Home Search Collections Journals About Contact us My IOPscience Estimation of neutron-equivalent dose in organs of patients undergoing radiotherapy by the use of a novel online digital detector This content has been downloaded from IOPscience. Please scroll down to see the full text. 2012 Phys. Med. Biol. 57 6167 (http://iopscience.iop.org/0031-9155/57/19/6167) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 146.155.28.40 This content was downloaded on 23/05/2016 at 21:28 Please note that terms and conditions apply. IOPPUBLISHING PHYSICSINMEDICINEANDBIOLOGY Phys.Med.Biol.57(2012) 6167–6191 doi:10.1088/0031-9155/57/19/6167 Estimation of neutron-equivalent dose in organs of patients undergoing radiotherapy by the use of a novel online digital detector FSa´nchez-Doblado1,2,CDomingo3,FGo´mez4,BSa´nchez-Nieto5, JLMun˜iz6,MJGarc´ıa-Fuste´3,MRExpo´sito2,RBarquero7, GHartmann8,JATerro´n1,JPena4,RMe´ndez6,FGutie´rrez9, FXGuerre10,JRosello´11,LNu´n˜ez12,LBrualla-Gonza´lez11, FManchado2,ALorente13,EGallego13,RCapote14,DPlanes11, JILagares6,XGonza´lez-Soto4,FSansaloni6,RColmenares15, KAmgarou3,EMorales3,RBedogni16,JPCano2andFFerna´ndez17 1ServiciodeRadiof´ısica,HospitalUniversitarioVirgenMacarena,Sevilla,Spain 2DepartamentodeFisiolog´ıaMe´dicayBiof´ısica,UniversidaddeSevilla,Sevilla,Spain 3DepartamentodeF´ısica,UniversitatAuto`nomadeBarcelona,Barcelona,Spain 4DepartamentodeF´ısicadePart´ıculas,UniversidaddeSantiagodeCompostela,Santiagode Compostela,Spain 5DepartamentodeF´ısica,PontificiaUniversidadCato´licadeChile,Santiago,Chile 6CentrodeInvestigacionesEnerge´ticas,MedioambientalesyTecnolo´gicas(CIEMAT),Madrid, Spain 7ServiciodeProteccio´nRadiolo´gica,HospitalUniversitarioR´ıoHortega,Valladolid,Spain 8DepartmentofMedicalPhysicsinRadiotherapy,DeutschesKrebsforschungszentrum(DKFZ), Heidelberg,Germany 9Optoelectronics&NewTechnologiesLaboratory,AlterTechnology,Sevilla,Spain 10HirexEngineering,RamonvilleS,Agne,France 11UnidaddeRadioterapiaHospitalGeneralUniversitariodeValencia,ERESA,Valencia,Spain 12ServiciodeRadiof´ısica,HospitalUniversitarioPuertadeHierro,Majadahonda,Spain 13DepartamentodeIngenier´ıaNuclear,UniversidadPolite´cnicaMadrid,Madrid,Spain 14InternationalAtomicEnergyAgency(IAEA),Viena,Austria 15UnidaddeRadiof´ısicaCl´ınica,HospitalUniversitarioRamo´nyCajal,Madrid,Spain 16LaboratoriNazionalidiFrascati,IstitutoNazionalediFisicaNucleare(INFN),Italy 17ConsejodeSeguridadNuclear(CSN),Madrid,Spain E-mail:[email protected] Received7May2012,infinalform18July2012 Published13September2012 Onlineatstacks.iop.org/PMB/57/6167 Abstract Neutron peripheral contamination in patients undergoing high-energy photon radiotherapy is considered as a risk factor for secondary cancer induction. Organ-specific neutron-equivalent dose estimation is therefore essential for a reasonableassessmentoftheseassociatedrisks.Thisworkaimedtodevelopa methodtoestimateneutron-equivalentdosesinmultipleorgansofradiotherapy patients. The method involved the convolution, at 16 reference points in an anthropomorphic phantom, of the normalized Monte Carlo neutron fluence energyspectrawiththekermaandenergy-dependentradiationweightingfactor. This was then scaled with the total neutron fluence measured with passive 0031-9155/12/196167+25$33.00 ©2012InstituteofPhysicsandEngineeringinMedicine PrintedintheUK&theUSA 6167 6168 FSa´nchez-Dobladoetal detectors,atthesamereferencepoints,inordertoobtaintheequivalentdoses in organs. The latter were correlated with the readings of a neutron digital detector located inside the treatment room during phantom irradiation. This digital detector, designed and developed by our group, integrates the thermal neutronfluence.Thecorrelationmodel,appliedtothedigitaldetectorreadings duringpatientirradiation,enablestheonlineestimationofneutron-equivalent dosesinorgans.Themodeltakesintoaccountthespecificirradiationsite,the field parameters (energy, field size, angle incidence, etc) and the installation (linacandbunkergeometry).Thismethod,whichissuitableforroutineclinical use, will help to systematically generate the dosimetric data essential for the improvementofcurrentrisk-estimationmodels. 1.Introduction There is a growing concern about the risk of secondary radiation-induced tumours as a consequence of the radiotherapy treatments. The comprehensive review article by Xu et al (2008)detailstheprinciples,methodsandunresolvedissuesrelatedtothissubject. Both scattered and leakage photon radiations, as well as secondary neutrons, are responsiblefortheperipheralunwanteddose.Anout-of-fieldphoton-absorbeddoseistypically largerthananeutron-absorbeddose(Bednarzetal2009),butbecauseoftheradiationweighting factor(w ),neutronsmaybethedominantsourceoftissuedamagefromsecondaryradiation R atsomelocations(Kryetal2005). Epidemiological risk assessments should evaluate the secondary cancer rate incidences in a cohort of patients in relation to their organ-specific equivalent doses. In this sense, dosimetricdata,properlygenerated,areessentialtoestablishareasonableassessmentofthese associatedrisks.Therearepreviousdosimetricstudiesdevotedtoassessneutronandphoton contamination.Xuetal(2008)coveredsomeofthesemajordosimetricstudies. Treatment planning procedures provide detailed dosimetric information on the volume coveredbytheCTscan.However,toourknowledge,nosystematicdosimetrymethodology forthequantificationofneutron-equivalentdosesinorgansoutsidetheplanningvolumehas beenproposedyet. The aim of this work was to develop a methodology for the systematic estimation of neutron-equivalent doses in organs for patients undergoing high-energy (above 10 MV) external photon beam radiotherapy. A measurement- and Monte Carlo (MC)-based model is presented here as a general applicable method for the online estimation of equivalent dose in specific organs of radiotherapy patients. First, an appropriate active digital neutron detector, based on the relation existing between upsets in digital memories and thermal neutronfluence,wasdesignedanddeveloped(Go´mezetal2010).Thisdetectorovercomesthe problemsofcurrentactive(mainlysaturationandphotonsensitivity)andpassive(withtime- consuming and cumbersome readout procedures) detectors. Whole-body anthropomorphic phantom measurements, carried out with passive detectors, combined with a detailed MC model are correlated with the digital detector readings under a variety of conditions which potentiallycouldaffectsecondaryneutronradiation.Thesamemethodologyisapplicableto anyotherneutron-sensitivedetectorafteraspecificcalibrationprocedure. Beingabletosystematicallyestimateandreporttheneutron-equivalentdoseinperipheral organs,similarlytowhattreatmentplanningsystemsperforminthecaseofin-fieldorgans,will constituteasteptowardsprovidingsomeoftheessentialdataneededforapropersecondary Estimationofneutron-equivalentdose 6169 Figure 1. (Left) Scheme of the anthropomorphic phantom designed and built for this work (NORMA). It shows the points where measurements and simulations were performed. Points HandArepresenttheisocentresforheadandabdomentreatments,respectively.(Topright)The phantomonthetreatmentcouchandthedigitaldetectorlocatedinthemeasurementposition(circle) areshown.(Bottomright)DedicatedcavitiesinsideNORMAtoallocatethepassivedetectorsare shown. cancerriskanalysis.Thelatterwillbeusefulforabettertreatmentstrategyselection.Itwill also be a valuable tool for comparing the relative level of secondary radiation for different acceleratorsandtreatmentprocedures. 2.Materialandmethods Thepurposeofthisworkentailsestablishingamethodologytocorrelatethereadingsofthe activedetectorandtheneutron-equivalentdosesinpre-establishedspecificorgansofpatients undergoingexternalphotonbeamradiotherapy. First,asetofirradiationconditionswhichincludedsingle-beamincidencesandcomplete radiotherapy treatments (see section 2.2) was defined. Second, a detailed model of the photoneutronfieldinsidearadiotherapytreatmentroomandatspecificpointsinsideawhole- body anthropomorphic phantom was generated for the different irradiation conditions and treatmentfacilitieschosen.Thispartofthestudywasperformedbycombiningexperimental neutronspectrometrywithMCsimulations.Third,fluencemeasurementswerecarriedoutfor the defined irradiation setups. More specifically, simultaneous readings carried out with the digitaldetectorinsidethetreatmentroomandwithtwotypesofpassivedetectors(poly-allyl- diglycol-carbonate (PADC) and 6Li/7Li thermoluminiscence dosimeters (TLD)) at specific pointsinsidetheanthropomorphicphantomwereperformed. 2.1.NORMA:theanthropomorphicphantom A whole-body anthropomorphic female phantom called NORMA (figure 1) was designed and built—in polyethylene and low-density wood for lungs—with 16 measurement points distributed along it and covering different depths. The selection of the points in NORMA representingeachorganwasmadeusingtheorgansizesandpositionsfromtherevisedversion 6170 FSa´nchez-Dobladoetal Table1.NORMApointstoorganscorrelation. Organsandtissues NORMApoints Thyroid 4 Oesophagus 4,9,16 Lung 7,8 Breast 5,6,15 Stomach 9,11,16 Liver 9,10,11,16 Colon 11,12 Urinarybladder 10 Ovary 11,12 Skin 15 Bone 1,3,9,12,13,14,15 Bonemarrow 9,12,15 Remainder Allexcept7,8,15 of the Cristy anthropomorphic phantom (available at http://ordose.ornl.gov/resources/ phantom).Table1showsthecorrespondencebetweenorganandNORMApoints.Theauthors areawareofthelimitationsofthismethodology.However,dosesinsidethephantomdonot show extremely sharp changes and the selected points could be accepted given our level of uncertainty. Nevertheless, extra measurements points were added in some organs to better simulatethedifferentcontributionstothedose(e.g.,askinpointforbreast).Thus,neutron- equivalentdosesinorganswereestimatedthroughanaverageofthecorrespondingNORMA points. 2.2.Irradiationconditions Sevendifferentirradiationconditionsweresetupasfollows: (i) head and neck complete treatment, eight beam incidences (at 0◦, 45◦, 90◦, 135◦, 180◦, 225◦,270◦,315◦),10 × 10cm2fieldsize,isocentreatpointH(seefigure1), (ii) abdomencompletetreatment,thesamebeamincidencesandfieldsizeasini,isocentre atpointA(seefigure1), (iii) fixed2 × 2cm2irradiationfield,gantryat0◦,isocentreatpointA, (iv) fixed5 × 5cm2irradiationfield,gantryat0◦,isocentreatpointA, (v) fixed20 × 20cm2irradiationfield,gantryat0◦,isocentreatpointA, (vi) fixed10 × 10cm2irradiationfield,gantryat0◦,isocentreatpointA, (vii) fixed10 × 10cm2irradiationfield,gantryat270◦,isocentreatpointA. Alltheseirradiationsweresetto1000monitorunits(MU).18Thedoseraterangedfrom 300to600MUmin–1.Theusedenergydependsonthetreatmentfacility. For treatments (i) and (ii), dosimeters were placed at all 16 points in NORMA (see the insetoffigure1).Theinfluenceoftheirradiationfieldsizewasstudiedfromcases(iii)to(vi), withtwomeasurementpoints(2and8)insideNORMA,whiletheinfluenceofthebeamentry anglewasstudiedthroughcases(vi)and(vii),withsixmeasurementspoints(2,7,8,11,13 and14).Additionally,somerealintensity-modulatedradiotherapytherapy(IMRT)treatments werecompared,fromthepointofviewofneutronproduction,withcases(i)and(ii)usingthe samenumberofmonitorunitsandgantryangles. 18OneMUwascalibratedtocorrespondto1cGyphotondosemeasuredatthedepthofmaximumdoseinwater (source-to-surfacedistanceequalto100cm). Estimationofneutron-equivalentdose 6171 Table2.Descriptionofirradiationfacilities. Nominal Bunker Facility Linac energy(MV) volume(m3) HospitalUniversitarioVirgenMacarena SiemensPrimus 15 317(b1) (HUVM),Seville(Spain)a 162(b2) HospitalUniversitarioPuertadeHierro VarianClinac2100 15 205 (HUPH),Majadahonda(Spain) HospitalUniversitarioRamo´nyCajal ElektaSynergy 15 172 (HURC),Madrid(Spain) HospitalGeneralUniversitariodeValencia SiemensPrimus 18 150 (HGUV),Valencia(Spain) Universita¨tsKlinikum(UK),Heidelberg SiemensMevatron 23 169 (Germany) aAtHUVM,twodifferentbunkers(b1andb2)withthesamelinac. Irradiation facilities are described in table 2. In particular, the two linacs in Seville are of special interest in order to study bunker size dependence, as they are identical machines, operatingunderidenticalconditions,withtheonlydifferencebeingthetreatmentroomvolume: one of them considerably large (bunker 1: 317 m3) and the other one considerably smaller (bunker2:162m3). 2.3.NeutronspectraMCsimulations TheMCsimulationwascarriedoutusingtheMCNPX-2.6.0code(Hendricksetal2008)and followingthedetailedmodelofaSiemensPRIMUSandcodelibrariesdescribedbyPenaetal (2005).MoredetailsaboutthesesimulationsweregivenbyGo´nzalez-Sotoetal(2012). In order to take into account the fact that the amount of neutrons produced per MU dependsappreciablyontheenergyoftheprimaryelectronbeam,aMCcommissioningwas performed. The primary electron source was chosen to yield (for a 10 cm × 10 cm field at 0◦),atapointlaterallydisplaced50cmfromtheisocentre,thesamefastneutronfluenceas theonemeasuredbytheBonnerSphereSpectrometersystem(seesection2.4).Theprimary electronsourcewasmodelledasaGaussiandistributioncentredatthechosenenergywitha relativeFWHM=14%andaradialspatialdistributionwithFWHM=1.5mm.Additionally, differentwaterdepth–dosecurvesandprofilesweregeneratedfromtheMCphasespaceand comparedwiththemeasureddata(depthprofilemeandeviationwasbelow2%). Theaimofthesessimulationswastoobtainthefollowing: – Neutron fluence spectra at the isocentre produced by the Siemens linac operating at differentnominalenergies(15,18,21,25MV)fordifferentsquarefields. – Neutron fluence spectra of the same machine operating at 15 MV at the location of the digitaldetector(seesection2.8)forninedifferentbunkerssizes(withthesameheightbut different shapes and sizes covering the full range of typical treatment rooms, including bunkers1and2inSeville).Inthiscase,eachbeamincidencewascarriedoutinasingle simulation,includingthetreatmentroom,thephantomandthelinac. – Neutron fluence spectra in all specific points in the phantom, for the head and neck (case(i))andabdomen(case(ii))treatmentsforlinacinstalledinbunker1.Thesespectra werecalculatedusinganf5tally(pointdetector).However,anadditionalsimulationwas performedusingbothf5andf4(fluxaveragedovercell)talliestoverifythattheobtained resultswereequivalent. 6172 FSa´nchez-Dobladoetal All simulations were carried out using 48 double-processor computers, as a part of the cluster belonging to the Medical Physics Group, Department of Medical Physiology and Biophysics,UniversityofSeville(Lealetal2004). 2.4.Neutronspectrometryinthetreatmentroom Amongthemanyavailableneutronspectrometrytechniques,themultisphereorBonnerSphere Spectrometer isthemostusedforradiationprotectionpurposes (Thomas andAlevra 2002), owing to advantageous characteristics such as a wide energy range (from thermal to GeV neutrons),alargevarietyofactiveorpassivethermalsensorsthatallowadaptingthesensitivity tothespecificworkplace,agoodphotondiscriminationandasimplesignalmanagement.The passive Bonner Sphere Spectrometer used in this work was described by Ferna´ndez et al (2007a,2007b),includingtheresponsematrixanalysis. Following the standard terminology, (cid:2)E(E) ≡ (d(cid:2)(E)/dE) is the ene(cid:2)rgy spectrum of the absolute neutron fluence so that the total neutron fluence is (cid:2) = (cid:2) (E)dE. E E Similarly,ϕE(E)≡ (dϕE(E)/dE)istheenergy(cid:2)spectrumoftheunitneutronfluenceorenergy distributionoftheneutronfluencesothatϕ = ϕ (E)dE =1.Itis,therefore,obviousthat E E (cid:2) (E)=(cid:2)ϕ (E)foranyvalueofE.Itisalsocommonpracticetorepresentneutronspectra E E intermsoflethargy,plottingtheproductE·(cid:2) (E)orE·ϕ (E)versusE(inthelogarithmic E E scale). Such a plot has the visual property that equal areas below the graph represent equal neutronfluences. Inthiswork,theFRUITcodehasbeenusedforunfolding(Bedognietal2007),inorder toobtaintheenergydistributionoftheneutronfluenceϕ (E)andthetotalneutronfluence(cid:2) E fromthereadingsofthedetectorsatthecentreoftheBonnerspheresandfromtheevaluated ∗ response matrix. Ambient dose-equivalent values are subsequently evaluated from the h (E) conversioncoefficients(ICRU1998)as (cid:3) (cid:3) H∗ = (cid:2) (E)·h∗(E)·dE =(cid:2) ϕ (E)·h∗(E)·dE. (1) E E E E Spectrometric measurements were made in all six irradiation facilities, with a static 10 × 10 cm2 field at 0◦, at a reference point located at the same height as the isocentre but laterally displaced 50 cm (without the NORMA phantom on the couch), as well as at the place where the digital detector is located (see section 2.8) (with NORMA) (Domingo et al 2009b, 2010a). This set of data allowed us to verify the MC simulation results for the Seville’sfacilities.Measurementswereperformedwithstatisticaluncertaintiesoftheorderof 1%. The combination of these uncertainties with the response matrix uncertainties and with the ones related to the unfolding process allows us to determine fluence values with overall uncertaintiesintherangeof3–5%andambientdose-equivalentvalueswithuncertaintiesin therangeof4–7%. 2.5.PADC-baseddosimeters AminiaturizedversionoftheUniversitatAuto`nomadeBarcelonaetchedtrackneutron(PADC) dosimeters(Garc´ıaetal2005,Domingoetal2009b)hasbeenusedinthisworktodetermine neutron fluence at all 16 specified points in the NORMA phantom (figure 1). Two extra dosimeters were placed on top of the digital detector for each irradiation condition. These ‘miniature’dosimeterswereobtainedbycuttingthestandard(6 × 6)cm2dosimeterintonine equal (2 × 2) cm2 pieces, which fit into our etching cells and which can be placed in the required spots (figure 1). The standard electrochemical etching procedure from Universitat Auto`nomadeBarcelona,describedbyBouassouleetal(1999),hasbeenapplied.Trackdensity Estimationofneutron-equivalentdose 6173 Figure2.Neutronlethargyspectraofneutronfieldssuppliedforcalibrationoftheetchedtrack neutron PADC dosimeters. Only spectra of types II and III were actually used for calibration purposes(seethetext). in the etched plates was measured using a semi-automatic counting system (Domingo et al 2009b). The PADC dosimeters are sensitive to the whole energy range and their response had alreadybeenexperimentallyvalidatedwithISOsourcesandrealisticneutronfieldsasspecified bytheISOstandards(ISO1998,2000)attheInstitutdeRadioprotectionetdeSuˆrete´Nucle´aire facilities(Garc´ıaetal2005),aswellasinquasi-monoenergeticneutronbeamsattheInstitute for Reference Materials and Measurements from the European Joint Research Centre JRC- IRMM(Ge¨el,Belgium)VanderGraafaccelerator(Domingoetal2009a). PADC-based dosimeters are commonly calibrated for personal dosimetry in terms of personaldoseequivalentH tocharacterizeexternalirradiationofanindividual.Inthiswork, p dosimetersareplacedinsidetheNORMAanthropomorphicphantomandintendtomeasure the neutron field inside the phantom. Therefore, specific calibration irradiations of PADC dosimeters were carried out at the Physikalisch-Technische Bundesanstalt primary neutron facilitytotakeintoconsiderationthespecificcharacteristicsofneutronfieldsinsideNORMA (previously estimated by the MC simulation, see the following text). Neutron irradiations took place free in air with the purpose of characterizing the dosimeter response in terms of fluencewhenplacedinalocation,nomatterwhere,inthepresenceofagivenneutronfield. Threefluenceenergydistributions(seefigure2),andatdifferentincidenceanglestotakeinto accounttheangulardependence,wereusedforcalibration(Bedognietal2012,Domingoetal 2012).Intable3,thefieldspectralcharacteristicsandcalibrationfactorsforthethreedifferent neutroncalibrationspectraarereported. Fastneutronsappearfromphotoneutron–productionreactionsintheacceleratorheadand components.Whentheyscatterintheroomwallsandotherelementsinsidethetreatmentarea, includingthepatientorthephantom,theybecomeepithermalandthermal.Therefore,while thefastandtheepithermalneutroncomponentsarehighlydirectional,thethermalcomponent can be approximated by an isotropic field at the point of measurement. This reasoning has 6174 FSa´nchez-Dobladoetal Table3.CharacteristicsoftheneutronfieldsusedforcalibrationofthePADC-baseddosimeters andtheresultingfluenceresponse. SpectrumtypeI SpectrumtypeII SpectrumtypeIII Description 252Cfsource 252Cf(D2O+Cd)+ 252Cfsource+ Shadowblock Shadowcone Type Fast Epithermal+Thermal Fast+Epithermal+Thermal p 0.052 0.312 0.211 t p 0.103 0.592 0.38 e p 0.845 0.097 0.409 f F (Tracks/neutron) (1.118 ± 0.066) × 10−4 (4.65 ± 0.48) × 10−6 (1.762 ± 0.090) × 10−5 D F (Tracks/neutron) (5.16 ± 0.90) × 10−5 (2.15 ± 0.24) × 10−6 (8.13 ± 0.58) × 10−6 iso ptisthethermalfraction,peistheepithermalfraction,pfisthefastfractionandFDisthefluenceresponsefor normalincidenceandFisoforisotropicincidence. beenusedtocalculatethecalibrationfactorFwhichconvertstracksmeasuredinthedosimeter (NPADC)intofluence((cid:2)PADC)inthefollowingway: NPADC (cid:2)PADC = , whereF = (p +p )·F +p ·F (2) f e D t ISO F withp,p andp beingthefractionoffast,epithermalandthermal19neutronsinthespectrum f e t considered, respectively, and F and F being the corresponding calibration factors for D ISO directionalandisotropicincidences(seetable3). Comparison of spectra in figure 2 with MC spectra at the phantom measurement points (figure 8) illustrates that calibration spectrum type II is the most representative for all measurement points, except for point 15, where spectrum type III is more adequate. Consequently, the particular calibration factor for a PADC dosimeter placed at point i in a givenirradiation jiscalculatedas (cid:4) (cid:5) Fi,j = pi,j+pi,j FII+pi,jFII fori(cid:5)=15 f e D t ISO and (cid:4) (cid:5) (3) Fi,j = pi,j+pi,j FIII+pi,jFIII fori=15 f e D t ISO wherepi,j,pi,jandpi,jarethecorrespondingfractionsoffast,epithermalandthermalneutrons f e t obtainedfromtheMCsimulationforthepointandirradiationofinterest,andFII,FII ,FIII D ISO D and FIII are the F and F calibration factors for spectra of types II and III, respectively ISO D ISO (seetable3).Thetotalneutronfluenceatpointiduringirradiation jissubsequentlyevaluated fromthereadingNPADCofthecorrespondingdosimeteras i,j NPADC (cid:2)PADC = i,j . (4) i,j Fi,j 2.6.Lithermoluminiscencedosimeters Standard6LiF/7LiFpairsofdosimetersTLD-600/TLD-700(3 × 3 × 0.9mm3chips)have been used as an independent system to assess the thermal neutron fluences in the selected pointsinsideNORMA. TLD readouts have been carried out using a Harshaw reader, model 4000, with linear heatingfromroomtemperatureupto300◦Cataheatingrateof3◦Cs−1.Apre-irradiation 19Wewillusetheconventionalneutronclassificationaccordingtotheirkineticenergy,i.e.thermalneutrons:upto 0.4eV,theso-calledCadmiumcut;epithermalneutrons:from0.4eVto0.1MeV;andfastneutrons:from0.1MeV to20MeV. Estimationofneutron-equivalentdose 6175 thermal treatment of 1 h at 400 ◦C, followed by a reproducible cooling down to room temperature, was always employed before reusing the detectors. Temperature and duration oftheheatingandcoolingstageswereproperlycontrolled. NeutroncalibrationwascarriedoutatPhysikalisch-TechnischeBundesanstaltinscattered neutronreferenceradiationfieldsproducedbyabare252CfandaD O-moderated252Cfneutron 2 source (Kluge et al 1997), and for gamma, using a 137Cs calibration source at a secondary standarddosimetrylaboratoryinCIEMAT. The methodology employed to analyse all the experimental glow curves obtained was basedonthenumericaltechniquesdevelopedbyDelgadoandGo´mez-Ros(1990,1992)and Mun˜iz et al (1999, 2004). On the basis of the results of this glow curve analysis, thermal neutronfluenceswereobtainedusingthedifferencesbetweenTLD-600andTLD-700results foreachmeasuredpointinNORMA(R)andthecalibrationfactorsasfollows: (cid:6) (cid:7) γ f (cid:2)TLD = fn Ri,j −kRi,j , k= 700, (5) i,j 600/700 600 700 fγ 600 wherethecalibrationfactorsusedare fn =488ncm−2au(12%,k=2)forneutronsand 600/700 fγ =1.86×10−4mGyau–1(8%,k=2)and fγ =1.99×10−4mGyau−1(10%,k=2)for 700 600 gammas. 2.7.Evaluationofneutronfluence,doseequivalentandequivalentdose BothPADCandTLDpassivedetectorswereusedtoevaluatetheneutronfluenceateachpoint iinsideNORMAforeachirradiationcondition j,leadingtothevalues(cid:2)PADC(4)and(cid:2)TLD(5), i,j i,j respectively. These measurements were repeated in all irradiation facilities listed in table 2. It is well known that 6Li/7Li TLD pairs allow a relatively precise estimation of the thermal neutron component, but they are insensitive to the epithermal and fast components. On the other hand, the PADC response is well characterized for fast neutrons, but relevant to large uncertaintiesappearingintheepithermalandthermalranges.Takingallthatintoaccount,the bestestimationoffluenceiscalculatedbycombiningthemeasurementsofbothdetectorsas follows: (cid:8) (cid:9) (cid:2)i,j =(cid:2)Ti,LjD+ pie,j+pif,j (cid:2)Pi,AjDC. (6) Uncertainties for the best estimation of the total fluence are obtained from standard propagation of uncertainties of the TLD and PADC measurements and are expressed at the standard(1SD)level. Absorbeddoseisthemostusefulmeasurablequantity,asitallowsprotectionquantities to be evaluated from tabulated weighting factors. Unfortunately, it is extremely difficult in practice to measure the absorbed dose due to neutron irradiation because of the complexity ofneutronsinteractionmechanismswithmatter.Allsecondarychargedparticlesoriginating aroundthevolumeofinterestwouldhavetobeconsideredandtheirenergydepositioninside theregionofinterestwouldhavetobeevaluated. Alternatively, in the kerma approximation, the absorbed dose can be approximated by kerma which, in turn, may be evaluated from fluence through the kerma factors. In this situation, neutron dose-equivalent value H in a tissue-like point might be obtained from the appropriatekermafactorsk(E)andtheradiationqualityfactorsQ(E)as (cid:3) Hi,j =(cid:2)i,j k(E)·Q(E)·ϕi,j(E)·dE, (7) E wherethemeasurablequantities,i.e.thetotalneutronfluence(cid:2) anditsenergydistribution i,j ϕ , have been determined in this work for all points of interest for different irradiation i,j
Description: