cid:110)Amj x1+2(i+2j)+m(cid:111)∞  m=0 p=1 i=0j=0 (cid:32)(cid:88)NG (cid:33) =uL Qp−1A X p p=1 =uLQ X, p where √ πΓ(1+j+ m) (cid:88)NG Am = 2 , Q = Qp−1A , j Γ(3+m +j) p p 2 p=1 andA isaninfiniteupper-triangularmatrixwithnonzeroentries p l (cid:88) (3.11) (A ) := kp As , s,l=0,1,2,... . p s,2l+s+1 j,l−j l−j j=0 Itcaneasilybeseenthatbyproceedinginthesamemannerasin(3.9)–(3.11),wefind that x x (cid:90) K(x,t)s (t) (cid:90) K(x,t) (3.12) √ 0 dt=s √ X dt=s AX, 0 t 0 x−t x−t 0 0 where the infinite upper-triangular matrix A is obtained from (3.11) with k in place j,l−j ofkp . j,l−j Now,togetthealgebraicformoftheMüntz-Galerkindiscretizationof(1.1),itissufficient thatweinserttherelations(3.2),(3.10),and(3.12)into(3.6). Thuswehave (cid:0) (cid:1) (3.13) uL(id−Q )X = f +s A X, p 0 whereidistheinfinite-dimensionalidentitymatrix. UsingX =L−1L,wecanrewrite(3.13) as (3.14) uL(id−Q )L−1L=(cid:0)f +s A(cid:1)L−1L. p 0 Becauseoftheorthogonalityof{L (x)}∞ ,projecting(3.14)onto{L (x)}N yields k k=0 k k=0 (3.15) uNLN(cid:16)idN −QN(cid:17)(cid:0)LN(cid:1)−1 =(cid:16)fN +s NAN(cid:17)(cid:0)LN(cid:1)−1, p 0 whereuN =[u ,u ,...,u ], fN =[f ,f ,...,f ], s N =[s0,s1,...,sN],andLN,idN, 0 1 N 0 1 N 0 0 0 0 QN,(cid:0)LN(cid:1)−1,AN aretheprincipalsubmatricesoforderN+1ofthematricesL,id,Q ,L−1, p p ETNA KentStateUniversity http://etna.math.kent.edu 190 P.MOKHTARY andA,respectively. Sincetheproductofupper-triangularmatricesgivesanupper-triangular matrix,thematrixQ definedin(3.11)hasanupper-triangularstructure. Consequently,the p nonlinearalgebraicsystem(3.15)hasanupper-triangularstructure,whosesolutionyieldsthe unknowncomponentsofthevectoruN. Inthenextsectionwepresentmoredetailsregarding thecomplexityanalysisanduniquesolvabilityofthissystem. REMARK3.2. Clearly,forG(t,u(t))=up(t),thesystem(3.15)canberepresentedas (3.16) uNLN(cid:16)idN −(cid:0)Qp−1(cid:1)NAN(cid:17)(cid:0)LN(cid:1)−1 =fN(cid:0)LN(cid:1)−1, p(cid:54)=1, (3.17) uNLN(cid:16)idN −AN(cid:17)(cid:0)LN(cid:1)−1 =fN(cid:0)LN(cid:1)−1, p=1(linearcase), where(cid:0)Qp−1(cid:1)N istheprincipalsubmatrixoforderN +1fromQp−1. 3.2. Numericalsolvabilityandcomplexityanalysis. Themainobjectofthissectionis toprovideanexistenceanduniquenesstheoremforthenonlinearalgebraicsystem(3.16)and itscomplexityanalysis. Inotherwords,weexplainhowwecancomputetheunknownvector ubysolving(3.16)byawell-posedtechnique. Furthermore,weextendthefollowinganalysis alsotothesystem(3.15). Multiplyingbothsidesof(3.16)byLN yields (3.18) uNLN(cid:16)idN −(cid:0)Qp−1(cid:1)NAN(cid:17)=fN. Bydefining (3.19) u=uNLN =[u ,u ,...,u ], 0 1 N wecanrewrite(3.18)as u(cid:16)idN −(cid:0)Qp−1(cid:1)NAN(cid:17)=fN. FromthestructureofthematrixQinLemma3.1,wehave uL0 uL1 uL2 ··· u0 u1 u2 ··· Q:= 00 uL00 uuLL10 ······=00 u00 uu10 ······.  ... ... ... ...  ... ... ... ... From[14],weobservethat(cid:0)Qp−1(cid:1)N hasthefollowingupper-triangularToeplitzstruc- ture: (cid:0)Qp−1(cid:1)N (cid:16) (cid:17)p−1 (cid:16) (cid:17)p−2 (cid:16) (cid:17)p−3(cid:18) (cid:16) (cid:17)2 (cid:19)  u (p−1) u u 1(p−1) u (p−2) u +2u u ···  0 0 1 2 0 1 0 2   (cid:16) (cid:17)p−1 (cid:16) (cid:17)p−2     0 u0 (p−1) u0 u1 ···    = (cid:16) (cid:17)p−1   0 0 u ···   0   . . . .   .. .. .. ..     (cid:16) (cid:17)p−1 0 ··· 0 u 0 ETNA KentStateUniversity http://etna.math.kent.edu OPERATIONALMÜNTZ-GALERKINAPPROXIMATION 191 Qp−1(u ) Qp−1(u ,u ) Qp−1(u ,u ,u ) ··· Qp−1(u ,u ,...,u )  0,0 0 0,1 0 1 0,2 0 1 2 0,N 0 1 N  0 Qp−1(u ) Qp−1(u ,u ) ··· Qp−1 (u ,u ,...,u )  0,0 0 0,1 0 1 0,N−1 0 1 N−1  = . . . . ,  . . . .   . . . ··· .  0 0 0 ··· Qp−1(u ) 0,0 0 whereQp−1(u ,u ,...,u ),i,j =0,1,...,N,arenonlinearfunctionsoftheelementsu , i,j 0 1 j 0 u ,...,u . Thus,fromthestructureoftheupper-triangularmatrixAdefinedby(3.11),we 1 j obtainthat   0 A 0 A ··· ··· 0,1 0,3 0 0 A1,2 0 A1,4 ···    (3.20) (cid:0)Qp−1(cid:1)NAN =(cid:0)Qp−1(cid:1)N0 0 0 A2,3 ... ...  ... ... ... ... ... ...    0 0 0 ··· 0 AN−1,N 0 0 0 0 0 0 0 Qp0,−01(u0)A0,1 Qp0,−11(u0,u1)A1,2 Qp0,−01(u0)A0,3+Qp0,−21(u0,u1,u2)A2,3 ···  0 0 Qp0,−01(u0)A1,2 Qp0,−11(u0,u1)A2,3 ···  =0.. 0.. 0.. Qp0,−01(u..0)A2,3 ··..· . . . . . .    0 0 0 0 Qp0,−01(u0)AN−1,N 0 0 0 0 0 Nowwiththeaboverelation,wecanwrite (3.21) uQp−1A=[0,F (u ),F (u ,u ),...,F (u ,u ,...,u )], 1 0 2 0 1 N 0 1 N−1 whereF (u ,u ,...,u ),fori=1,2,...,N,arenonlinearfunctionsoftheelementsu , i 0 1 i−1 0 u ,...,u . Substituting(3.21)into(3.16)yields 1 i−1 u0 f0  0  u...1=f...1+ F1(...u0) , uN fN FN(u0,u1,...,uN−1) andtherefore u =f , 0 0 u =f +F (u ), 1 1 1 0 (3.22) . . . u =f +F (u ,u ,...,u ), N N N 0 1 N−1 givestheunknowncomponentsofthevectoru. Finally,(3.19)yieldstheunknownvectoruN intheGalerkinrepresentation(3.2). Theanalysisaboveissummarizedinthenexttheorem. ETNA KentStateUniversity http://etna.math.kent.edu 192 P.MOKHTARY THEOREM3.3. Thenonlinearsystem(3.18)hasauniquesolutionuN whichisobtained by(3.22)and(3.19). Obviously, this analysis can be extended similarly to the system (3.15) yielding the followingresult: THEOREM3.4. Thenonlinearsystem(3.15)hasauniquesolutionuN. Proof. ByproceedinginasimilarmannerasinSection3.2,wecanrewrite(3.15)as (cid:16) (cid:17) u idN −QN =fN, p wherefN =fN +s NAN. From(3.11),(3.20),theupper-triangularstructureofthematrix 0 (cid:0)Qp−1(cid:1)NAN,andsinceasummationofupper-triangularmatricesyieldsanupper-triangular p matrix,wesimilarlyobtainthat (3.23) uQN =[0,F˜ (u ),F˜ (u ,u ),...,F˜ (u ,u ,...,u )], p 1 0 2 0 1 N 0 1 N whereF˜(u ,u ,...,u ),fori=1,2,...,N,arenonlinearfunctionsoftheelementsu , i 0 1 i−1 0 u ,...,u . Byadoptingthesamestrategyasin(3.21)–(3.22),wecanconcludetheresult. 1 i−1 4. Numerical results. In thissection, we apply theproposed methodof the previous sectiontoapproximatethesolutionof(1.1)andprovidesomeexamples. Thecomputations wereperformedusingMathematicawithdefaultprecision. Inthetablesbelow,thelabels"Nu- mericalerrors"and"Order"alwaysrefertotheL2-normoftheerrorfunctionandtheorderof convergence,respectively. Wealsocompareourresultswiththoseobtainedbyseveralexisting methodsforthisclassofproblemsandtherebyconfirmthesuperiorityandeffectivenessofour scheme. Wealsoillustratethewell-posednessoftheproblemandthusnumericallyverifythe theoreticalresultofTheorem1.2. InallexampleswehaveN =N =N. G f EXAMPLE4.1. Considerthefollowingintegralequations: √ √ x √ 4 x3 12 x5 (cid:90) 1+x+t (4.1) u(x)= x− − + √ u2(t)dt, 3 5 x−t 0 x πx √ (cid:90) u(t) (4.2) u(x)= + x− √ dt, 2 x−t 0 x √ 3πx2 (cid:90) u3(t) (4.3) u(x)= x+ − √ dt, 8 x−t 0 √ whichallhavethesameexactsolutionu(x)= x. ApplyingthemethoddescribedintheprevioussectionwithN =1,theMüntz-Galerkin approximationoftheseproblemsisgivenby u (x)=u1L1X1, 1 where (cid:20) 1 0(cid:21) √ u1 =[u ,u ], L1 = , X1 =[1, x]T. 0 1 −2 3

Description:
Since solutions of Abel integral equations exhibit singularities, existing spectral Several analytical and numerical methods have been proposed for solving It can be seen that the reported results in Table 4.8 confirm the Collocation Methods for Volterra Integral and Related Functional Equations
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.