remote sensing Article Estimating and Up-Scaling Fuel Moisture and Leaf Dry Matter Content of a Temperate Humid Forest Using Multi Resolution Remote Sensing Data HamedAdab1,KasturiDeviKanniah2,3,*andJasonBeringer4 1 FacultyofGeographyandEnvironmentalScience,HakimSabzevariUniversity,Sabzevar, KhorasanRazavi9617976487,Iran;[email protected] 2 FacultyofGeoinformationandRealEstate,UniversitiTeknologiMalaysia,Johor81310,Malaysia 3 CentreforEnvironmentalSustainabilityandWaterSecurity,ResearchInstituteforSustainableEnvironment, UniversitiTeknologiMalaysia,Johor81310,Malaysia 4 SchoolofEarthandEnvironment,UniversityofWesternAustralia(M004),35StirlingHighway, CrawleyWA6009,Australia;[email protected] * Correspondence:[email protected];Tel.:+60-7-553-0739 AcademicEditors:SangramGanguly,ComptonTucker,IoannisGitas,ClementAtzberge andPrasadS.Thenkabail Received:27June2016;Accepted:7November2016;Published:19November2016 Abstract: Vegetation moisture and dry matter content are important indicators in predicting the behavioroffireanditiswidelyusedinfirespreadmodels. Inthisstudy,leaffuelmoisturecontent suchasLiveFuelMoistureContent(LFMC),LeafRelativeWaterContent(RWC),DeadFuelMoisture Content(DFMC), andLeafDry Matter Content(LDMC)(hereinafterknownas moisturecontent indices (MCI)) were calculated in the field for different forest species at 32 sites in a temperate humid forest (Zaringol forest) located in northeastern Iran. These data and several relevant vegetation-biophysical indices and atmospheric variables calculated using Landsat 7 Enhanced ThematicMapperPlus(ETM+)datawithmoderatespatialresolution(30m)wereusedtoestimate MCIoftheZaringolforestusingArtificialNeuralNetwork(ANN)andMultipleLinearRegression (MLR)methods. ThepredictionofMCIusingANNshowedthatETM+predictedMCIslightlybetter (MeanAbsolutePercentageError(MAPE)of6%–12%))thanMLR(MAPEbetween8%and17%). OncesatisfactoryresultsinestimatingMCIwereobtainedbyusingANNfromETM+data,thesedata werethenupscaledtoestimateMCIusingMODISdatafordailymonitoringofleafwaterandleaf drymattercontentat500mspatialresolution. ForMODISderivedLFMC,LDMC,RWC,andDLMC, theANNproducedaMAPEbetween11%and29%fortheindicescomparedtoMLRwhichproduced anMAPEof14%–33%. Inconclusion,wesuggestthatupscalingisnecessaryforsolvingthescale discrepancyproblemsbetweentheindicatorsandlowspatialresolutionMODISdata. Thescalingup ofMCIcouldbeusedforpre-firealertsystemandtherebycandetectfireproneareasinnearreal timeforfire-fightingoperations. Keywords: leafmoisturecontent;leafdrymattercontent;temperatehumidforest;remotesensing; artificialneuralnetwork;multiplelinearregression;upscaling;firedanger 1. Introduction Fireisacommonformofdisasterinforestedandgrasslandareasacrosstemperateregionsof theworld. Althoughfireisacriticalenvironmentalissueinmanyregions,includingIran,thereisno adequatemonitoringordetectionoffireinIranandthatmakesfiredetectionandcontrolquitedifficult. Interventionofforestfirescanoccuratanearlystageoffireignitionbymonitoringandforecastingthe factorssuchasleafmoisturecontentandleafdrymattercontent(MCI)thatinfluencebiomassburning. RemoteSens.2016,8,961;doi:10.3390/rs8110961 www.mdpi.com/journal/remotesensing RemoteSens.2016,8,961 2of25 Acomprehensivecollectionofrelevantenvironmentalvariablesisrequiredtounderstandfire occurrence and hazard. Fuel moisture content is an important parameter in the heat energy of pre-ignition because fuel moisture content restricts water vapor released from burning fuel in the preheating phase [1]. Indices of vegetation moisture have a relationship with the fire probability becausewhenplantsexperiencewaterdeficitsornutrientsstress,leavesmayeventuallybecomemore yellowandbrownsothevegetationindiceswillthenchange. Decreasingvegetationindicessuggest anincreasedfireprobabilitywherestressedplantsaremorevulnerabletofireignition[2].Fuelmoisture contentinfluencesfirebehavior(sloworfastspread),propagation,intensity,ignitiondelay,thedegree offlammabilityandtheemissivepowerofflames. Therelationshipbetweenignitabilityandleafdry matterwillhelpustounderstandthefunctionalrole(fuelload)ofleafinfire-proneecosystemsas leaves with low dry matter will have reduced ignitability [3]. Hence, fuel moisture and plant dry matterareconsideredtobeimportantparametersinanyforestfiremodelingthatattemptstopredict fuelignition. Suchmodelscanbeusedtoprovideearlywarningofincreasedforestfirepotentialatthe pre-ignitionstage. There are a number of fire early warning systems based on remote sensing and Geographic InformationSystemsuchastheCanadianForestFireDangerRatingSystem(CFFDRS)[4],ForestFire Danger Forecasting System (FFDFS) [5], and early warning system for wildfire (EWSFire) [6] that allhavevaryingstructuraland/ordynamicparameters(e.g.,slope,aspect,elevation,andweather variables). However,thereisinadequateavailabilityofinformationonliveanddeadfuelmoisture contentsinIranthatmakesforestfirehardtopredict. Commonlyusedindicatorsformoisturecontent areLiveFuelMoistureContent(LFMC),LeafRelativeWaterContent(RWC),DeadFuelMoisture Content(DFMC),whilstLeafDryMatterContent(LDMC)isanimportantplantfunctionaltraitin plant studies because it is related to many critical aspects of a plant’s performance in response to environmentalchangesduringplants’growthandsurvival[7]. Theseindicatorsareveryimportant formonitoringforestfirethatmaychangeunderdifferentheatandwaterstressconditionssuchas droughtandsevereheatwave. Amongthefuelmoistureindices,LFMChasbeenwidelyusedforfiredangerstudies[8,9]because itisnotonlysimpletocalculatebutalsotheignitiondelayanddegreeofflammability(thequantity ofheatnecessarytoevaporatewater)arecorrelatedtotheamountofwaterinlivefuels[1]. Inareas ofhighvegetationproductivity,suchasthisstudy,asmallreductioninfuelmoisturemayenhance thedrymatterproductivity(i.e.,anincreaseindeadfuelloadandconnectivity)[10],andtherefore fuel consumption is increased by fire. LDMC is related to the lifecycle of a leaf and it shows the productionofdrymatterperleaf[11]andisaplanttraitthatsetstheamountofdrymaterialthat isavailableforcombustion[12]. Flammabilityoffuelisexpectedtobegreaterintreespecieswith highleafdrymattercontent[12]andincreasesasafunctionofthedryingrateofliveordeadmaterial. DFMC is a significant parameter in most empirical models for fire spread [13]. Variation of fine dead fuel moisture such as needles, leaves, twigs, and bark can be influenced by air temperature, relativehumidity,moisturecontentofduff,andtopsoil.RWChasbeenwidelyacceptedasameaningful indexofplantwaterstatusandwaterbalanceofaplantbecauseleafphotosyntheticactivitydecreases asRWCisreducedunderplantwaterstress[11]. RWCcouldbeausefulparameterasithaspreviously beenusedtoscreenfordroughttoleranceoftreespecies[14]. Thus,LFMCandDFMCarebroadlyused inearlywarningfiresystemsbutRWCandLDMCcouldbealsoassessedasalternativestoimplement theminearlywarningsystems. One of the methods used to measure moisture content and dry matter content in the field is thegravimetricmethodforspecificclassesoffuels, suchasliveanddead. Thismethodiseasyto use,involveshighlevelsofaccuracy,andcanbeperformedondifferentfueltypes(e.g.,leavesand branches),however,itistimeconsuming,oftenrequiresdestructivesampling,islaborintensiveand is costly to conduct repetitive samplings over large areas. Additionally, these measurements are pointbasedanddonothaveuniformandextensivespatialcoverageofthestudyarea. Alternatively, remotesensingdataprovidesaninstantaneousandnon-destructivewayforvegetationstudiesatlarge RemoteSens.2016,8,961 3of25 scalesbecauseitpresentsaquicklookevaluationofthevegetationconditions,whichisimportant forwaterstressdetectionandfirehazardassessment. Changesinthewatercontentofvegetationcan resultindifferentspectralcharacteristicsthatprovidethepotentialtoestimatethestatusofvegetation moistureusingspectraldata[15]. Accordingtotheelectromagneticspectrum,thereisalinkbetween a plant’s moisture content and its spectrum. The spectral responses for live fuel moisture levels wereexploredinthevisible,NIR(near-infrared),SWIR(short-waveinfrared)andthermalinfrared wavelengths,sothesewavelengthsareusedtoestimatefuelmoisturecontent[16]. Ontheotherhand, deadfuelmoistureisprimarilyaffectedbysoilmoisture(whichwouldalsobeaffectedbyweather) nearthedeadfuelsurface[17]. Somestudiesshowedthatsurfacesoilmoisturecouldbeestimated usingopticaldataforcroplands, shortgrasslands[18,19], andforest-dominatedareas(deciduous species)[20]. Giventhisinformation, vegetationindicescouldbeusedindirectlytoestimatedead leavescoveringtheforestfloor. AgreatdealofefforthasgoneintoestimatingDFMCandLFMCusingmeteorologicalvariables andremotesensingdata(SeeTable1formoredetails). PreviousstudieshaveestimatedLFMCusing coarsespatialresolutionremotesensingdatasuchasMODerateresolutionImagingSpectroradiometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR) usually by making a direct comparisonbetweenfieldmeasurementsandlargeviewangleremote-sensingdata[21,22]. Thiscanbe doneifthesurfaceislargeandperfectlyhomogeneousorasufficientnumberofpointmeasurements canbemadeduringthesatelliteoverpass[23]. MODISandAVHRRhavehightemporalresolution which makes them useful for providing fuel moisture content in near real time because moisture contentofthefuelisafunctionofshorttermvegetation-biophysicalindicesandatmosphericvariables. Nevertheless,theestimationofaccurateleafwater-contentanddrymatterinformationiscurrently criticallylimitedbecauseofthedisparityinscalebetweengroundmeasurements(plotbased)and lowerspatialresolutionremotesensingdata(i.e.,1km). Suchcoarserresolutioninformationdoes notgiveenoughdetailforsomefiremanagementactivitiesand,therefore,satellitedatawithhigh to moderate spatial resolution is desired for upscaling ground measured MCI before low spatial resolutiondatacanbeusedtoprovideestimatesofMCIoveraregionalscaleinnearreal-time. Hence, upscalingground“point”measurementsfromETMtotheMODISresolutionsusinghigh-resolution remotelysensedimageryisanecessaryandcriticalsteptoobtainaccurateMCIfromMODISdata. Thus,theaimofthisstudywastoquantifyMCI(leafwater-relatedpropertiesLFMC,DFMC,RWCand drymattercontent(LDMC))usingdailyfieldmeasurementsinatemperatehumidforestinIranand thentospatiallypredictMCIusingremotelysenseddatawithLandsatEnhancedThematicMapper plus (ETM+). Daily maps of MCI are derived by upscaling MCI from plot scale to higher spatial resolutionsatellitedata(30m)andfromhigherspatialtohighertemporalresolution(daily)satellite images(MODIS)at500mspatialresolution. Thedataandmethodsadoptedtoachievetheaimofthe studyaredescribedinthefollowingsections. Table 1. Overview of models/statistical methods used to estimating live and dead fuel moisture contentusingmeteorologicalandremotesensingdata. VegetationType TypeofFuel ParametersUsed SatelliteData Method Reference (StudyArea) RelativeHumidity(RH), Linear RedPine LitterDeadfuel AirTemperature(AT), Notused Regression(LR) [24] forests-Taiwan WindSpeed,Cloudiness R=0.7 AT,RH,Precipitation,Incoming Grassesand SolarRadiation;MoistureContent, LR LitterDeadfuel Notused herbaceous [25] FuelSurfaceTemperature,wind R=0.01–0.85 vegetation-Hawaii speedanddirection Litter, Grasslands, LR Grasslands Temperature,Humidity Notused shrubsand [26] R=0.11–0.52 Deadfuel deciduous-Spain RemoteSens.2016,8,961 4of25 Table1.Cont. VegetationType TypeofFuel ParametersUsed SatelliteData Method Reference (StudyArea) JarrahandKarri MaximumDailyTemperature, LR LitterDeadfuel Notused forests-southwest [27] MinimumDailyRH R=0.66 WesternAustralia NDVI,LST,RelativeGreenness Herbaceousand LR Liveleaves AVHRR [22] Index(RGRE) shrubs-Spain R=0.68 MSI,NDWI,WaterIndex(WI), Mediterranean LR Liveleaves TM5/TM7,GlobalVegetation LOPEX [28] Species-UK R=0.71 MoistureIndex(GVMI) LR Liveleaves NDVI,NDWI MODIS Shrubs-US [29] R=0.6–0.8 NDVI,NDWI,VegetationDryness Index(VDI),ImprovedVDI(IVDI), Herbaceous-South LR Liveleaves SPOTveg [30] AccumulatedRelativeNDVI Africa R=0.75 Decrement(ARND) NDWI,NormalizedDifference Cypressstands, LR Liveleaves MODIS [31] InfraredIndex(NDII) shrubs-US R=0.51 NDII,NDWI,VisibleAtmospheric Chaparral LR Liveleaves MODIS [32] ResistantIndex(VARI) (shrubs)-US R=0.72 ShortwaveInfraredWaterStress Tropical LR Liveleaves MODIS [33] Index(SIWSI) rainforests-Malaysia R=0.68 NDVI,SoilAdjustedVegetation Index(SAVI),EnhancedVegetation Index(EVI),GlobalEnvironmental Grasslandsand IM,LR Liveleaves MODIS [34] MonitoringIndex(GEMI),VARI, shrub-lands-Spain R=0.7−0.92 NDII,NDWI,GlobalVegetation MoistureIndex(GVMI) Evergreenshrub, LR Liveleaves VARI,NDVI MODIS [21] brush-US R=0.72 NDVI,NDWI,NDII,Vegetation Chaparral,coastal LR Liveleaves Index(VIgreen),VARI,Enhanced MODIS [35] sagescrub-US R=0.72–0.85 VegetationIndex(EVI) NDVI,VARI,NDWI,NDII,MSI, Deciduous LR Liveleaves MODIS [36] SRWI,SpectralReflectance forest-Argentina R=0.72 NDVI,NDWI,CanopyWater Gambeloakand LR Liveleaves MODIS [37] Content(CWC),Soilmoisture(SM) bigsagebrush-US R=0.49 LR Liveleaves NDWI,NDII,SRWI,MSI,GVMI MODIS Savanna-Senegal [38] R=0.63 GA-PLS SpectralReflectance AreaoftheJRC, Liveleaves LOPEX regression [39] range410–2500nm Ispra,Italy R2=0.87–0.89 SpectralReflectance AreaoftheJRC, PLS Liveleaves range400–2500nm LOPEX Ispra,Italy R2=0.74–0.92 [40] LR=Informationnotavailable. 2. MaterialsandMethods 2.1. StudyArea Northern Iran is an understudied area in terms of forest fire monitoring and management which requires appropriate attention. The region contains the Northeastern Hyrcanian forests (Golestan province) that are one of the most critical areas in terms of forest fire in Iran where, for example, in November 2010 more than 80 fires occurred in this area and 70 protected areas oftheforestswereaffectedbyfires[41]. Firesaremainlyintheformofsurfacefiresandtheextremely dryconditionsintheforestedareainthisyearwerethemajorcauseofwidespreadfires[41]. Itseems thattheseforestsexperiencefireseveryyearandthenumberoffireincidentsincreasedfrom2001 to2008.Mostlandfiresoccurinthisregionduringthetimewhentheleavesarestillgreen(Augustuntil theendofDecember)duetoadecreaseinhumidityandincreaseinwindspeed[42]. Ithasbeenshown RemoteSens.2016,8,961 5of25 inthestudyareathatelevationisinverselycorrelatedwithfirehazard(94%)becauseofitsinfluence onrainfall,temperature,fuelmoisturecontentandpopulationdensity[43]. One possible way to reduce the impact of fires on the forest ecosystem is by mapping the MCI of the forest and thereby providing early warning of forest fire at the pre-ignition stage. We utilized the Zaringol forest within the vulnerable Hyrcanian forests to test and evaluate our approach. The Hyrcanian forests are found along the coast of the Caspian Sea of Iran and are importantrefugia,astheycomprisethelastremnantsoftemperatedeciduousbroadleavedforestsin thispartoftheworld. Hyrcanianforestsconsistofmixedbroadleafdeciduousspecies. Thesenatural mixed-hardwoodforestshaverichtreespeciesdiversitysuchasbeech(Fagusorientalis),hornbeam (CarpinuRsemboette eSleunss.) 2,0a16l,d 8,e 9r61( A lnusglutinosa),oak(Quercuscastaneafolia),maple(Acervelotonia)5, oif r2o5 nwood (Parotiapersica),etc.[44]. TheZaringolforestisoneoftheHyrcanianforestsfoundintheprovince etc. [44]. The Zaringol forest is one of the Hyrcanian forests found in the province of Golestan and ofGolestthaensea fnordestths earsee ffoourneds tosna ar ehilflosiudne daboonuta 15h kilmls isdouetahbeaosut otf1 t5hek cmitys oofu Athliaebaasdt-oe fKtahtuel c(iFtiyguorfe A1al)i abad-e Katul(Faingdu r5e0 1kam) eaansdt o5f 0thkem citeya osft Goofrtghaen.c Aitsy sohfowGno ring aFnig.uAres 1sbh, oeiwghnt dinomFiingaunrte fo1rbe,ste sigpehctiedso, nmaminealyn tforest species,Cnraamtaeegluys Cspra.,t aPeagrurostisap p.,erPsiacrar, oAticaerp esrps.,i cQa,uAerccuers scpas.t,aQneuifeorlicau, sAclansutsa nsuebifcoolridaa,tAa, lnPiunsuss usbpc.o, rCdaartpai,nuPsi nussp., schuschaensis, and Carpinus betulus, are found in the Zaringol forest area. Carpinusschuschaensis,andCarpinusbetulus,arefoundintheZaringolforestarea. Figure1F.ig(au)reL 1o.c (aa)t iLooncaotfiotnh oef pthreo vprinovciencoef oGf oGloelsetsatann iinn IIrraann; ;(b(b) )bobuonudnadrya oryf ZoafriZngaoril nfogroesltf ionr GesotleisntaGn olestan provincepraonvdincloe caantdio loncaotfiotnh eof3 t2hes 3a2m sapmlipnlginsgi tseitsest hthaatt ccoovveerr ddififfefreernetn fotrfeosrte ssptecsipees cinie tshein ZathriengZoal rfoinregsot lforest area.Loacraetai.o Lnoscaatrieonssh aorwe snhoownnE oTnM ET+Ms+a tsealtleiltleitei mimaaggee ddaatteedd 220 0JuJluyl 2y00200.0 0. 2.2. In Situ Leaf Moisture and Dry Matter Content Data Collection 2.2. InSituLeafMoistureandDryMatterContentDataCollection In this study, we collected live (including shedding and non-shedding leaves as possible) and Intahlsiso sdteuaddy ,lewaveecs oflrloemct etrdeel ibvrean(icnhcelsu adnidn gthseh efodrdesitn fgloaonr dinn tohne -fsiheledd idni nSgoultehaevaests Aasliapboasds irbelgei)ona ndalso deadlea(vFiegsufrreo 1m). Lteraeveebs rwaenrceh ceoslleacntedd tfhroemf o3r2e ssatmflpoloinrgi pnlothtse wfiheelrde einachS osaumthpeliansgt pAlolita hbaadd anr eagreioa nof( 3F0i gure1). Leavesw× 3e0r emc2.o Tllheics tseidze fwroams u3se2ds faomr spamlinpglinpgl obetscawushe eeraeche aLcahndssaamt EpTlMin+g ppixleolt rhepardesaenntsa are 3a0 o×f 3300 m×2 30m2. ground area and samples were collected within 5 × 5 m2 and 15 × 15 m2 from the center of the plot at ThissizewasusedforsamplingbecauseeachLandsatETM+pixelrepresentsa30×30m2 ground four cardinal directions (north, east, south, and west). Live and dead leaves were collected from 8 area and samples were collected within 5 × 5 m2 and 15 × 15 m2 from the center of the plot at trees from each sampling plot per species (i.e., the samples of live and dead leaves were not mixed fourcardtoigneatlhderi)r eatc tdiioffnesre(nnto lortchat,ieoanss tc,osvoeuritnhg, daniffderwenets etl)e.vLaitvioen,a snlodpde egaraddlieeanvt, easndw aesrpeeccto ollveecrt ead pefrrioomd 8trees fromeacohf 3s admaypsl i(n5–g7p Aloutgpusetr 2s0p1e2)c iwesith(i .teh.e, thheelps aomf fporleesst oefxplievretsa fnrodmd tehaed Gleoalevsteasnw Feorreesntso, tRmanigxee dantdo gether) atdifferWenattelroschaetdi oMnasncaogvemereinntg Odrgifafneirzeantitone.l eDveaatdi oann,ds lliovep eleagfr saadmiepnlets, awnedre acsoplleeccttedo vwehrean pnoe rriaoindfaolfl 3days occurred in the previous week to avoid the effect of surface water on the leaves, especially for dead (5–7August2012)withthehelpofforestexpertsfromtheGolestanForests, RangeandWatershed leaves. Most samples were collected in locations with slopes of less than 22° because steep slopes are Management Organization. Dead and live leaf samples were collected when no rainfall occurred not easily accessible. Four full zip locked bags of live and dead leaves were collected (60 g each) in the pbreetvwioeeuns 1w1:0e0e kamto anadv o16id:00t hpme eloffceacl ttimofe,s ausr fthaicse pweriaotde rcooinncitdhees wleiathv ethse, eLsapndescaita lolvyerfpoarssd teimade leaves. Mostsaimn pthlee sstwudeyr earceao lalnedct, ewdheinn tlhoec aatiri otenmspweriathtursel owpaess aot iftsl ehsisghtehsat,n m2o2s◦t sbtaebclae uasned swteheepn fsuleolp weass arenot easilyacmceossts ivbullen.eFraobuler tfou ilglnzitiiponlso c[4k5e].d Ablla lgivse osafmlivpleesa wndered iemadmeledaiavteelsy wmeearesucroedll efocrt ethdei(r6 f0regshe awcehig)hbt etween using an electronic balance with 0.01 g precision. These samples were further processed in the 11:00a.m. and16:00p.m. localtime,asthisperiodcoincideswiththeLandsatoverpasstimeinthe laboratory to measure their moisture content. All the live leaves were placed in a bucket of cold distilled water and were stored in a refrigerator for 24 h to determine their turgid weight (weight obtained after rehydrating leaves to full water saturation). The temperature of the refrigerator was set to 4 °C and a fan was used to homogenize cool air inside the refrigerator. Then, the live leaves were removed from the refrigerator to find the weight of turgid leaves using the turgid measurement protocol [46]. Any water remaining on the leaves were removed using tissue paper and the weights RemoteSens.2016,8,961 6of25 studyareaand, whentheairtemperaturewasatitshighest, moststableandwhenfuelwasmost vulnerabletoignitions[45]. Alllivesampleswereimmediatelymeasuredfortheirfreshweightusing anelectronicbalancewith0.01gprecision. Thesesampleswerefurtherprocessedinthelaboratory tomeasuretheirmoisturecontent. Alltheliveleaveswereplacedinabucketofcolddistilledwater and were stored in a refrigerator for 24 h to determine their turgid weight (weight obtained after rehydratingleavestofullwatersaturation). Thetemperatureoftherefrigeratorwassetto4◦Cand afanwasusedtohomogenizecoolairinsidetherefrigerator. Then, theliveleaveswereremoved fromtherefrigeratortofindtheweightofturgidleavesusingtheturgidmeasurementprotocol[46]. Anywaterremainingontheleaveswereremovedusingtissuepaperandtheweightsoftheturgid leavesweremeasured.Thesampleswerethentransferredtoanovenfordryingwheretheyremainedat 70◦Cfor48h. Allcollecteddeadsampleswerealsooven-driedfor24hatatemperatureof100◦C[47]. Thesamples(bothliveanddeadleaves)werethenweighedagainusinganelectronicbalance. 2.3. CalculationofLeafMoistureandDryMatterContent ThefourMCIcalculatedinthisstudyandtheequationsusedtocalculatethemareshownin Table2.Aonewayanalysisofvariance(ANOVA)andcoefficientofdetermination(R2)werecomputed todescribetherelationshipsbetweenMCIsanddifferentspecies. ANOVAteststhehypothesisthatthe meanvaluesofdifferentMCIsofeightdifferentforesttreespeciesareequal. Table2.Leafmoistureanddrymattercontentindices(MCI)calculatedinthisstudy. MCI CaculatedEquation LiveFuelMoistureContent(LFMC) LFMC= Mf−Md ×100(%) Md DeadFuelMoistureContent(DFMC) DFMC= Mfm−Md ×100(%) Md LeafDryMatterContent(LDMC) LDMC= Md ×100(%) Mt LeafRelativeWaterContent(RWC) RWC= Mf−Md ×100(%) Mt−Md Notes:M isthefreshweightofliveleavesthatweremeasuredinthefieldduringsampling,M istheweight f d ofthesamesampleofleavesaftertheywereoven-dried.Mtistheturgidmassafterrehydratingtheleaves, andM isthefreshweightofdeadmaterialsthatwasmeasuredinthefield[48]. fm 2.4. RemotelySensedData Landsat 7 ETM+ and MODIS data were used to calculate vegetation and biophysical indices, andretrieveatmosphericvariablestoestimatethefourMCIasshowninTable2. Thisstudyused one scene of level 1T Landsat 7 ETM+ SLC-off image dated 6 August 2012 acquired at 11:20 a.m. localtime(coincidingwithfieldmeasurements)providedbytheUSGSGlobalVisualizationserver (GloVis)athttp://glovis.usgs.gov/inGeoTIFFfileformat. Inaddition,MODISlevel1B(calibrated andgeo-locatedradianceproduct)dataonboardtheTerrasatellitewith500m(MOD02HKM)and 1 km (MOD021KM) spatial resolution and their geolocation products with 1 km (MOD03) were downloadedwiththesameoverpasstimeastheETM+image. On6August2012,MODIScrossesthe studyareaat11:40a.m. localtime(Terra)and1:20p.m. localtime(Aqua)duringthedaytimedated 6August2012,thusvegetationandtemperatureconditionscanberetrievedtwicedaily. Although weonlydemonstratetheutilityofthisapproachwithasingleimage,thehightemporalfrequencyis criticalforoperationalmonitoringoffuelmoisturecontentandprovidinganearlywarningofforest firepotential. 2.5. Pre-ProcessingofRemoteSensingData TheETM+imagewasatmosphericallyandtopographicallycorrectedusingtheATCOR3program that is used for mountainous areas <3.5 km above sea level. The thermal bands of this image were corrected for atmospheric attenuation using the Radiative Transfer Equation Atmospheric RemoteSens.2016,8,961 7of25 Correction Parameters Calculator (RTE-ACPC), an online web-based tool that was developed by Barsi,etal.[49]. ForMODISdata,theSMAC(SimplifiedMethodforAtmosphericCorrection)program wasusedforatmosphericcorrectionofthefirst7bands, whilstthethermalbandsofMODISdata (Bands31and32)werecorrectedusingasplit-windowalgorithm[50]whichwasusedtoretrieveland surfacetemperature.Thismethodcancorrectthethermalbandsusingwatervaporcontentandsurface emissivitydata[51]. The MODIS image was geometrically corrected by selecting control points (CPs) from ETM+ image dated 10 May 2003 had been geometrically corrected by the National Cartographic Center ofIran(NCC).CPswereselectedfromwell-definedlocationssuchasroadjunctions,intersections, andotherwelldefinedfeatures. ThetotalRMSlocationerrorsoftheETM+andMODISimageswere 0.52and0.54pixels,respectively. TheLandsat7ETM+sensorhadaScanLineCorrector(SLC)failure where all Landsat ETM+ images have a wedge-shaped gap on both sides of a scene, resulting in approximately 22% data loss [52]. We tested several gap filling methods including USGS gap fill method(triangulationinterpolation),InverseDistanceWeight,LocalPolynomialInterpolation(LPI), RadialBasisFunctions,andKrigingwithdifferentvariogrammodelsandcomparedthemwiththe simulatedSLC-offimages,whichhelpedustounderstandtheiraccuracyquantitatively. Theresult showedthatKrigingcouldaccuratelydescribethespatialdependenceofgaps(anoverallRMSEvalue of5rawDNvalue). Geostatisticalmethods(krigingorco-kriging)arecommonlyusedasthemost suitablemethodtofillthedatagaps[53,54]. Thus, weusedthekriginginterpolationtechniqueas themostsuitablemethodforestimatingpixelvalues(DN)forlocationsthathadgaps(nodata)in ETM+rawdata[53,54](dated6August2012)coveringtheZaringolareaforallbandsexceptforthe panchromatic band (band 8). There were repetitive stripes over the entire image of MODIS Terra band5(1.230–1.250µm). Band5wasusedinthisstudytocalculatethevegetationandbio-physical indicessuchasAlbedoandtheNormalDifferenceWaterIndex(NDWI)asameasureoffuelmoisture content. Similar to the processing of Landsat ETM+, kriging (ordinary) interpolation was used to correctthestripenoiseofBand5oftheMODISdata(dated6August2012). Variousvegetationindices, biophysicalandatmosphericvariablesthatarerelevanttoestimatingMCIinthisstudyareprovided inAppendixA. 2.6. UpscalingInSituLeafMoistureandLeafDryMatterContentUsingLandsatETM+Data Upscalingisawayoftakinginformationbasedonobservationsthathaveasmallspatialdomain andextendingthatdomaintoalargergeographicarea. MCIcalculatedusingfielddatawerecombined with spectral indices calculated using ETM+ data to develop empirical models to estimate MCI at a large spatial scale. Both Multiple Linear Regressions (MLR) and Artificial Neural Network (ANN) techniques were used for scaling up (see below). We identified 13 parameters (vegetation indices,biophysicalandatmosphericvariables)thatwerepotentiallyrelevanttotheestimationofMCI (AppendixA)alongwiththesubsetofspecificonesusedinthisstudy. Asourpredictorvariables includemultiplefactors,multicollinearitycanbeacomputationalproblemthatarisesintheanalysisof regressionandANNmodelswhenthereisinter-correlationbetweenseveralindependentvariables. Asaresultoftheinterrelationships,PrincipleComponentAnalysis(PCA)wasusedinthisstudyto reducethecollinearityofthepredictorvariables,whichcanextractthesmallernumberofuncorrelated componentsformodeling. Wereducedtheinitialsetof13parametersto4pertinentonesbyutilizing aPCA.Thefirstandsecondprincipalcomponentsusuallycontainthemostvariance.However,inorder toextractthegreatestinformationfromthesepredictorvariablestheVarimaxrotation(aprocedurein whichtheeigenvectors/factorsarerotatedinanattempttoachievesimplestructure)ofPCAwasused. Varimax1andVarimax2wereusedtogeneratetwodifferentsetsofequationsforETM+;onefor DFMCandanotheroneforLFMC,RWC,andLDMCasshowninEquations(1)–(4).ThePCAconsistsof atransformationoftheinputdataset(e.g.,Airtemperature,RH,LST,LAIandAlbedoforEquation(1)) toreducethedimensionalityofdatasetsandproduceuncorrelatedoutputdata. Thefirstandsecond RemoteSens.2016,8,961 8of25 Varimaxes were extracted from Equations (1) and (4) which explain the total variance of 80% for Equations(1)and(2)and84%forEquations(3)and(4). VARIMAX = (0.13×AIRTEMPERATURE)+(0.017×RH)+(0.11×LST) 1DFMC (1) +(−0.34×LAI)+(0.08×ALBEDO)+(−10.34) VARIMAX = (−0.084×AIRTEMPERATURE)+(0.094×RH)+(0.02×LST) 2DFMC (2) +(0.28×LAI)+(0.08×ALBEDO)+(−6.07) VARIMAX 1LFMC,RWC,andLDMC =(1.02×GBNDVI)+(0.0002×NCI)+(2.04×NDII)+(0.58×NDVI) +(2.99×NDWI)+(0.61×OSAVI)+(0.53×SLAVI)+(0.61×VARINIR) (3) +(0.07×AIRTEMPERATURE)+(0.03×RH)+(0.05×LST)+(0.1 ×LAI)+(0.05×ALBEDO)+(−12.47) VARIMAX 2LFMC,RWC,andLDMC = (−0.68×GBNDVI)+(−1.75×NCI)+(0.97×NDII) +(−0.89×NDVI)+(1.59×NDWI)+(−0.86×OSAVI) (4) +(0.23×SLAVI)+(−0.86×VARINIR) +(0.13×AIRTEMPERATURE)+(0.03×RH)+(0.1×LST) +(−0.09×LAI)+(0.07×ALBEDO)+ (−8.52) 2.6.1. MultipleLinearRegression(MLR) Multiplelinearregression(MLR)isaformoflinearregressionthatisusedtomodeltherelationship betweentwoormoreindependentvariablesandadependentvariablebyfindingthebest-fittinglinear equationtoobserveddata. MLRanalysiswasconductedtoestimateMCIovertheentirestudyareaof Zaringol. Varimax1andVarimax2(Equations(1)–(4))wereusedinsteadofthe13and5variablesas showninMLREquations(5)–(8). Outofatotalof32samples,77%ofthedatacollectedinthefield wereusedtotraintheMLRmodelintheregressionanalysis,whiletheremaining23%wereusedfor validatingtheperformanceofthemodel. RWC=64.4+7.6X +(−8.83X ) (5) 1 2 LDMC=25.15+(−2.85X )+3.61X (6) 1 2 LFMC=183.44+51.29X +(−34.35X ) (7) 1 2 DFMC=17+(−3.26X )+4.1X (8) 1 2 whereX andX areVarimax1andVarimax2,respectively. 1 2 2.6.2. ArtificialNeuralNetwork(ANN) Typically,neuralnetworksareorganizedinlayers. Inthisstudy,thetypologyoftheANNusedto estimateMCIfromETM+dataconsistedofaninputlayer,ahiddenlayer,andanoutputlayer. Inthe inputlayer,theneuronsperformpreprocessingproceduresoninputdata(e.g.,Varimax1andVarimax2) such as normalization or scaling. However, the main processing occurs in the hidden and output layers. Thereareneuronsinthehiddenlayerandoutputlayer. Eachneuronhasanactivationfunction thatconnectstheoutputofaneurontoagiveninput. Onehiddenlayerisusuallyenoughinsuch networkstorealizeanyrelatinginputtooutputdata[55]. Thesizeofthehiddenneuronsisbetween thesizeofinputandoutputlayers. Basedon[56],threeneuronsinonehiddenlayerofanetwork structurewereusedinthisstudyforthetwoinputlayers(Varimax1andVarimax2obtainedfrom PCA(Equations(1)–(4))andoneoutputlayer,eitherLFMC,RWC,LDMC,orDFMC.Theactivation functionofthehiddenlayersusedinthisstudywasTanhAxonwhichappliesabiasandtanhfunction RemoteSens.2016,8,961 9of25 toeachneuroninthelayer. Thealgorithmusedfortrainingisthefeedforwardmultilayerperceptron (MLP)usingtheLevenbergMarquardtback-propagationmethod. TheNewtonLevenbergMarquardt wasusedfortrainingtheANNbecauseitdoesnotneedlearningratesandmomentummakingthem easiertousecomparedtothebackpropagationmethod[57]. Thedatasetwasdividedintotraining, testing,andvalidation. Outofatotalof32samples,65%(21plots)ofthedatasetwasusedfortraining, 23%(7plots)wasusedforcrossvalidation,and12%(4plots)wasusedforrandomtesting. During trainingtheANN,meansquarederror(MSE)wasusedtokeepthenetworkfromoverfitting. 2.7. UpscalingFuelMoistureandLeafDryMatterContentDerivedfromETM+toMODIS Although Landsat ETM+ can provide comparatively detailed information on MCI at a large spatialextent,thesedataarenotsuitablefordailymonitoringofMCI,whichiscriticalforforestfire monitoring. Therefore,weusedMODISdatathathasdailycoverageoverthestudyarea. Weup-scaled MCIestimatedusingETM+datatoMODISdataresolutionusingMLRandANNtechniques. TheMCI estimated from Landsat ETM+ were aggregated from 30 m to 500 m using the nearest neighbor resamplingmethod, acommonup-scalingscheme. Thestructuralsimilarityindex(SSI)wasused tocomparetheoriginal30mMCIandaggregated500mMCI.SSIwasusedmainlytomeasurethe structuralinformationsimilaritiesbetweenthetwoimages,whichisbetterthantraditionalmethods suchaspeaksignal-to-noiseratio(PSNR)andmeansquarederror(MSE). The same vegetation indices and biophysical and atmospheric variables (Appendix A) were calculatedusingMODISdataandtheseparameterswerecorrelatedwithresampledMCIat500m. Directupscalingfromin-situMCImeasurements(30m)toMODISdata(500m)maycauseerrorswhen estimatingMCIbecauseofthescalediscrepancybetweenthesedatasetsasexplainedinSection3.3. As for the ETM+ data, we used PCA to retrieve fewer and less co-related spectral indices and atmosphericvariablescalculatedusingMODISdata. ThePearsoncorrelationwasusedtodetermine the maximum possible relationship of each factor to four MCI indicators. A high correlation was foundbetweenbothVarimax1andVarimax2withLFMC(R=0.8and0.03),RWC(R=0.84and−0.1) and LDMC (R = −0.84 and −0.07). For DFMC the first two components of PCA produced higher correlation coefficient (R = −0.6 and 0.52) compared to Varimax1 and Varimax2 (−0.58 and 0.23) therefore,Principlecomponents1and2wereusedtoestimateDFMC.TheaggregatedETM+MCI at 500 m and Varimax1 and Varimax2 were used to estimate LFMC, RWC, and LDMC and PC 1 and2ofPCAwereusedtoestimateDFMC.Twodifferentsetsofequationsweregenerated,onefor DFMCandanotheroneforLFMC,RWC,andLDMCasshowninEquations(9)–(12). Thefirstand secondprincipalcomponentsinEquations(9)and(10)explained83%and90%ofthetotalvariationin Equations(11)and(12),respectively. PrincipleComponent 1DFMC = (0.13×LST) +(0.2×AIRTEMPERATURE)+(20.28 (9) ×ALBEDO)+(−0.87×LAI)+(0.04×RH)+(−12.55) PrincipleComponent 2DFMC = (−0.03×LST) +(−0.03×AIRTEMPERATURE)+(0.36 (10) ×ALBEDO)+(0.76×LAI)+(0.12×RH)+(−3.46) VARIMAX 1LFMC,RWC,andLDMC = (0.0017×LST)+(0.0076×AIRTEMPERATURE) +(6.3×ALBEDO)+(0.83×GBNDVI)+(1.79×NDWI)+(0.95 (11) ×VARINIR)+(0.22×SLAVI)+(0.23×LAI)(0.03×RH) +(1.56×OSAVI)+(0.89×NDVI)+(0.95×NDII)+(0.7×NCI) +(−6.17) RemoteSens.2016,8,961 10of25 VARIMAX 2LFMC,RWC,andLDMC = (0.05×LST)+(0.099×AIRTEMPERATURE) +(21.2×ALBEDO)+(0.17×GBNDVI)+(1.52×NDWI)+(0.39 (12) ×VARINIR)+(0.12×SLAVI)+(0.09×LAI)(0.08×RH) +(1.13×OSAVI)+(0.33×NDVI)+(0.61×NDII)+(−2.3×NCI) +(−11.37) 2.7.1. MultipleLinearRegression(MLR) Principle components 1 (PC1) and 2 (PC2) and Varimax1 and Varimax2 (Equations (9)–(12)) wereusedtoestimateLFMC,RWC,LDMC,andDFMCusingMLRasshowninEquations(13)–(16). Approximately77%ofthestudyarea(2029pixels)wasusedtotrainthemodel,and15%(606pixels) wasusedtovalidatetheperformanceofthemodel. RWC=69.57+11.16X +(−6.71X ) (13) 1 2 LDMC=2497+(−8.18X )+2.74X (14) 1 2 LFMC=209.81+61.84X +(−23.32X ) (15) 1 2 DFMC=18+(−1.39X )+2.60X (16) 1 2 where X and X indicate VARIMAX1, VARIMAX2 (for LFMC, RWC, LDMC), and PC1, and PC2 1 2 (forDFMC). 2.7.2. ArtificialNeuralNetwork(ANN) ThestructureoftheANNmodelimplementedtoestimateMCIfromMODISwassimilartothe structureimplementedwiththeETM+data. However,theinputlayerswereVarimax1,Varimax2, PC1andPC2whichwereobtainedfromPCA(Equations(9)–(12)). Approximately65%(1713pixels) of the aggregated MCI dataset were used to train the ANN, 23% (606 pixels) was used for cross validation,andtheremaining12%(316pixels)wasusedtoassesstheaccuracyoftheresultsproduced byANNandalsofortheoptimizationoftheANNmodel. Inthisstudy,crossvalidationwasusedto detectover-fittingofdataduringthetrainingstageoftheneuralnetwork. Thisanalysisstopstraining to avoid over-fitting in the output (LFMC, RWC, LDMC, and DFMC) and the performance of the modelcanbeaccuratelyassessedandMeanSquareError(MSE)wasusedtoavoidANNoverfitting (ANNwasstoppedwhentheMSEbegantorise). 2.8. ValidationofEmpiricalModels The results of estimated MCI indicators (using ANN and MLR models) using Landsat ETM+ (30m)werevalidatedwithMCIdatacollectedinthefield(30mplotsize). Subsequently,theresults of MCI estimated using MODIS data were validated with MCI estimated by ETM+ (aggregated pixels from 30 m to 500 m to match with the MODIS data). Various statistical measures such as RootMeanSquareError(RMSE),MeanAbsoluteError(MAE)andtheMeanAbsolutePercentage Error(MAPE)wereusedtovalidateresultsfromthemodel. TheaggregatedLandsatproductsand the MODIS products were compared using the residual standard error measure which shows the difference(residuals)betweenvaluesofMODISderivedindices(LFMC,RWC,LDMC,andDFMC values)andaggregatedMCImetricsfromETM+. Thisisausefulmethodbecauseitrepresentsthe spatialdifferencesofaggregatedLandsatMCIandMODISMCIbetweenANNandMLR.Itcanclearly showlocationswithsimilarordissimilarMCIvaluesobtainedfrombothMLRandANNtechniques. AvalueofzeroresidualstandarderrormeansMODISderivedindices(eitherusingANNorMLR) weresimilartotheMCImetricsaggregatedfromETM+data.
Description: