ebook img

Ethylene: Agricultural Sources and Applications PDF

349 Pages·2002·12.92 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ethylene: Agricultural Sources and Applications

ETHYLENE Agricultural Sources and Applications ETHYLENE Agricultural Sources and Applications Muhammad Arshad University of Agriculture Faisalabad, Pakistan and William T. Frankenberger, Jr . University of California Riverside, California Springer Science+Business Media, LLC Library of Congress Cataloging-in-Publication Data ~had,~uhanunad, 1956- Ethylene: agricultura! resources and applicationslby ~uharnmad Arshad and William T. Frakenberger, Ir. p. cm. Inc1udes bibliographica1 references (p. ). ISBN 978-1-4613-5189-4 ISBN 978-1-4615-0675-1 (eBook) DOI 10.1007/978-1-4615-0675-1 1. Ethylene. 1. Frakenberger, W. T. (William T.), 1952- II. Title. QK898.E8 A 78 2002 631.8'9-dc21 2001041356 ISBN 978-1-4613-5189-4 ©2oo2 Springer Science+Business Media New York Originally published by Kluwer Academic/Plenum Publishers, New York in 2002 Softcover reprint of the hardcover 1 st edition 2002 http://www.wkap.nl/ 10987654321 A C.1.P. record for this book is available from the Library of Congress AII rights reserved No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanica1, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher PREFACE With an ever-increasing demand for more food supply, agricultural scientists will have to search for new ways and technologies to promote food production. In recent decades, plant growth regulators (PGRs) have made great strides in promoting plant growth and development. PGRs are organic compounds which have the ability to dramatically affect physiological plant processes when present in extremely low concentrations (in the range of micro- to picograms). Although all higher plants have the ability to synthesize PGRs endogenously, they do respond to the exogenous sources most likely due to not having the capacity to synthesize sufficient endogenous phytohormones for optimal growth and development under given climatic and environmental conditions. In recent years, PGRs have established their position as a new generation of agrochemicals after pesticides, insecticides and herbicides. Interest in the commercial use of PGRs for improving plant growth and crop yields is also increasing because of their non-polluting nature. The use of PGRs in the post-harvest technology is well established and many new breakthroughs have recently been revealed. Ethylene (C2~) is one of the five major classes of PGRs. Although C2~ is a simple gas, it has a very strong multifaceted role in plant physiology. Initially, known as the "ripening hormone", C2~ is now considered to be involved in numerous processes from seed ontogeny to senescence and even in post-harvest technology. Results of several studies warrant that C2~ of exogenous sources could be used for the betterment of agricultural production. The exogenous sources include natural production by soil microbiota and synthetic C2~ releasing compounds. A commercial product "ethephon" has already provided a breakthrough discovery against lodging in cereals. The importance of C2~ as a potent plant growth regulator has led us to compile the most recent scientific literature into this book. The biochemistry of endogenous C2~ biosynthesis and its role in physiology of higher plants have been compiled in the form of several books and reviews. However, very little attention has been given to the soil microbiota and their potential exogenous source of C2~' The ecological importance of microbially produced C2~ was evident after the dramatic effects on plant growth were published in the 1990s. We have pooled this information into a comprehensive book. In this book, we provide eight chapters including an introduction of C2~ as a hormone; its role in plant physiology; sources and factors affecting microbial production of C2H4 ; biochemistry of C2~ production by microorganisms; production in soil; the role of C2~ in symbiosis and pathogenesis; and its commercial application in agriculture. Overall, this book is extremely valuable in that it covers all the aspects of C2H4 sources, in-depth biochemistry and applications. Our comprehensive effort in providing this resource will benefit agricultural scientists including physiologists, microbiologists, soil scientists, botanists, ecologists, and horticulturalists to develop new technologies based on the release of C2~ for the betterment of agricultural production. Special acknowledgement is given to Louise DeHayes for typing this entire book and to Linda Bobbitt for her assistance in the illustrations of the figures. We also wish to thank Ben Johanson and Tariq Siddique for their assistance in proofreading the text. v CONTENTS 1. THE PLANT HORMONE, ETHYLENE ............................ 1 1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. Ethylene as a Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3. Biological Activity of Ethylene ............ . . . . . . . . . . . . . . . . . . . . . . 2 1.4. Historical Perspective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.5. Sources of Ethylene and Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.6. Future Prospects .............................................. 6 1. 7. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2. ETHYLENE IN PLANT PHYSIOLOGY ..... . . . . . . . . . . . . . . . . . . . . . . . 11 2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2. Endogenous Production of Ethylene .............................. 11 2.3. Biosynthetic Pathway. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.1. Establishment of Methionine as a Physiological Precursor. . . . . . . 13 2.3.2. Conversion of Methionine into S-Adenosymethionine (Step I) ... 13 2.3.2.1. Biochemical and Molecular Properties of Methionine Adenotransferase ................................. 14 2.3.3. Conversion of S-adenosymethionine Conversion into 1-Aminocyclopropane-l-carboxylic Acid (Step II) ............. 14 2.3.3.1. Biochemical and Molecular Properties of ACC Synthase 16 2.3.4. Conversion of l-Aminocyclopropane-l-carboxylic Acid into Ethylene (Step III) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.4.1. Biochemical and Molecular Properties of ACC Oxidase 20 2.3.5. Conjugation of 1-Aminocyclopropane-l-carboxylic Acid. . . . . . . . 23 2.3.5.1. ACC N-Malonyltransferase . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.6. Methionine Cycle ....................................... 25 2.4. Regulation of Ethylene Production ............................... 25 2.5. Metabolism. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. . . . .. . . .. . . . . . . . . 27 2.6. Mechanism of Action and Ethylene Receptors . . . . . . . . . . . . . . . . . . . . . . 28 2.7. Ethylene Production by Lower Plants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 vii viii Contents 2.8. Concluding Remarks .......................................... 38 2.9. References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3. BIOCHEMISTRY OF MICROBIAL PRODUCTION OF ETHYLENE .. 51 3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2. SubstrateslPrecursors/Stimulators of Ethylene ...................... 51 3.3. Biosynthetic Pathways ......................................... 56 3.3.1. ACC Deaminase ........................................ 60 3.4. Methionine-Dependent and -Independent Pathways. . . . . . . . . . . . . . . . . . 64 3.4.1. Methionine-Dependent Pathway ................ . . . . . . . . . . . . 64 3.4.1.1. Biosynthesis of C H by Escherichia coli ... ,......... 64 2 4 3.4.1.2. Biosynthesis of C H by Cryptococcus albidus . . . . . . . . . 66 2 4 3.4.1.3. Biosynthesis of C H by Septoria musiva ............. 69 2 4 3.4.1.4. Summary ....................................... 70 3.4.2. Methionine-Independent Pathway . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.4.2.1. Biosynthesis of C H by Penicillium digitatum . . . . . . . . . 70 2 4 3.4.2.2. Biosynthesis of C H by Pseudomonas syringae pv. 2 4 phaseolicola . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.4.2.3. Biosynthesis of C H by Other Fungi ................ 80 2 4 3.4.2.4. Summary ....................................... 81 3.5. Molecular Aspects of the Ethylene-forming Enzyme of Pseudomonas syringae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.6. Structure of Ethylene-forming Enzymes ........................... 83 3.7. Microbial Metabolism of Ethylene ............................... 85 3.8. Concluding Remarks .......................................... 90 3.9. References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4. FACTORS AFFECTING MICROBIAL PRODUCTION OF ETHYLENE 97 4.1. Microbial Production of Ethylene ................................ 97 4.2. Factors Affecting Microbial Production of Ethylene in Vitro .......... 98 4.2.1. Carbon Sources ......................................... 104 4.2.2. Nitrogen and Phosphorus ................................. 105 4.2.3. pH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 4.2.4. Aeration ............................................... 118 4.2.5. Temperature... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 118 4.2.6. Trace Elements ......................................... 124 4.2.7. Growth Phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 4.3. Effect of Ethylene on Microbial Growth .......................... 128 4.3.1. Bacteria ............................................... 129 4.3.2. Fungi ................................................. 129 4.3.3. Soil Fungistasis ......................................... 132 4.4. Concluding Remarks .......................................... 132 4.5. References.................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 CONTENTS ix 5. ETHYLENE IN SOIL 139 5.1. Ethylene Production in Soil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.1.1. Abiotic Production. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.1.2. Biotic Production. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.1.2.1. Types of Soil Microorganisms Involved ............. 143 5.2. Physicochemical Properties of Soil and Ethylene Production ......... 145 5.2.1. Soil Organic Matter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.2.2. Soil Aeration .......................................... 147 5.2.3. Soil Reaction .......................................... 154 5.2.4. Soil Temperature ....................................... 155 5.2.5. Soil Texture ........................................... 157 5.2.6. Soil Depth ............................................ 158 5.3. Organic Amendments and Ethylene Accumulation ................. 158 5.3.1. Organic Amendments with Defined Chemical Composition. . ... 158 5.3.2. Organic Amendments without Defined Chemical Composition .. 160 5.4. Inorganic Amendments and Ethylene Accumulation in Soil .......... 164 5.5. Nitrate as a Suppressor of Ethylene Accumulation in Soil ........... 169 5.6. Ferrous Iron as a Stimulator of C H Production in Soil. . . . . . . . . . . . . 172 2 4 5.7. Persistence of Ethylene in Soil ................................. 178 5.8. Plant Responses Evoked by Ethylene and Waterlogging ............. 183 5.9. Concluding Remarks ......................................... 189 5.10. References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 6. ETHYLENE IN SYMBIOSIS .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 6.1. Introduction................................................. 195 6.2. Symbiotic Associations ....................................... 195 6.3. Nodulation ................................................. 195 6.3.1. Effects of Exogenous Ethylene on Nodulation ............... 196 6.3.2. Effects of Exogenous Ethylene on Nod Factor(s) ............. 199 6.3.3. Accelerated Ethylene Evolution from Rhizobium-Infected Roots 202 6.3.4. Nitrate and Light-Induced Ethylene Production and Nodulation 206 6.3.5. Ethylene Sensitive and Insensitive Legume Mutants and Nodulation ............................................ 207 6.3.6. Effects of Inhibitors of Ethylene Action or Biosynthesis on Nodulation ............................................ 210 6.3.7. Summary ............................................. 214 6.4. Mycorrhizal Associations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 216 6.4.1. Ethylene Production by Mycosymbiont ..................... 217 6.4.2. Ethylene Production by Mycorrhizal Roots .................. 217 6.4.3. Exogenous Ethylene and Mycorrhizae ...................... 220 6.4.4. Relationship between in Vitro Ethylene Production and Growth Response of Mycorrhizal Plants ........................... 222 6.4.5. Summary ............................................. 227 6.5. Lichen (An Algal-Fungal Symbiosis) ............................ 227 x CONTENTS 6.5.1. Ethylene Production by Lichens .. . . . . . . . . . . . . . . . . . . . . . . . . . . 227 6.5.2. Sources of Ethylene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 6.5.3. Biochemistry of Ethylene Production by Lichens .............. 231 6.5.4. Summary .............................................. 234 6.6. Concluding Remarks .......................................... 234 6.7. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 235 7. ETHYLENE IN PATHOGENESIS ................................. 241 7.1. Infection: A Biotic Stress. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 7.2. Enhanced Ethylene Production during Pathogenesis ................. 241 7.3. Source of Accelerated Ethylene Evolution during Pathogenesis ........ 249 7.3.1. Contribution by the Pathogen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 7.3.2. Contribution by the Host. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 251 7.4. Role of Ethylene in Disease Development ......................... 254 7.4.1. Effect of Exogenous Ethylene ............................. 255 7.4.2. Ethylene Production and Virulence ......................... 256 7.4.3. Ethylene Production and Development of Disease Symptoms .... 258 7.4.4. Ethylene and Toxins Produced by Pathogens ................. 260 7.4.5. Ethylene Mutants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 261 7.5. Role of Ethylene in Disease Resistance ........................... 262 7.5.1. Induction of Pathogenesis Related (PR) Proteins and Enzymes ... 264 7.5.1.1. Chitinases and ~-1,3-Glucanases .................... 265 7.5.1.2. Phenylalanine Ammonia-Lyase. .. ... . .. . .. . . . . . .. ... 267 7.5.1.3. Ethylene Biosynthesis-Inducing Xylanase ............. 268 7.5.1.4. Others.......................................... 268 7.5.2. Induction of Phytoalexins and Antibiotics. . . . . . . . . . . . . . . . . . .. 269 7.5.3. Induction of Structural and Development Changes. . . . . . . . . . . . . 270 7.5.4. Summary .............................................. 271 7.6. Soil Ethylene as a Weedicide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 272 7.7. Concluding Remarks .......................................... 273 7.8. References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 275 8. ETHYLENE IN AGRICULTURE: SYNTHETIC AND NATURAL SOURCES AND APPLICATIONS ................................. 289 8.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 8.2. Ethylene Sources and Their Applications in Agriculture .. . . . . . . . . . . .. 290 8.2.1. Ethylene Gas ........................................... 290 8.2.2. Ethylene-Releasing Compounds.. . . . . . . . . .. . .. . .. . . . . . .. . .. 291 8.2.3. Ethephon and Its Applications ............................. 292 8.2.4. Retprol and Its Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 8.2.5. Soil Ethylene and Its Ecological Significance ................. 305 8.3. Alterations in Endogenous Ethylene Biosynthesis and Plant Responses.. 315 8.3.1. Transgenic Plants with ACC Oxidase ACC Synthease Antisense 315 8.3.2. Transgenic Plants with Bacterial Ethylene-Forming Enzymes .... 317 CONTENTS xi 8.3.3. Transgenic Plants with Bacterial ACC-Deaminase ............. 318 8.3.4. Inoculation with ACC-Deaminase Containing Plant Growth- Promoting Rhizobacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 8.4. Concluding Remarks .......................................... 324 8.5. References..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 INDEX ........................................................... 337 To my wife Talat, son Haaris and daughters Habiba and Fatima Muhammad Arshad To my wife, Margaret E. Beebe-Frankenberger William T. Frankenberger

Description:
With an ever-increasing demand for more food supply, agricultural scientists will have to search for new ways and technologies to promote food production. In recent decades, plant growth regulators (PGRs) have made great strides in promoting plant growth and development. PGRs are organic compounds w
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.