ebook img

Estimates of unresolved point sources contribution to WMAP 5 PDF

0.38 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Estimates of unresolved point sources contribution to WMAP 5

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed20January2010 (MNLATEXstylefilev2.2) Estimates of unresolved point sources contribution to WMAP 5 1 1 L.P.L. Colombo & E. Pierpaoli , 1UniversityofSouthernCalifornia,LosAngeles,CA,90089-0484 0 1 Accepted???.Received???;inoriginalform??? 0 2 n ABSTRACT a J We present an alternative estimate of the unresolved point source contribution to the 0 WMAPtemperaturepowerspectrumbasedoncurrentknowledgeofsourcesfromradiosur- 2 veysinthe1.4−90GHzrange.Weimplementastochasticextrapolationofradiopointsources intheNRAO-VLASkySurvey(NVSS)catalog,fromtheoriginal1.4GHztothe∼100GHz ] frequencyrangerelevantforCMB experiments.With a bootstrapapproach,we generatean O ensembleofrealizationsthatprovidestheprobabilitydistributionforthefluxofeachNVSS C sourceatthefinalfrequency.ThepredictedsourcecountsagreewithWMAPresultsforS >1 . Jy and the correspondingsky mapscorrelatewith WMAP observedmapsin Q-, V- and W- h bands, for sources with flux S > 0.2 Jy. The low–frequencyradio surveysfound a steeper p - frequencydependenceforsourcesjustbelowtheWMAPnominalthresholdthantheoneesti- o matedbytheWMAPteam.Thisfeatureispresentinoursimulationsandtranslatesintoashift r of0.3−0.4σ intheestimatedvalueofthetiltofthepowerspectrumofscalarperturbation, t s ns, aswell asωc. Thisapproachdemonstratesthe use ofexternalpointsourcesdatasetsfor a CMBdataanalysis. [ 1 Key words: cosmic microwave background- cosmology:observations- radio continuum: v general-radiocontinuum:galaxies 9 5 6 3 1 INTRODUCTION 2009). Significant improvements will come from Planck and the . 1 nextgenerationCMBmissions. 0 0 ModernCosmicMicrowaveBackground(CMB)observationspro- However,exploitationofthefullpotentialofCMBmeasure- 1 videapowerfultestofourunderstanding oftheUniverse.Within ments requires a deep understanding of instrumental systematics : the generally accepted framework of a ΛCDM model, the 5- and a careful cleaning of foreground contaminants. On small an- v yearmeasurementsbytheWilkinsonMicrowaveAnisotropyProbe gular scales, extragalactic point sources are an important source i X (WMAP)constrainthefundamentalcosmologicalparameterswith ofcontamination.Brightsources,whichcanbedetectedwithhigh arelativeaccuracyof1 10%(Dunkleyetal.2009;Komatsuetal. significanceinCMBmaps,aretypicallyaccountedforbymasking r − a 2009),whiletheupcomingobservationsbythePlancksatelliteare a small area around the source position during the estimation of expected to improve these numbers by at least a factor 3 4 theCMBangularpower spectra,Cℓ.Ontheother hand,toafirst ∼ − (e.g. ThePlanckCollaboration 2006; Colomboetal. 2009). One approximation,undetected,andthereforeunmasked,pointsources of the main scientific goals of Planck, and other proposed future provideaPoissonnoisecontributiontothemeasuredCℓaswellas CMBmissions(e.g.EPIC,Bocketal.2009),isunderstandingthe a non-Gaussian signature in the maps (e.g. Toffolattietal. 1998; nature of Inflation. Detection of the B-mode of CMB polariza- Pierpaoli 2003; Pierpaoli&Perna 2004; Serra&Cooray 2008; tionwouldprovidedirectevidenceofaprimordialbackgroundof Babich&Pierpaoli2008).Anincorrectdeterminationofthiscon- Gravitational Waves arising from Inflation (Kamionkowskietal. tamination can lead to relevant biases on the estimated cosmo- 1997; Spergel&Zaldarriaga 1997). Even without such detection logical parameters, in particular on ns (Huffenbergeretal. 2006, theCMBremainsthemostpowerfulprobeofInflationcurrentlyac- 2008),whoseaccuratemeasurementdependsonacarefulestimate cessible.Ageneralpredictionofinflationarymodelsisthatthefrac- ofCℓoverthelargestrangeofscalesprobedbyanexperiment.In tionalamplitudeofdensityfluctuationswouldbenearlyscaleinde- thisrespectthegreatestexpectationsarenowonPlanck,whichis pendent, sothatthecorresponding power spectrumcouldbewell awholeskysurveywithasmallinstrumentalbeamandlownoise approximatedbyanHarrison-ZeldovichformP(k) kns,where level.Ifforegroundsandsystematicsarewellundercontrol,Planck ∝ thespectralindexns 1.Theamount ofdeviationns 1con- will be able to confirm or falsify the WMAP findings about ns ≃ − strainstheshapeoftheinflationarypotential,andcurrentWMAP beingsignificantlysmallerthanone.Asinflationpredictsthatthe results already allow to rule out several models (Komatsuetal. levelofdepartureonnsfromoneisproportionaltotheamountof (cid:13)c 0000RAS 2 L.P.L. Colomboet al. gravitationalwavesexpected,thisalsohasimplicationsonthelevel ing.Here,however,werefrainfromusinganalternativelikelihood ofB-modepolarizationsignalexpectedandisinturnrelevantfor approachtothetreatmentofpointsourcesintheparameterestima- thedesignandplanningoffuturemissions.Itisthereforeappropri- tionandadopttheWMAPstrategytothataim. atetotrytoapproachtheissueofpointsourcecontaminationfrom Theoutlineofthepaperisasfollow.InSection2webriefly differentanglesandconceivedifferentapproachestodealwithit. reviewthecontributionofunresolvedsourcestoCMBtemperature Inthispaper,weundertakethispathwithanapplicationtoWMAP spectra.Section3describesourextrapolationprocedureofNVSS dataanalysiswhichcouldleadtonewapproachesforpointsources source to WMAP frequencies. In section 4 and 5 we discuss the subtractionforPlanck. implicationofourapproachatthenumbercountsandmapslevel, At frequencies around 1 GHz there is a wealth of infor- respectively,whileinsection6wedebatethecorrespondingimpact ∼ mationonextragalacticsources,fromnearlyfull-skysurveyswith ondeterminationofcosmologicalparameters.Finally,insection7 high angular resolution and flux sensitivity, like the Green Bank wedrawourconclusions. TelescopeGB6survey(Gregoryetal.1996),theNRAO-VLASky Survey(NVSSCondonetal.1998)ortheFaintImagesoftheRa- dio Sky (FIRST Beckeretal. 2003). On the other hand, at fre- quencies 100GHz,correspondingtotheoptimalobservational 2 UNRESOLVEDSOURCESCONTRIBUTIONTOCMB windowf∼orCMBexperiments,thereareonlyfewdedicatedstud- SPECTRA ies covering a handful of sources. Most information comes from The angular resolutions of WMAP (& 13 arcmin) and Planck sourcesdetectedinCMBexperimentsthemselves,typicallyrepre- (& 5 arcmin) are significantly larger than the angular dimen- sentingonlythebrightendofthepointsourcedistribution.Inaddi- sionsoftypicalextragalacticradiosources,whichcanthenbeef- tion,thislackofinformationlimitedthepossibilityofextrapolating fectively considered as point–like objects in the resulting CMB datafromlowfrequenciestotheCMB“goldspot”. maps. Several works studied the secondary contribution to CMB To estimate the residual point sources contribution, the anisotropies due to point sources below the detection thresh- WMAPteamassumedthatunresolvedsourcesfollowedthesame old (e.g. Franceschinietal. 1989; Tegmark&Efstathiou 1996; frequencyscalingasthebrightsourcesdetectedinthe5yearmaps. Toffolattietal. 1998; Scott&White 1999). In this section we Theoverallnormalizationoftheresidualpowerspectrumwasthen brieflysummarizethemainresults. determinedbyafittomapsatthreehighest frequencies. Thisap- Unresolved sources contribution toCℓ can bedivided intoa proachcanbeconsideredinternal,asittakesintoaccount(mostly) Poissontermduetotherandomsourcespositioning,andacorrec- onlytheWMAPdataitself,withoutrelyingonthelow-frequency tionaccountingforclusteringinthesourcesdistribution.Wecon- information form other available point sources surveys. As other siderCMBobservationsatasinglefrequencyν0 andsupposethat radio surveys provide alternative and further information on ra- allsourcesabovealimitfluxScwillbedetectedandmaskedfrom diosourcesproperties,incorporatingsuchresultsintheCMBdata thefinalmap,andassumeasourcepopulationcharacterizedbythe analysis pipeline could improve the estimation of the extragalac- differentialcountsdN(>S)/dS. ticsourcescontamination,orprovideanexternalcrosscheckofthe The Poisson noise contribution to the measured CMB Cℓ is WMAPresults. thengivenby: DifferentauthorsprovidedestimatesofsourcecountsatCMB frequenciesonthebasisofthephysicalpropertiesofthedifferent src 2 Sc 2 dN sourcepopulations(e.g.Toffolattietal.1998;deZottietal.2005). Cℓ =g (ν0)Z0 dSS (cid:12)(cid:12)dS(cid:12)(cid:12) (1) However,multifrequencystudies,describingthescalingofsources (cid:12) (cid:12) whereg(ν)convertsfromfluxdensitytothe(cid:12)rmod(cid:12)ynamictempera- frommiddle frequencies, ν 20 GHz, to 100 GHz, are now ∼ ∼ ture: starting to appear (Sadleretal. 2008) and more are expected in the future. Together with existing studies describing sources’ be- c2h2 (ex 1)2 hν g(ν)= − , x= . (2) haviour fromlowtointermediatefrequencies, theseallow topre- 2k3T02x2 x2ex kT0 dictsourcescontaminationinCMBmapsstartingfromthelowfre- The source correction does not depend on ℓ and, since approx- quencysurveys.Suchpredictionscouldbeusedinfuturedataanal- ysistomakespecificassessmentsonpointsourcescontamination imately Cℓ ∝ ℓ−2 at high multipoles up to ℓ ∼ 2000, the sourcecorrectionbecomesrelevantonangularscalessmallerthan inCMBmapsinrealspace,andaccountforthemwithtechniques 180/ℓ 180/1000 0.2deg.Thecorrectionduetoclusteringis differentfromtheFourier–basedonescurrentlyused. ∼ ∼ givenby: Inthisworkwefollowtheempiricalapproachoutlinedabove tdcoaattaaaslosaengsdsaistthsaeimtuepnmarepcstlaootlenvecodofspsmooiounlrtocgesoicfluaurlcxepesasrcaaomnndetrtpieboruss.tiitWoionentsuosaetthterhaeWdiNoMVfASrePS- Cℓclust =g2(ν0)ωℓ(cid:18)Z0ScdSS (cid:12)(cid:12)ddNS(cid:12)(cid:12)(cid:19)2 ; (3) (cid:12) (cid:12) quency, and extrapolate thatinformation toCMB frequencies. At hereωℓ istheharmonictransformofthesou(cid:12)rcetw(cid:12)o-pointangular difference with previous works, we extrapolate each individual correlationfunction. source in the NVSS rather than generating source populations at Real CMB experiments typically have complicated noise CMBfrequenciesbyrandomlysamplingatheoreticaldistribution, properties,duetoacombinationofeffectsincludinginstrumental orbyextrapolatingonlythestatisticalpropertiesofthesourcepop- systematics,scanningstrategyandforegroundremoval.Asaconse- ulation(e.g.Waldrametal.2007).Thisworkthereforeprovidesa quence,theprobabilityofdetectingapointsourcewithfluxS0will crosscheck of WMAPestimatesof undetected point sources con- notbeuniformonthewholeskyandSc willnotbewelldefined. tamination,andhenceofthedeterminationofnsandotherparam- Thisisnotirrelevant astheunresolved point sourcesspectrumin eters.Asmentionedabove,sincethisapproachmaintainstheinfor- eq.1istypicallydominated bythestrongest amongst theresidual mationontheactualspatialdistributionofsources,itcanbeuseful sources.Whilethesourcepopulationabove& 1JyintheWMAP incleaningfuturePlanckmapsortoestimatetheimpactofcluster- 5yearcatalog(WMAP5,Wrightetal.2009)iswelldescribedby (cid:13)c 0000RAS,MNRAS000,000–000 3 GHz). We will show this population to be dominated by sources withflatspectrum(α> 0.5andS να),thereforecorrespond- − ∝ ingtosourceswithfluxesfromafewhundredsofmJytoafewJy at1.4GHz. Inordertoperformtheextrapolation,weconsidered thefol- lowingsetsofmeasurements: TheNRAO-VLASkySurvey(NVSS):itcovers thefull sky no•rth of 40deg declination with an angular resolution of 45′′ at 1.4 GH−z. It includes about 1.8 106 discrete sources with a × completenesslimitofS1.4 =2.5mJy. TheGreenBankTelescopeSurveyat6cm(GB6)observedthe • skyinthedeclinationband0deg < δ < 75degwithanangular resolution 3.5′ (however,theactualbeamisnotcircular).Itin- ∼ cludes75162sourcesaboveS4.8 =18mJy. TheNVSSfollowupmeasurementsbyMasonetal.(2009).A • setof3165NVSSfaintsourceswithS1.4 < 100mJyandfalling intheCosmicBackgroundImager(CBIReadheadetal.2004)field wasobservedatν =31GHzusingtheGreenBankTelescopeand theOwensValleyRadioObservatory.Theresultingsetofobserva- tionsallowedtoderivethedistributionofspectralindexesα31.14for sourceswithS1.4 60.1Jy. Figure 1. Fraction of unresolved source contribution to WMAP spectra TheNinthCambridgeSurveyat15GHz(9C)followupobser- attributed to sources with fluxes 6 S∗, assuming that all sources with vat•ionsbyWaldrametal.(2007).Thecatalogincludes121sources S > 0.7Jyhavebeenremovedfromthemaps.WeusedthedeZottiet selectedat15.2GHzwithacompletenesslimitofS15 = 25mJy al.(2005)modelforthenumbercountsofsourceswithS<0.7Jy.Sources andsimultaneousmeasurementsat4.85,15.2,22and43GHz.As below0.1Jycontribute.10%ofthetotalunresolvedpower. the9CsurveycoverstheskyareaobservedbytheVerySmallAr- ray(VSAWatsonetal.2003),whichwasselectedtobedevoidof anEuclideanscalingofthenumbercountsdN/dS S−2.5,de- brightsources,thesamplecontainsonlyahandfulofsourceswith ∝ tectedfaintersourcessuffersfromsignificantcompletenessissues. S >100mJy. Dependingonthefrequencybandconsidered,& 90%ofdetected TheAT20GfollowupobservationsbySadleretal.(2008).The • sourceshaveaflux> 0.7Jy.Assumingthenanoptimisticdetec- workpresentstwosamplesofsourcesselectedat20GHzwithsi- tionthresholdSc =0.7JyandthedeZottietal.(2005)modelfor multaneousmeasurementsat90GHz:afirstsetof59invertedspec- dN/dS,wecanestimatethatsourceswithS . 0.1Jycontribute trasourceswithS20 >50mJy,andaflux-limitedsamplecompris- . 10% of the total unresolved source power in WMAP data, as ing 70 sources with S20 > 150 mJy. We consider here only the showninfigure1.Onthecontrary,forPlanck,whose90%detec- flux-limitedsample,whichconstitutesour mainreferencesample tion confidence limit is expected to be Sc = 0.2 Jy at 100 GHz for the extrapolation of sources with S20 6 1 Jy from 20 to 94 (Vielvaetal.2003),sourceswithS 0.1Jywillplayadominant GHz. roleindeterminationofCsrc.There∼fore,theaccuracyrequiredfor Atfrequenciesabove 23GHzandforfluxesabove 1Jy, ℓ • ∼ ∼ theextrapolationsatagivenfluxleveldependsonthecharacteris- themostcomprehensivesurveyofpointsourcesisprovidedbythe ticsofthetargetexperiment. WMAP5yearcatalog.WMAPobservedtheskyatfivebroadbands K,Ka,Q,VandWwithcentralfrequenciesof 23,33,41,61,94 ∼ GHzrespectively.Thecatalogincludesatotalof390sourceswhich havebeendetectedwitha5σconfidencelevelinatleastoneofthe 3 EXTRAPOLATIONPROCEDURE bands,andiscompleteforfluxesabove 1Jyinallbands. ∼ 3.1 ReferenceCatalogs Instead of extrapolating sources directly from NVSS to WMAP 3.2 Method frequencies,weconsideranumberofintermediatesteps,depend- ingontheinitialfluxofthesourceconsidered.Thisisparticularly Since the number of sources with high frequency information is relevant at frequencies below 20 GHz, where a single power law smallerthanthenumber ofNVSSsources, reconstructingtheac- is not an accurate description for many sources (e.g. Sadleretal. tualscalingofindividualsourcesisnotpossible.Ourassumptionis 2006). By introducing several intermediate steps, we account for thusthatfromthereferencecatalogsdiscussedabove,wecanbuild thediversityofbehaviours observedinthedata.Thenumber and referencesampleswhicharerepresentativeofthebehaviourofthe frequency range of the steps used here was determined by avail- wholesourcepopulationintherespectiverangeoffrequenciesand able data. Inselecting thereference catalogs that wewill use for fluxes.Wethenperformasetofbootstrapsimulationsinwhichat theextrapolation,ourgoalwastogetacoverageoffluxesrelevant eachextrapolationstep,asimulatedsourceisrandomlypairedtoa for the estimation of unresolved sources contribution to WMAP referencesourceinthecatalogcoveringthenexthigherfrequency data over the full range of frequencies considered. While this is range considered, and we use the measured spectral index of the notanissueinthe GHzrange,coveragebecomessketchierand referencesourcetofurtherextrapolatethesimulatedsource.Some ∼ patchierathigherν.Accordingtothediscussioninsection2,the ofthecatalogsconsideredprovidemultifrequencyinformationfor maincontaminationtoWMAPspectraisduetoundetectedsources theirsources.Whenthisisthecase,weusethesetofspectralin- withfluxes 0.1 0.7 Jy in the CMB frequency range (40 90 dexesofthecatalogsourcetoextrapolatefluxesovertherangeof ∼ − (cid:13)c 0000RAS,MNRAS000,000–000 4 L.P.L. Colomboet al. frequenciesconsidered.ForeachsourceintheNVSScatalog,we generate a set of 800 simulations. Whilein two different simula- tionsagivensourcecanbeextrapolatedindifferentways,thesetof simulationsprovidestheprobabilitydistributionforfluxatWMAP frequencies. Inbroadterms,wedefinetwomainfrequencyranges:1)the interval from NVSS to the lowest WMAP band, 1.4 23 GHz, − and 2) the WMAP frequency range, 23 94 GHz. Sources with − S1.4 6 100 mJy are extrapolated directly to 23 GHz according toMasonetal.(2009), whilefor thosewithS1.4 > 300 mJywe introduceanumberofintermediatestepsbasedbasedontheGB6 andWaldrametal.(2007)measurements.Intheintermediateflux range, we weight the two approaches in order to fit the 33 GHz lowfluxcounts.From23GHzupwards,sourceswithS23 > 1Jy arepropagatedbasedontheWMAP5catalog,whileforlowerflux sources we base the extrapolation on the Sadleretal. (2008) and Waldrametal.(2007)referencesamples. Inthefollowing,wediscusseachstepindetail: The1.4GHzto4.85GHzreferencesample.Kimball&Ivezic´ • (2008)provideaunifiedcatalogofsourcesfromfourradiosurveys NVSS,GB6, FIRST,WENSand fromtheoptical SDSSsurveys, Figure2.Theaverage1.4−4.85GHzspectralindexofGB6sourcesas matching sources in the different catalogs. From the NVSS-GB6 afunctionof1.4GHzflux.BelowS1.4 ∼ 100mJyNVSSsourceswitha pairings identified in that work, we construct a reference sample GB6counterpartarebiasedtohaveupturnspectra. ofsourceswhichprovidesspectralindexesbetween1.4GHzand 4.85 GHz. Weconsider only pairsin which the GB6counterpart isfoundwithin70′′ oftheNVSSsource, corresponding toanes- fallbelowtheGB6detectionthreshold.Waldrametal.(2009)find timated completeness of 0.979 and an efficiency (fraction of de- that4.3%ofsourcesselectedat15.2GHzwith10mJy 6 S15 6 tectedpairscorrespondingtoactualphysicalmatches)of0.79(for 15mJy do not have an NVSS counterpart. GB6 sources are se- furtherdetailsseeKimball&Ivezic´2008).Inaddition,weexclude lectedwithhigherthreshold(18mJy)andatlowerfrequenciesthan sources flagged as extended in the GB6 survey and include only Waldrametal. (2009). Therefore, sources of type (a) would re- unique pair of sources, i.e. sources in one catalog with multiple quire spectral indexes significantly more rising than those of the matchesintheothercatalogareexcluded.Sincemultiplesidelobes rising population discussed in that work, an we expect the frac- ofasinglesourcemayshowupasdifferentNVSScomponents,in tion of sources detected at 4.85 GHz but not in the NVSS to be thiswaywemaybiasthepairstowardcompactsources.However significantly lower than Waldrametal. (2009) estimates. Regard- NVSSresolutionissuch that lessthan 1% of sources isresolved ing point (b), we note that sources in the reference sample with intomultiplecomponents(Bestetal.2005),comparedwith 7% 100 6 S1.4 6 200 mJy have an average spectral index α41..84 = ∼ ofGB6sourceswithmultipleNVSSmatchesinthereferencecat- 0.84 0.34.ThereforeweestimatethefractionofNVSSsources − ± alog. Wethenconclude that themajorityof multiplematcheswe withnoGB6counterpart tobe 5% at 100mJy and 0.5% at ∼ ∼ findarespuriouspairs. 150mJy. The distribution of spectral indexes so obtained describes the From1.4GHzto23GHzforsourceswithS1.4 > 300mJy. • 1.4 4.85GHzbehaviourofsourcesselectedattheGB6frequency, From the previous discussion, we conclude that the thinned ref- − andcanbeusedtoaccuratelypropagatesourcesfrom4.85GHzto erence sample defined above provide an accurate description of the lower frequency. In order to use this distribution to extrapo- thefrequencyscalingfrom1.4to4.85GHzforthepopulation of latefrom1.4GHztohigherfrequencies,someadjustmentsarere- sourceswithS1.4 &300mJy,whichareresponsibleforthebulkof quired.TheNVSSsurveyhasafluxlimitof2.5mJy,whiletheGB6 sourcecontaminationatCMBfrequencies.Therefore,eachNVSS includes sources above 18mJy, therefore low–flux NVSSsources sourcewithS1.4 > 300mJyisrandomlypairedtoaspectralin- whichappearalsointheGB6surveywillbebiasedtohavearis- dex αi from the corresponding flux bin of the thinned reference ingspectralindex. Figure2showstheaverageα41..84 asafunction sample.Wethenrandomlydrawaspectralindexα¯ fromaGaus- ofS1.4.WhileforS1.4 &0.3Jythespectralindexisadecreasing sian with mean αi and width δαi. In this way we incorporate in functionoftheNVSSflux,forS1.4 . 0.1Jyα41..84 showsasteep theextrapolation the measured uncertainty on αi, however, since upturnduetocompletenessissues.Wethereforeexcludefromthe the distribution of the reference spectral indexes is not necessar- referencesampleallsourceswithS1.4 60.1Jy.Wefurtherdivide ilyGaussian,theoveralldistributionoftheα¯bothwithinasingle thereferencesamplein10logarithmicbinscoveringthefluxrange realizationandamongdifferentrealizationswillnotbeGaussian. 0.1 3.0 Jy, depending on the value of S1.4, with an additional ThefluxoftheNVSSsourceisextrapolatedto4.85GHzassuming bini−ncludingallsourceswithS1.4 >3Jy.Intheendthereference S να¯.Thesourceisthenpropagatedto23GHzusingthespec- ∝ sampleincludes 31000sources,withcorrespondingspectralindex tralindexes by Waldrametal. (2007). Sincethefluxthreshold of αianduncertaintyδαi. the15.2GHzsampleishigherthantheGB6limit,weneedtothin Inprinciple,sincethereferencesampleisbasedonsourceswith thecatalogtoavoidthatsourceswithlowfluxesat4.85willbias matchesinbothNVSSandGB6catalogs,wemaybemissing:a) thesampletowardflatterspectralindexes.Duetothelownumberof sourceswithstronglyrisingspectra,whichareabsentinNVSSbut sources,wecannotstudythebehaviourofα(S)asdoneinthepre- aredetectedbyGB6,orb)sourceswithverysteepspectra,which vioussection.Insteadwecomputetheaveragespectralindexα14.58 (cid:13)c 0000RAS,MNRAS000,000–000 5 using all the121 sources inthe sample. Using thisaverage α14.58, singlepower law withspectra index drawn randomly from the we extrapolate the 15.2 GHz threshold to 4.85 GHz and remove referencesampleofSadleretal.(2008); formthe4.8 15.2 GHz referencesample all sources withS4.8 – Sources with 100 < S23 < 400mJy are extrapolated − belowthisvalue.Theprocessisiterateduntilnomoresourcesare choosingrandomlybetweentheprevioustwomethods;theprob- rejected.Weareleftwith76sourceswithS4.85 > 75mJy,which ability of selecting one method over the other is given by the weassumeprovidearepresentativedescriptionofthebehaviourof relativenumberofsourcesintherelevantfluxrange. sources between 4.85 and 23 GHz. Each source simulated at the In addition, when at a given step wehave different extrapo- previousstepispairedwitharandomsourceinthisnewreference lation procedures depending of the flux of the source, we do not sample,anditscorrespondingsetofspectralindex.Weusethisset switchabruptlyfromoneregimetotheother,butweadoptalin- topropagatethesourceto23GHz,goingthroughanintermediate eartransitionbetweenthetwowithawidthwhichisthegreaterof stepat15.2GHz. 100mJyand10%ofthethresholdflux.Moreover,wedonotcon- From1.4GHzto23GHzforsourceswithS1.4 6 100mJy. • siderpolarization. Forlowfluxsources, S1.4 < 100mJy,weextrapolatedirectlyto 23GHzassumingS να,withαrandomlydrawnfromthedis- ∝ tributionofspectralindexesbyMasonetal.(2009).Inordertobe consistentwiththetreatmentofsourceswithS1.4 > 100mJyde- 4 RESULTS scribed above, we assumed that such distribution be valid in the range 1.4 23 GHz, even if it is based on 31 GHz followup of 4.1 Fluxdistribution − NVSSsources. Thisapproachprovidesboththeprobabilitythatasourcewithan 3up0•p0emrFrJvoyam.liSd1oit.u4yrGcliemHsizwttoiotfh2t13h0eG0MHmzaJsfyoonr<seotSua1rl..c4e(2s<0w03i9t0h)01smt0u0Jdmyy,aJaryned<abmoSav1ye.4tyh<eet wNeVllSaSsflthuexcSo1m.4plwemillehnatavreyadi9s4triGbHutzioflnuPx(SS914.4,|iS.e9.4P).(ISn9fi4g|Su1re.43),waes plotthedistributionoftheinitial1.4GHzfluxesforsourceswith beslightlyaffectedbyspuriouseffectsintheNVSS-GB6refer- encesampledefinedabove.Therefore,inthisintermediateregime, final94GHzfluxesofS94 ∼ 0.01,∼ 0.10 and∼ 1.0Jy,which werandomlychosebetweenthetwoapproachesdiscussedabove, providesanestimateofP(S1.4|S94).Theplotsrefertothefullset and tune the selection function to reproduce low flux counts at of800simulations.Figure4showsinsteadP(S94|S1.4).Ageneral expectationisthatforfluxlevelsrelevanttoCMBexperiments,the higherfrequencies.Theprobabilityofextrapolatingsourcesusing highfrequencypopulationofsourcesisdominatedbyobjectswith thespectralindexdistributionofMasonetal.(2009)isgivenby: flatspectralindexes.Werecoverthisbehaviourinthesimulations, P(S1.4)= 1 1 tanh S1.4−S∗ . (4) asshowninfigures3and4.Inparticular,accordingtothediscus- 2(cid:20) − (cid:18) ∆ (cid:19)(cid:21) sionofsection2,theresidualcontaminationinWMAPmapswill The values S∗ and ∆ are chosen by fitting the 33 GHz num- bedominatedbysourceswithS & 0.1Jyinthefrequencyrange bercountsfromtheextrapolationproceduredescribedheretothe 60 90GHz,andweexpectthemajorityofthesesourcestohave − observed number counts by DASI and VSA in the 0.05 1 Jy S1.4 & 100mJy. Inaccuracy intheextrapolations ofsourceswith range.Sourceswithlowerfluxesarenotasignificantconta−minant lowerS1.4willhaveaminimalimpactonestimatesoftheresidual inWMAPmaps,asdiscussedabove.Notethatwedonotrequire contaminationinWMAPmaps. theselectionfunctioninequation4tobecontinuousatthe100mJy and300mJyboundaries. From23GHzto94GHzforsourceswithS23 >1Jy.Sources 4.2 Numbercounts • with S23 > 1 Jy are extrapolated to higher frequencies accord- For each simulation, we compute the corresponding differential ing to the WMAP5 catalog itself. We divide the WMAP5 cata- numbercountsdn(S)/dS andthenaverageoverthewholesetof logintwosubcatalogscomprisingsourceswithS23 > 2Jyand simulations. In figure 5 we compare the incomplete counts from 1Jy < S23 < 2Jy,respectivelycontaining69and166elements. WMAP5 source catalog with the ensemble average differential WhenasimulatedsourcehasS23 >1Jy,werandomlypairitwith countsatthefrequenciesof33,41,61and94GHz,approximately a spectral index from the subcatalog covering the corresponding correspondingtothecentralfrequenciesofWMAPKa,Q,Vand fluxrange,andextrapolatethesourcetohigherfrequencyusinga Wbands.At33GHzwecompareourestimationalsowithresults simplepowerlaw. fromCBI,VSA,andDASIsurveys,whileat94GHzwealsoplot From 23 GHz to 94 GHz for sources with S23 < 1 Jy. • predictionfromearlierworks (deZottietal.2005;Waldrametal. For fluxes below 1 Jy the WMAP catalog is not complete. ∼ 2007). Waldrametal.(2007)suggestaproceduretoextrapolatefluxesinto Comparison with lower flux data at 33 GHz, shows that the theWMAPfrequencyrangebasedonthespectralbehaviourofthe methods discussed here tends tounderestimate source counts be- sourcearound∼ 20GHz.Forsourcesforwhichα4232 6 α2125 6 0 lowS 0.02 0.03Jy.Thesesourcesdonotprovidearelevant theysuggestfittingaquadraticformtothelog(S) log(ν)relation, ∼ − − contributiontothetotalresidualcontaminationtoWMAPspectra, whilefortheremainingsourcestheyadoptalinearlog(S) log(ν), using α4232. Alternatively, we consider the set of spectra−l indexes buuntcewritlalinptlyayinaomuorrmereethleovdasnitsrodloemfoinraPteladnmckodstaltyabaynatlhyesilso.wSinnucmebtheer basedontheSadleretal.(2008)sample.Takingintoaccountboth ofreferencesourcesabove4.85GHz,weexpectabetteragreement setsofobservations,weconsiderthenthefollowingextrapolation asthepoolofreferencesourcesincreases.Intherange0.5 1.0Jy, strategyforsourceswithS23 <1Jy: − simulationsshowevidentartifactsduetothetransitionbetweendif- – SourceswithS23 <100mJyarerandomlypairedtosource ferentregimesoffluxextrapolation,i.e.usingspectralindexfrom ofWaldrametal.(2007)andextrapolatedaccordingtothepro- theWMAP5catalogforS23 >1Jy.Theyareduetothelownum- ceduredescribedthere; berofsourcesinthatfluxrangeinthebasecatalogs;asabove,we – Sources with S23 > 400mJy are propagated assuming a expecttheseartifacttosignificantlydecreaseasmoredataoverthe (cid:13)c 0000RAS,MNRAS000,000–000 6 L.P.L. Colomboet al. Figure3.Distributionsoftheinitial1.4GHzfluxesforsourceswithafinal94GHzasindicatedintherespectivepanels.Histogramsrefertothefullsetof 800simulationsandhavebeennormalizedtohaveunitarea. Figure4.Asinfigure3butshowingdistributionsofsimulated94GHzfluxesforsourceswithinitial1.4GHzfluxasindicatedinthedifferentpanels. relevantfrequencyandfluxrangewillbeincludedinthereference deZottietal.2009,forarecentreview).Ifthisisactuallythecase, catalogs. describingthesourcebehaviourinthe23 94GHzrangewitha − singlepowerlawmaynotbeentirelyaccurate. WhileourextrapolationscorrectlyrecoverWMAP5resultsat Alternatively,theremaybesomeunaccountedforsystematics lowerfrequencies,countsat94GHzareoverestimatedby 50%. ∼ affectingWMAPdetectionefficiencyinWband.TheWMAPteam Infigure6weplottheintegratedcountsN(>S =1Jy)fromour requiredthatforasourcetobeincludedinthecatalogitneededto simulationsandfromWMAP5data.Forreference, wealsoshow ananalyticestimateofthecountsassumingdN/dS S−2.5 and bedetectedatmorethan5σ,inatleastoneband.Itsfluxintheother S ν−0.09(Wrightetal.2009),normalizedtofitWM∝AP5counts bandswouldbeincludedif:a)itwasmeasuredatmorethan2σ,b) ∝ the fitted source width is within a factor of 2 of the actual beam in K, Ka and Q bands. WMAP5 data show a steepening of the (Wrightetal.2009).Sawangwit&Shanks(2009)pointedoutthat countsinWbandcomparedtolowerfrequencies,whileourcounts theWbandbeamresponsetodiscretesourcesappearstodependin seemtobeinbetteragreement withalinearlog(S) log(ν)re- − anon-linearfashiononsourceflux.Inparticular,theyfindthatthe lation. As discussed in section 3.2, our extrapolations of sources effectivebeamprofileissignificantlywiderforpointsourcesthan with S23 > 1 Jy is mainly based on the family of spectral in- fortheJupiterobservationsusedasabasisfortheWMAPteam’s dexesprovidedbytheWMAP5team,whichcanbeapproximated beamanalysis, which cancreateasignificant biasindetermining byaGaussiandistributionwithmeanα = 0.09anddispersion − if a source fitsrequirement (b). Since number counts from simu- σα = 0.17. Therefore, as expected source counts in the simula- lationsdonotincludesystematicsduetoWMAPactualdetection tionsareinagreement withtheanalyticestimateplottedinfigure procedure,thiseffect,ifconfirmed,couldbeanalternativeexpla- 6; the slightly steeper behaviour seen in simulations is compati- nationforthediscrepanciesbetweensimulatedandactualnumber ble with the actual distribution of WMAP5 spectral indexes hav- counts. Further data on source behaviour at high frequency, e.g. ing a tail toward steeper α. This suggests that there issome ten- fromPlanck,willhelpsolvethisissue. sionbetweentheWMAP5W-bandcountsandtheirspectralindex distribution.Apossible explanationcould beaprogressive steep- In addition, all WMAP sources with measured W band flux ening of the spectral index of bright sources with increasing fre- have been detected also in at least one of the lower frequencies. quency.Gonza´lez-Nuevoetal.(2008)noticedthatthespectralin- Aslong asaWMAPsourceisdetectedinatleast oneband, itis dexofWMAPsourcesinthe41 64GHzrangeissteeper than maskedinthepowerspectrumanalysis(Noltaetal.2009),andwe − theirspectralindexinthe5 23GHzrange,andradiosourcemea- follow the same procedure in building sky mask for the analysis − surements in the 100 250 GHz range by the QUaD tele- of section 6. Therefore, any mismatch in the number of W band ∼ − scope (Friedmanetal. 2009) and the South PoleTelescope (SPT, bright sources between simulations and real data will not impact Vieiraetal.2009)provideadditionalevidenceinthisdirection(see ourestimatesoftheunresolvedsourcepoweraslongascountsat (cid:13)c 0000RAS,MNRAS000,000–000 7 Figure5.ComparisonofthepredictedEuclideancountsfromtheensembleofNVSSsimulationsofthiswork(solidlines)withtheincompletecountsfrom theWMAP5yearcatalog(squares),atthefrequenciesof33,41,61and94GHz.At33GHzwealsoplotdatafromtheCBI,VSAandDASIsurvey,whileat 94GHzwecomparewithpredictionsfromearlierworks. thelowerfrequencyforthesimulationsareingoodagreementwith 200 WMAPfindings. 150 5 MAPS Anadvantageofthisapproachconsistsinthatitnaturallyprovides an estimates of bright sources position and accounts for cluster- 100 ingofunresolvedsources.However,agreementofnumbercounts WMAP5 estimatedfromsimulationswiththosecomputedbydatadoesnot Simulations guarantee that the method correctly recovers the spatial distribu- tionofsources.Inordertocheckwhetherthesimulationsmatchthe 50 structureobservedinWMAPmaps,foreachrealizationweproduce source-only(i.e.withoutnoiseandCMB)mapsandcomparethem Figure 6. Comparison ofintegrated counts in simulations (red/triangles) with WMAP observed maps. Source maps also allow and inde- andinWMAP5yearcatalog(black/squares). Thedashedlineshowsthe pendent determinationofunresolved sourcecontamination. Since expected behaviour assuming a scaling of differential counts dn/dS ∝ WMAPestimateofthiscontributionisbasedontheQ,VandW S−2.5andafrequencydependenceS ∝ ν−0.09.Thecurveamplitudeis bandsdata,wegeneratemapforeachoftheabovefrequencies. fixedby afit toWMAP count in K,Ka andQ bands. Incomputing the We place the sources on an HEALPIX1(Go´rskietal. 2005) numbercountsweexcludedtheskyareawithdeclination6−40degand withintheWMAP5yrpointsourcecatalogmask. 1 http://healpix.jpl.nasa.gov/ (cid:13)c 0000RAS,MNRAS000,000–000 8 L.P.L. Colomboet al. mapataresolutionNside =2048,correspondingtoapixelsizeof degreeofcorrelationbetweensimulationsandactualmapsislower 1.7′.ThisvalueisconsiderablygreaterthantheNVSSbeamand thanthatbetweensimulationsandmockdata.WhileforWbandthe ∼ angularresolution,sowecanconsiderthesourcesaspointswhen differenceiswithintheassociatedstandarddeviation,inQbandthe placingthemonthemap,andconsiderablysmallerthanWMAPW discrepancyisoforder2σforbrightsourcesincreasingto 3σfor beamof 13′,sothatanyartifactsduetopixelization,smoothing faintones.Foreground contaminationismorerelevant at∼41GHz ∼ etc.willbeminimal.TheactualWMAPbeamsarenotGaussian, than at 94 GHz and this may account for the significant loss of theirexactprofilevaryingbetweeneachsetofDifferentialArrays correlationinQband. (DAs). To reduce the number of maps we have to deal with, we consider individual frequencies, ratherthanindividual DAs.Each mapisthensmoothedwithaneffectivebeamgivenbytheaverage, 6 POWERSPECTRAANDEFFECTONPARAMETERS in harmonic space, of the beam profilesof the DAs of the corre- sponding frequency. The smoothed maps are then degraded to a TheWMAPteamestimatedtheamplitudeoftheunresolvedpoint resolutionNside=512. source contribution to a cross spectrum CℓY1Y2 (Y1Y2 represents Inordertocheckthatourpredictionsrecoverthepointsource apairofdifferentDAs,e.g.Q1Q2,Q1V1)assumingapower-law structureseen inthemaps, wecompute thelinear correlationco- scalinginfrequency: efficientbetweeneachindividualsimulationandthecorresponding WMAP5yrmap: Cℓsrc =A0g(ν1)g(ν2)(cid:18)ννQ1(cid:19)α(cid:18)ννQ2(cid:19)α, (6) r= h(Xi−hXi)σ(XMσiM−hMi)iS>Sc . (5) whereν1,ν2 arethefrequenciesoftheDAsconsidered,g(ν)was defined in equation 2, and the spectral index α is assumed to be Here X and M respectively refer to the simulated and WMAP either 0, asmost sources areexpected tohaveaflatspectrum, or maps, after application of an harmonic space filter bℓ/(b2ℓCℓ + -0.09,corresponding tothemeanofofaGaussianfittothespec- Cℓnoise), where bℓ isthe harmonic transform of the beam profile, tralindexesoftheactualWMAP5catalog(Wrightetal.2009).The CℓisatheoryCMBpowerspectrumbasedonWMAP5bestfitpa- commonamplitudeA0 = 0.011 0.001µK2srisdeterminedby rameters(Dunkleyetal.2009)andCℓnoiseisthenoisepowerspec- fittingthe spectral shape of equa±tion 6, to the cross spectra from trum (Wrightetal. 2009). The means and variances of the maps, theQ,V,Wbands;theestimatedA0hasonlyasmalldependenceon X and σX, and the correlationcoefficients are computed using thetwovaluesofαconsidered(Noltaetal.2009).Thefinalpower h i onlypixelswithinradiusequaltothenominalfrequencyFWHM, spectrum,instead,isalinearcombinationofthepossibleVV,VW, of sources with flux above a threshold Sc. To assess the signifi- and WW cross spectra, weighted by the corresponding inverse canceofthisresult,wecomparethevalueofrcomputedfromthe covariance matrix (Hinshawetal. 2003; Noltaetal. 2009). This simulations-WMAP5correlations,withthatcomputedbycorrelat- method is internal, as it includes information only from WMAP ing our simulations with a mock microwave sky which includes own measurements. On the contrary, the approach discussed in contributionfromCMB,WMAP5-likenoise,Galacticforegrounds this paper, provides a partially external method, in the sense that and a point sources population obtained according to the proce- it incorporates both information from WMAP data (to propagate dure described in this work. In practice, we randomly chose one sourceswithS23 > 1Jy)andfromothersurveys,andcouldpro- of the simulations asthe actual distributionof point sources, and videacrosscheckofWMAPresults. addtothisaCMBrealization,ananisotropicGaussiannoiseterm Toestimatetheunresolvedpointsourcescontaminationfrom and a foreground contribution. The pixel noise variance is given our simulations we need to define an individual mask for each by n = n0/√Nobs, where Nobs is the effective number of ob- realization. We start by applying the same Galactic cut as for servationsineachpixelandn0 = 2.197 mKfortheQband and the KQ853 mask, used in the WMAP5 power spectrum analysis 6.547 mK in W band (Limonetal. 2009). However, we do not (Noltaetal. 2009), and also mask the area outside of the NVSS account for noisecorrelations between different pixels. Thefore- sky coverage. This base mask is the same for all realizations. In ground contribution is based on the Maximum Entropy Method addition, theKQ85 maskremoves theskyareawithin0.6deg of maps 2 (Goldetal.2009). Themaps are provided at a resolution sources intheWMAP5catalog. TheWMAP detection efficiency Nside = 128andsmoothedwitha1degbeam,andarethushave for radio sources depends on a number of factors, including fre- nopoweratscalesℓ&300.Thereforetheforegroundscontribution quency, position on the sky and the actual CMB and noise fluc- tothevarianceandmeanofthemocksky,inparticulartothesmall tuationsaround thesource. Replicatingalltheseeffectsinallour scalesrelevanttopointsources,willbesignificantlylowerthanthe simulationswouldbetootimeconsumingandinsteadweadopta impactontheactualWMAPskymaps.Wegeneratedifferentsets simplifiedprocedure to“detect”and masksources. TheWMAP5 ofmockskies,correspondingtodifferentpointsources,CMBand catalogiscompleteforsources& 1Jyatallfrequencies, andthe noise realizations. The mock sky then constitute a best case sce- numbercountsforthosesourcesfollowanEuclideandistribution. nario, in which the point source distribution follows exactly the Therefore,ateachfrequencyweassumeapowerlawshapeforthe model discussed inthiswork, and several systematiceffects, like number countsFνS−2.5,andfixthevalueof Fν byfittingtothe foregroundsandcorrelatednoise,areabsentorplayareducedrole. observed WMAP5 differential number counts n¯ν(S) for S > 1 Tables1and2showresultsofthecomparisoninQandWbands, Jyattheappropriatefrequency.Wethenassigntoeachsimulated respectively. source adetection probability P(S∗) = n¯ν(S∗)/(FνS∗−2.5). On A general remark is that even in the best case scenario we average,ineachsimulationwedetect304 16sources,compared expectonlyamoderatelevelofcorrelation:r.0.40andr.0.25 with321actualWMAP5sourcesinthesam±eskyarea,andwemask forbrightsources,respectivelyinQandWband.Asexpected,the a 0.6deg radius around each detected source. Alternatively, we 2 http://lambda.gsfc.nasa.gov/product/map/dr3/mem mapsinfo.cfm 3 http://lambda.gsfc.nasa.gov/product/map/dr3/masks info.cfm (cid:13)c 0000RAS,MNRAS000,000–000 9 Sc(Jy) WMAP5 mock mock mock mock mock mock maps data1 data2 data3 data4 data5 data6 1.0 0.22±0.07 0.34±0.08 0.36±0.07 0.37±0.08 0.35±0.07 0.32±0.07 0.37±0.07 0.5 0.18±0.05 0.30±0.06 0.32±0.05 0.31±0.06 0.29±0.05 0.26±0.05 0.31±0.05 0.2 0.13±0.04 0.23±0.04 0.25±0.04 0.23±0.04 0.22±0.04 0.19±0.03 0.25±0.04 0.0 0.03±0.02 0.06±0.02 0.07±0.01 0.06±0.01 0.06±0.01 0.05±0.01 0.08±0.01 Table1.Linearcorrelationcoefficientrbetweensimulatedsourcemapsat41GHzandWMAP5yearQbandmaps,fordifferentfluxcutsSc.Onlypixels within1FWHMradiusofsourceswithS > Scareincludedinthecomputationofr.Forcomparisons,columns3-8showthesamequantitycomputedby correlatingoursetofsimulationswithmockWMAP-likeskiesforwhichthepointsourcecomponentfollowsthesamedistributionasoursimulations. Sc(Jy) WMAP5 mock mock mock mock mock mock maps data1 data2 data3 data4 data5 data6 1.0 0.14±0.08 0.21±0.09 0.24±0.08 0.20±0.08 0.18±0.07 0.16±0.07 0.18±0.07 0.5 0.14±0.06 0.18±0.07 0.21±0.06 0.16±0.06 0.15±0.05 0.14±0.05 0.15±0.05 0.2 0.12±0.04 0.13±0.04 0.16±0.04 0.11±0.03 0.11±0.03 0.11±0.03 0.11±0.03 0.0 0.014±0.003 0.011±0.003 0.014±0.003 0.010±0.002 0.010±0.002 0.010±0.003 0.011±0.002 Table2.Astable1butforWband. consider theconservative approach of masking onlysources with forthesubsetof8sourceswithS20 >0.8Jy,α¯= 0.26 0.16,in − ± aQbandfluxS41 >1.0Jy. goodagreementwithestimatesforWMAPsourceswithS23 > 1 Jy.Oursimulationsreflectthisfinding.Asmoreinformationonthe Weapplytheresultingmasktothecorrespondingsetofmaps spectral behaviour of sources with K band flux in the 0.5 1.5 andcomputetheQQ,VV,VWandWWspectrausingaMASTER − Jy will become available, it will be possible to better establish if approach (Hivonetal. 2002). The VV, VW and WW spectra are thelowfluxsourcesofWMAPcatalogarebiasingtheestimatesof thencombinedaccordingtoHinshawetal.(2003);noticethatwe thespectralindexusedforestimatingtheunresolvedpointsources onlyincludethediagonaltermsofthecovariancematrix.Thefinal contribution. estimate of the unresolved sources contribution is the average of Inaddition,WMAPfixtheamplitudeoftheunresolvedsource thespectrafromtheindividualrealizations. contributionA0byasimultaneousfittotheensembleofcrossspec- In figure 7 we compare our estimates with WMAP results. tra obtained using Q, V and W bands, assuming a constant fre- WhileourpredictionsareingoodagreementwithWMAP5yresti- quency scalingacrossthecorresponding range offrequencies, 41 matesfortheQQspectra,theyshowasteeperfrequencybehaviour. -94GHz.Therefore,althoughthefinalCMBpowerspectraarea In particular, for the final combined power spectrum, we predict combinationofonlyVandWmeasurements,theestimatedunre- a residual point source contribution 50% lower than WMAP ∼ solvedsourcescontributiontosuchspectradependsalsoonQdata. estimates for the source detection strategy discussed above, and Inthiswork, instead,weestimatethepoint sourcecontamination ∼ 25% lowerif weonly masksources withS41 > 1Jy. Uncer- at agiven frequency directlyfrom the point sources maps at that taintyonsimulationsresultsis 10%,comparabletotheerroron ∼ frequency,withoutincludinginformationfromotherbands.Inpar- A0.Noticethatinfigure7wedonotplotourestimatesofresidual ticular,ourpredictionforthefinalcombinedVV+VW+WWspec- sourcescontaminationatℓ>700fortheQband,astheuncertainty trumdoesnotdependon41GHzdata.AsdiscussedinNoltaetal. inthebeamasymmetriesforthatchannelintroducesignificantarti- (2009), the WMAP5 estimated value of A0 using only V and W factsatℓ&500(Hilletal.2009).SincewedonotusetheQband datais 10% 40%(dependingonthechoiceofGalacticmask) datatoestimatethepointsourcescontributiontothefinalspectra, ∼ − lowerthanwhenusingQ,VandWdata,althoughtheuncertaintyin theseartifactsdonotalterthefollowingdiscussion. theformercaseis 3timestheuncertaintyinthelatter.Therefore, ∼ The differences between our prediction and WMAP5 esti- usinginformationfromQbandmayleadtoaslightoverestimateof matesarisefromacombinationoffactors.Asdiscussedabove,the A0at60 90GHz. − referencecatalogweusetoextrapolatehighfluxsourcesfrom20 AspointedoutbyHuffenbergeretal.(2006,2008)thepoint GHzto94GHzwasgivenbythesubsampleofWMAP5sources sourcescorrectionandthewayitistreatedinthelikelihoodfunc- with with fluxes S23 > 1 Jy, corresponding to the approximate tion affects the determination of the cosmological parameters, in completeness limit of WMAP 5yr catalog. WMAP sources with particular of the slope of the power spectrum of scalar pertur- Sw2h3ile>fo1rsJoyurhcaevsewainthaSve23ra<ge1spJyecα¯tra=l ind0e.x09α¯ =0.6−6.0T.2h1e±spe0c.t3r0al, braamtioetnesr,enssti.mTaotiotne,stwteheuseeffCecOt,SMifOanMy,C4of(Loeuwriasp&prBoaricdhleo2n00p2a-) indexusedbytheWMAPteaminorder−toder±ivetheamplitudeis + PICO5 (Fendt&Wandelt 2007) to run a set of Monte-Carlo themeanofaGaussianfittothespectralindexdistributionofall Markov Chains (MCMC) replacing the source correction term their detected sources, and is therefore affected by the shallower in WMAP5 likelihood code with our results. However, we did spectralindexesofsourceswithS23 < 1Jy.Notethatwedidnot not change the shape of the likelihood function as suggested by use the latter set of sources for the simulations, as for this range of fluxes and frequencies we adopted the results of Sadleretal. (2008).Theseresultssuggestthatsourceswithfluxesinthe0.2 1 4 http://cosmologist.info/cosmomc/ Jyrangehaveanaveragespectralindexα¯ = 0.43 0.31,wh−ile 5 http://cosmos.astro.uiuc.edu/pico/ − ± (cid:13)c 0000RAS,MNRAS000,000–000 10 L.P.L. Colomboet al. Figure7.EstimatesoftheunresolvedpointsourcescontributiontoCMBpowerspectraatdifferentWMAPfrequencieswhenapplyingthemaskingprocedure describedinthetext(solidlines)orsimplyremovingallsourceswithQbandfluxS41>1Jy(dashedlines).ThedottedlinesshowaPoissonspectrumwith normalizationCℓsrc ∝A0ν1αν2αwithA0 =0.011andα=−0.09.ThefinalpowerWMAPpowerspectrumisacombinationofVV,VWandWWcross spectraanddoesnotdependonQQdata.ForreferencewealsoshowtheCMBtemperaturepowerspectrumforthebestfitWMAP5cosmologicalmodel. Huffenbergeretal. (2008). We consider the six base ΛCDM pa- 800times,andtheensembleofsimulationsprovidestheprobabil- rameters:physicalbaryon,ωb,andcolddarkmatter,ωc,densities; itydistributionforthefluxeachNVSSatthedesiredfrequencies. opticaldepthtoreionization,τe;tilt,ns,andamplitude,Asofthe Wecomparedthestatisticalpropertiesofthesimulationswith powerspectrumofscalardensityfluctuations;theanglesubtended thoseofthesourcesoftheWMAP5catalog,withothersurveysat bythesoundhorizonatrecombination,θ.Weincludemarginaliza- 33GHzandwithpredictionsbypreviousauthorsat94GHz,find- tionovertheamplitudeoftheSunayev-Zeldovicheffectandlens- inganagreementdownforfluxes& 0.1JyinKaband,whilewe ing.Asexpected,sincechangingthesourcecorrectioneffectively underestimatethenumberofsourcesbelow 0.1Jy.TheWMAP ∼ alterstheshapeofthesecondandthirdacousticpeaksinthemea- catalog is not complete below S 1 Jy, so point sources with sured spectrum, we find that τ and, to a lesser degree, θ and As S 0.1 Jy account for only a sm∼all fraction of the total power ∼ areunaffected.Forourdefaultsourceremovalprocedure,theshift duetounresolvedsources.Athigherfrequenciespredictionsarein onns andωc canreachalmost 0.4σ, withanoticeable shiftalso generalagreementwithpreviousworks. forthebaryondensity,ωb,whileifweadopt amoreconservative Anadvantageofthemethodisthatitmaintainstheinforma- masking,theeffectcanbeupto0.3σ. tion about the sources position. In order to test this, we consid- ered the sets of point-source-only (i.e. no CMB nor noise) maps obtainedfromNVSSsimulationsat41and94GHz,andcorrelated them with both the Q and W band WMAP5 sky maps and with 7 SUMMARYANDCONCLUSIONS mockCMBskiesinwhichthepointsourcepopulationfollowsthe We discussed a new method aimed at evaluating the residual samedistributionasourmodel. Wefoundthatalthoughtheover- point source contribution to the WMAP5 power spectrum. We alllevelofcorrelationislow,Wbandcorrelationswithactualdata implemented a stochastic approach to extrapolate the flux of ra- areingoodagreementwithcorrelationswiththemockdata.InQ dio sources of the NRAO-VLA Sky Survey (NVSS) to WMAP band,instead,thedegreeofcorrelationbetweensimulationsandac- frequencies. Using different point source catalogs with multifre- tualmapsissignificantlylowerthanwhatexpectedfromthemock quencyinformation,wedividedthe1.4 90GHzinanumberof data.Inthisbandforegroundscontaminationissignificantlyhigher frequencysteps.AteachstepanNVSS−sourceisrandomlypaired thanathigherfrequencyandmaycontributetodecreasingthelevel toareferencesourceinthecatalogcoveringtherelevantfrequency ofcorrelationbetweensimulationsandrealmaps. range, and extrapolated to theupper limitof that range using the Weusedthesimulatedmapstoestimatetheunresolvedsource spectral index of the reference source. The procedure is iterated correction to WMAP5 measured spectra. As a general result, we (cid:13)c 0000RAS,MNRAS000,000–000

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.