Model Estimation Identifyingrestrictions Results Conclusion Estimation of non-Gaussian Affine Term Structure Models Drew D. Creal Jing Cynthia Wu UniversityofChicago,BoothSchoolofBusiness NewYorkUniversity,SternSchoolofBusiness PRELIMINARY December 2012 1/51 Model Estimation Identifyingrestrictions Results Conclusion Motivation Affine term structure models are useful for (cid:73) understanding the joint dynamics of the yield curve; (cid:73) describing the discount factor for financial markets; (cid:73) bridging macroeconomics and finance together; (cid:73) informing monetary policy. Why do we need to go beyond Gaussian models? (cid:73) zero lower bound (cid:73) time-varying volatility 2/51 Model Estimation Identifyingrestrictions Results Conclusion Estimation of ATSMs (cid:73) Kim and Orphanides (2005): ... the likelihood function seems to have multiple inequivalent local maxima which have similar likelihood values but substantially different implications... (cid:73) Duffee (2002): The QML functions for these models have a large number of local maxima. (cid:73) Ang and Piazzesi (2003): ... difficulties associated with estimating a model with many factors using maximum likelihood when yields are highly persistent. 3/51 Model Estimation Identifyingrestrictions Results Conclusion Literature Earlier work on estimating non-Gaussian models (cid:73) Dai and Singleton (2000), Duffee (2002) (cid:73) Collin-Dufresne, Goldstein and Jones (2008/2009), Ait-Sahalia and Kimmel (2010) (cid:73) Le, Singleton, and Dai (2010) Recent work on estimating Gaussian models (cid:73) Joslin, Singleton, and Zhu (2011) (cid:73) Christensen, Diebold, and Rudebusch (2011) (cid:73) Hamilton and Wu (2012) 4/51 Model Estimation Identifyingrestrictions Results Conclusion Contribution Propose a new estimation approach for non-Gaussian ATSMs. (cid:73) Reduce parameter space by concentrating out P parameters. (cid:73) Provide analytical gradient to improve numerical behavior. (cid:73) Works for ANY rotation/identification scheme. (cid:73) For Gaussian models, this approach generalizes Joslin, Singleton, and Zhu (2011), and Hamilton and Wu (2012). Extensions: (cid:73) Imposing constraints on parameters is straightforward. (cid:73) Adding macroeconomic variables is simple. (cid:73) Accommodating more general dynamics, e.g. AR(p). 5/51 Model Estimation Identifyingrestrictions Results Conclusion Outline Model Estimation Identifying restrictions Results Conclusion 6/51 Model Estimation Identifyingrestrictions Results Conclusion Outline Model Estimation Identifying restrictions Results Conclusion 7/51 Model Estimation Identifyingrestrictions Results Conclusion Dynamics of the state vector under P State vector x = (g(cid:48),h(cid:48))(cid:48) has dynamics: t t t g = µ +Φ g +Φ h +Σ ε +ε , t+1 g g t gh t gh h,t+1 g,t+1 H (cid:88) Σ Σ(cid:48) = Σ Σ(cid:48) + Σ Σ(cid:48) h , g,t g,t g g g,i g,i it i=1 h ∼ N.C.-Gamma(ν ,Φ(cid:48) h ,σ ), i = 1,...,H. i,t+1 i h,i t h,i (cid:73) ε ∼ N(cid:0)0,Σ Σ(cid:48) (cid:1) g,t+1 g,t g,t (cid:73) g and h are G ×1 and H ×1 vectors. t t (cid:73) Σ and Σ are lower triangular. g g,i (cid:73) h is a discrete-time Cox Ingersoll Ross (1985) process. it 8/51 Model Estimation Identifyingrestrictions Results Conclusion Autoregressive gamma process The non-Gaussian state variables h follow t h |h ∼ N.C.-Gamma(ν ,Φ(cid:48) h ,σ ), i = 1,...,H. i,t+1 t i h,i t h,i Details Conditional mean and variance are linear in h : t E[h |h ] = ν σ +Φ(cid:48) h i = 1,...,H i,t+1 t i h,i h,i t V[h |h ] = ν σ2 +2σ Φ(cid:48) h i,t+1 t i h,i h,i h,i t 9/51 Model Estimation Identifyingrestrictions Results Conclusion Autoregressive gamma process Conditional mean and variance are linear in h t−1 E[h |h ] = ν σ +Φ(cid:48) h i = 1,...,H i,t+1 t i h,i h,i t V[h |h ] = ν σ2 +2σ Φ(cid:48) h i,t+1 t i h,i h,i h,i t Stacked together E[h |h ] = µ +Φ h t+1 t h h t ν σ2 +2σ Φ(cid:48) h ··· 0 1 h,1 h,i h,1 t V[ht+1|ht] = ... ... ... 0 ··· ν σ2 +2σ Φ(cid:48) h H h,H h,H h,H t Note: µ = ν σ h,i i h,i 10/51
Description: