ebook img

Estimation of Probability Distributions on Multiple Anatomical PDF

159 Pages·2009·9.63 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Estimation of Probability Distributions on Multiple Anatomical

Estimation of Probability Distributions on Multiple Anatomical Objects and Evaluation of Statistical Shape Models Ja-Yeon Jeong A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science. Chapel Hill 2009 Approved by: Stephen M. Pizer, Advisor Surajit Ray, Reader J. S. Marron, Reader Martin A. Styner, Reader Edward L. Chaney, Reader (cid:13)c 2009 Ja-Yeon Jeong ALL RIGHTS RESERVED ii Abstract Ja-Yeon Jeong: Estimation of Probability Distributions on Multiple Anatomical Objects and Evaluation of Statistical Shape Models (Under the direction of Stephen M. Pizer) Theestimationofshapeprobabilitydistributionsofanatomicstructuresisamajorresearch area in medical image analysis. The statistical shape descriptions estimated from training samples provide means and the geometric shape variations of such structures. These are key components in many applications. This dissertation presents two approaches to the estimation of a shape probability distri- bution of a multi-object complex. Both approaches are applied to objects in the male pelvis, and show improvement in the estimated shape distributions of the objects. The first approach is to estimate the shape variation of each object in the complex in terms of two components: the object’s variation independent of the effect of its neighboring objects; and the neighbors’ effect on the object. The neighbors’ effect on the target object is interpreted using the idea on which linear mixed models are based. The second approach is to estimate a conditional shape probability distribution of a target object given its neighboring objects. The estimation of the conditional probability is based on principal component regression. This dissertation also presents a measure to evaluate the estimated shape probability dis- tribution regarding its predictive power, that is, the ability of a statistical shape model to describe unseen members of the population. This aspect of statistical shape models is of key importance to any application that uses shape models. The measure can be applied to PCA- based shape models and can be interpreted as a ratio of the variation of new data explained by the retained principal directions estimated from training data. This measure was applied to shape models of synthetic warped ellipsoids and right hippocampi. According to two surface distance measures and a volume overlap measure it was empirically verified that the predictive measure reflects what happens in the ambient space where the model lies. iii Acknowledgments I would like to express my gratitude to people who have been important to this work and to my life as a graduate student at UNC. FirstandforemostIamthankfultoStevePizer,mydoctoraladvisor. Withouthisguidance and encouragement I do not think I would be able to finish this dissertation. His patience in reading draft after draft of my dissertation chapters amazed me. I sometimes felt he had more confidence in me than I had in myself. I thank him for his willingness to make time for me whenever I needed his help. I have learned a great deal from him, not only from his immense knowledge and understanding of the field but also from his positive attitude, patience, and passion for his work. He has been a great mentor to me. I am grateful to my committee members for their comments and suggestions. Surajit Ray has been actively involved in my dissertation research and has been of great help in developing major ideas in this dissertation. Steve Marron has lent me freely his invaluable insight into statistical issues. I believe he can visualize any statistical concepts with several color pens and white papers. I want to thank Ed Chaney for his critical comments and advices as a medical physicist and Martin Styner for his feedback and practical advices. I also want to thank Keith Muller at UF for investing time and energy discussing ideas with me. Many of the ideas in this dissertation originated from discussions with them. I have been fortunate to have the people in MIDAG as my colleagues. They are good, hard-working, and smart. Especially, I want to thank Josh Levy, Joshua Stough, Qiong Han, Graham Gash, and Gregg Tracton who I pestered with questions, and my last office mate Rohit Saboo, two female members Xiaoxiao Liu, and Ilknur Kabul whose office I frequently visited whenever I wanted to take break from work. I would like to thank faculty members and staffs in the department. My special thanks go to Russ Taylor and Leandra Vicci for their encouragements during my gloomy first year, and to Janet, Tammy, Linda, and Tim for their help in all (non-research related) problems that I encountered as a graduate student. iv I wish to thank elders and my friends in First Baptist Korean Church of Raleigh for providing a loving and supportive environment for me. Lastly, and most importantly, I am grateful to my parents who have supported me with constant love and understanding. To them I dedicate this thesis. v Table of Contents List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Statistical Shape Analysis of Multiple Objects . . . . . . . . . . . . . . 4 1.1.2 Quality Measures of Statistical Shape Models . . . . . . . . . . . . . . . 7 1.2 Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3 Claims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4 Overview of Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 Statistical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.1 Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.1.2 Expectations of a Random Variable . . . . . . . . . . . . . . . 16 2.1.1.3 Special Distributions . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.1.4 Statistics: Sample Mean and Variance . . . . . . . . . . . . . . 18 2.1.1.5 Multivariate Distributions. . . . . . . . . . . . . . . . . . . . . 19 2.1.1.6 The Multivariate Normal Distribution . . . . . . . . . . . . . . 20 2.1.2 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . 22 2.1.3 The Multivariate Linear Model . . . . . . . . . . . . . . . . . . . . . . . 26 2.1.3.1 Principal Component Regression . . . . . . . . . . . . . . . . . 27 2.2 The Statistical Theory of Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.1 Kendall’s Shape Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.2 Estimation of a Shape Probability Distribution . . . . . . . . . . . . . . 31 vi 2.2.3 Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.3.1 Alignment for multi-object complexes . . . . . . . . . . . . . . 34 2.2.4 Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.3 Probabilistic Deformable Models . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.3.1 Deformable Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.3.2 ProbabilisticDeformableModels: SegmentationbyPosteriorOptimization 37 2.3.3 Object Representations via Landmarks. . . . . . . . . . . . . . . . . . . 38 2.3.3.1 Point Distribution Model . . . . . . . . . . . . . . . . . . . . . 39 2.3.4 Object Representations via Basis Functions . . . . . . . . . . . . . . . . 39 2.3.4.1 Elliptic Fourier Representation . . . . . . . . . . . . . . . . . . 40 2.3.4.2 Spherical Harmonics Shape Description . . . . . . . . . . . . . 40 2.4 Medial Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.4.1 The Medial Locus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.4.2 M-rep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.4.2.1 Discrete M-reps . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.4.3 Statistical Shape Analysis of M-reps . . . . . . . . . . . . . . . . . . . . 50 2.4.3.1 Shape Space of M-reps and PGA . . . . . . . . . . . . . . . . . 50 2.4.3.2 Tangent Space at a Point of a Manifold . . . . . . . . . . . . . 50 2.5 Construction of Training Models . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.6 Segmentation of M-reps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3 Evaluation of Statistical Shape Models 1 . . . . . . . . . . . . . . . . . . . 55 3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.1.1 Decomposition of the Covariance Matrix . . . . . . . . . . . . . . . . . . 56 3.1.2 PCA for Statistical Shape Analysis . . . . . . . . . . . . . . . . . . . . . 57 3.2 Goodness of Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.2.1 PCA Input to Multivariate Regression . . . . . . . . . . . . . . . . . . . 58 3.2.2 Measure of Association: Second Moment Accuracy . . . . . . . . . . . . 59 3.2.3 Procedure for Iterative Calculation of ρ2 . . . . . . . . . . . . . . . . . . 62 3.3 Derivation of B-reps from M-reps . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.4 Application of ρ2 to Models in Linear Space . . . . . . . . . . . . . . . . . . . . 63 vii 3.4.1 Simulated Ellipsoid M-reps . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.4.2 Experiments on Simulated Ellipsoid B-reps . . . . . . . . . . . . . . . . 65 3.4.3 Right Hippocampus M-reps . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.4.4 Experiments on Right Hippocampus B-reps . . . . . . . . . . . . . . . . 68 3.5 Distance Measures for ρ2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 69 3.5.1 Application of D2 to Right Hippocampus B-reps . . . . . . . . . . . . . 71 ∗ 3.6 Goodness of Prediction ρ2 for Curved Manifolds . . . . . . . . . . . . . . . . . 72 d 3.6.1 Two Possible Extensions of ρ2 . . . . . . . . . . . . . . . . . . . . . . . 72 3.6.2 ρ2 for Nonlinear Shape Models . . . . . . . . . . . . . . . . . . . . . . . 73 d 3.7 Application of ρ2 on Models in Nonlinear Space . . . . . . . . . . . . . . . . . . 74 d 3.7.1 Deformed Binary Ellipsoids . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.7.2 Experiment on M-rep Fits to Deformed Binary Ellipsoids . . . . . . . . 75 3.7.3 Experiment on Right Hippocampus M-rep . . . . . . . . . . . . . . . . . 76 3.7.4 Evaluation of a Coarse-to-fine Shape Prior . . . . . . . . . . . . . . . . . 77 3.8 Conclusion & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4 Multi-Object Statistical Shape Models2 . . . . . . . . . . . . . . . . . . . . 82 4.1 M-rep Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.1.1 Residues of the Object Variations. . . . . . . . . . . . . . . . . . . . . . 86 4.2 Inter-Object Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.2.1 Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.2.2 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.3 Propagation of Sympathetic Changes . . . . . . . . . . . . . . . . . . . . . . . . 89 4.3.1 Residues of Objects in Order . . . . . . . . . . . . . . . . . . . . . . . . 92 4.3.2 Training the Probability Distribution per Object . . . . . . . . . . . . . 92 4.3.3 Geometrically Proper Objects . . . . . . . . . . . . . . . . . . . . . . . . 93 4.4 Decomposition of Shape Variations . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.4.1 Self Variations & Neighbor Effects . . . . . . . . . . . . . . . . . . . . . 98 viii 4.4.2 An Iterative Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.4.3 Joint Probability of Multiple Objects. . . . . . . . . . . . . . . . . . . . 101 4.4.4 Shape Prior in MAP-Based Segmentation . . . . . . . . . . . . . . . . . 102 4.4.5 Segmentation of Male-Pelvis Model . . . . . . . . . . . . . . . . . . . . . 103 4.4.5.1 Probability Density Estimation . . . . . . . . . . . . . . . . . . 103 4.4.5.2 Segmentation Results . . . . . . . . . . . . . . . . . . . . . . . 105 4.5 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5 Conditional Shape Statistics3 . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.1 Conditional Probability Distribution . . . . . . . . . . . . . . . . . . . . . . . . 112 5.2 Estimation of Conditional Shape Distribution using PCR . . . . . . . . . . . . 113 5.3 Applications of CSPD to Deformable M-rep Segmentation . . . . . . . . . . . . 115 5.3.1 Simulated Multi-objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5.3.1.1 Training Results . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.3.2 Objects in the Pelvic Region of Male Patients . . . . . . . . . . . . . . . 119 5.3.2.1 Results of Within-patient Successive Segmentations . . . . . . 120 5.4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.2 Evaluation of Statistical Shape Models . . . . . . . . . . . . . . . . . . . . . . . 131 6.2.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 6.2.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.3 Multi-Object Statistical Shape Models . . . . . . . . . . . . . . . . . . . . . . . 137 6.3.1 Discussion and Future Work. . . . . . . . . . . . . . . . . . . . . . . . . 137 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 ix List of Tables 4.1 Total variations of self and neighbor effects per bladder, prostate, and rectum . 104 5.1 Number of fractions (sample size) per patient . . . . . . . . . . . . . . . . . . . 118 5.2 Mean volume overlaps of figure 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.3 Number of principal geodesics estimated from patient 3106 data . . . . . . . . 121 x

Description:
The estimation of shape probability distributions of anatomic structures is a major research area in medical image analysis 2.1.1.3 Special Distributions .
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.