JournalofPublicEconomics92(2008)1751–1764 ContentslistsavailableatScienceDirect Journal of Public Economics journal homepage: www.elsevier.com/locate/econbase ☆ Estate taxes, consumption externalities, and altruism Jaime Alonso-Carreraa, Jordi Caballéb,⁎, Xavier Raurichc aDepartamentodeFundamentosdelAnálisisEconómicoandRGEA,UniversidadedeVigo,Fac,CC,EconómicaseEmpresariais,CampusAsLagoas-Marcosende,36310Vigo,Spain bUnitatdeFonamentsdel'AnàlisiEconomicaandCODE,UniversitatAutònomadeBarcelona,EdificiB,08193Barcelona,Spain cDepartamentdeTeoriaEconòmicaandCREB,UniversitatdeBarcelona,FacultatCC,EconòmiquesiEmpresarials,Av,Diagonal690,08034Barcelona,Spain a r t i c l e i n f o a b s t r a c t Articlehistory: We study how the introduction of consumption externalities affects the optimality of the Received9November2005 dynamicequilibriuminaneconomydisplayingdynasticaltruism.Whenthebequestmotiveis Receivedinrevisedform10January2008 inoperativeconsumptionexternalitiesaffecttheintertemporalmarginbetweenyoungandold Accepted1February2008 consumptionandthusmodifytheintertemporalpathofaggregateconsumptionandcapital. Availableonline20February2008 Theoptimaltaxpolicythatsolvesthisintertemporalsuboptimalityconsistsofataxoncapital income and a pay-as-you-go social security system. The latter solves the excess of capital JELclassification: accumulation due tothe inoperativeness of the bequest motive and the former solves the E21 suboptimalallocationofconsumptionduetoconsumptionexternalities.Whenthebequest E13 motiveisoperativeconsumptionexternalitiesonlycausean intratemporalmisallocation of E62 consumption but do not affect the optimality of the capital stock level. This suboptimal Keywords: allocation of consumption implies in turn that the path of bequest deviates also from Consumptionexternalities optimality.Theoptimaltaxpolicyinthiscaseconsistsofanestatetaxandacapitalincometax. Bequests ©2008ElsevierB.V.Allrightsreserved. Optimaltaxrates 1.Introduction In this paper we aim at analyzing the suboptimal allocation arising from consumption externalities in an overlapping generation model (OLG) with dynastic altruism. We use this model to show how the interaction between consumption externalitiesandaltruismaffectstheoptimalityoftheequilibriumpath.Inourmodeltheconsumptionexternalitywilltakethe formofareferencelevelofconsumptionthatisusedtocomparetheutilityderivedfromownconsumption.Wewillassumethat thisreferenceconsumptionisaweightedaverageoftheconsumptionofalltheagentslivinginthesameperiod. Severalauthorshaveanalyzedtheimplicationsofaconsumptionreferencearisingfromownpastconsumption(orinternal habits)inOLGmodels.ExamplesofthisstrandoftheliteraturearethepapersofLahiriandPuhakka(1998)andWendner(2002), whostudytheeffectofhabitsonsavinginapureexchangeeconomy;andAlonso-Carreraetal.(2007),delaCroix(1996)anddela Croix and Michel (1999, 2001), who analyze several related stability issues. Obviously, when the reference is the others' consumption,thensuboptimalityoftheequilibriumpathislikelytoarise.Inaframeworkwithinfinitely-livedagents,Alonso- Carreraetal.(2004and2005),FisherandHof(2000),Guo(2005),LiuandTurnovsky(2005),LjungqvistandUhlig(2000),and TurnovskyandMonteiro(2007),amongmanyothers,havecharacterizedtheoptimaltaxratesthatsolvethiskindofsuboptimality. IntheframeworkofOLGmodels,Abel(2005)showsthatacapitalincometaxandapay-as-you-gosocialsecuritysystemconstitute theoptimaltaxpolicy.Weextendthelatterpaperbyintroducingconsumptionexternalitiesinthemodelwithdynasticaltruismof ☆ ThispaperhasbenefitedfromthevaluablecommentsoftworefereesandthecoeditorofthisjournalandparticipantsintheSimposiodeAnalisisEconomico (Oviedo).FinancialsupportfromtheSpanishMinistryofEducationandScienceandFEDERthroughgrantsSEJ2005-03753,SEJ2006-03879,andSEJ2006-05441; theGeneralitatofCataloniathroughtheBarcelonaEconomicsprogram(XREA)andgrantsSGR2005-00447andSGR2005-00984;andtheXuntadeGaliciathrough grantPGIDIT06PXIC300011PNaregratefullyacknowledged. ⁎ Correspondingauthor.UniversitatAutònomadeBarcelona,Departamentd'Economiaid'HistòriaEconòmica,EdificiB,08193Bellaterra(Barcelona),Spain.Tel.: +34935812367;fax:+34935812012. E-mailaddresses:[email protected](J.Alonso-Carrera),[email protected](J.Caballé),[email protected](X.Raurich). 0047-2727/$–seefrontmatter©2008ElsevierB.V.Allrightsreserved. doi:10.1016/j.jpubeco.2008.02.004 1752 J.Alonso-Carreraetal./JournalofPublicEconomics92(2008)1751–1764 Barro(1974).FollowingAbel'sanalysis,weassumethattheseexternalitiestaketheformofaweightedaverageoftheconsumption ofthetwotypesofagentslivinginthesameperiod.ByintroducingaltruismandthepossibilityofbequestsinAbel'smodelwecan analyze new phenomena, like the potential suboptimality of the level of bequests and the interaction between consumption externalitiesandthelackofoptimalityofthebequestconstrainedequilibrium. TheanalysisofoptimalityinAbel(2005)isbasedonthecomparisonbetweenthemodelofDiamond(1965)withconsumption externalitiesandthecorrespondingplannerproblemwhentheobjectivefunctionoftheplannerisjustthediscountedsumofthe utilities of all the agents in the economy. This analysis does not allow to distinguish the deviation from optimality due to consumptionspilloversfromtheoneduetotheinoperativenessofthebequestmotive.Incontrast,theanalysisinourpaperis based on the comparison between the model of Barro (1974) with consumption externalities and the corresponding planner problem.AsshownbyAbel(2005),whenthebequestmotiveisinoperative,suboptimalityisduetobothconsumptionexternalities and the typical capital overaccumulationproblem (Cass,1972). However, when the bequest motive is operative consumption externalitiesaretheonlysourceofsuboptimality.Therefore,ouranalysisshowshowthelackofoptimalityduetoconsumption externalitiesdependsontheoperativenessofthebequestmotive. When the bequest motive is operative consumption externalities only cause an intratemporal misallocation of resources, whereastheycauseanintertemporalmisallocationwhenthebequestmotiveisinoperative.Intheformercase,theyonlyaffectthe intratemporalmarginbetweenconsumptionofthetwogenerationslivinginthesameperiod.Thisimpliesthattheymodifythe allocationofconsumptionbetweenthetwolivinggenerations,butdonotaffecttheoptimalityoftheintertemporalpathsofsaving andoutput.Infact,thissuboptimalallocationofconsumptionisassociatedwithasuboptimallevelofbequest.Incontrast,when thebequestmotiveisinoperative,consumptionexternalitiesaffecttheintertemporalmarginofconsumptionalongthelifecycleof agents.Giventhatconsumptionspilloversaffecttheintertemporalpathofaggregateconsumption,theyalsomodifythepathsof savingandproduction.Theexternalityassociatedwithyoungconsumptionreducesthestockofcapitaland,hence,reducesthe overaccumulation of capital due to the inoperativeness of the bequest motive. Obviously, the externality associated with old consumptionhastheoppositeeffectonthestockofcapitalandthusincreasesthegapbetweentheoptimalstockofcapitalandthe oneobtainedinacompetitiveequilibrium. Notethatthenatureofsuboptimalitycruciallydependsontheoperativenessofthebequestmotiveandthisoperativeness dependsinturnontheintensityofconsumptionexternalities.Inthisrespectweshowthatinthelongrunastrongeryoung consumptionreferencereducesthecriticallevelofaltruismabovewhichthebequestmotiveisoperative,whereasalargerold consumptionreferencerisesthiscriticallevelofaltruism. Theoptimalvaluesoftaxratesalsodependontheoperativenessofthebequestmotive.Whenthebequestmotiveisinoperative,the optimaltaxpolicyconsistsofataxoncapitalincomeandapay-as-you-gosocialsecuritysystem.Thelattersolvestheexcessofcapital accumulationandtheformersolvesthesuboptimalallocationofconsumptionduetoconsumptionexternalities.Notethattheoptimal capital income tax rate modifies the intertemporal path of aggregate consumption and, thus, solves the lack of optimality due to consumptionspillovers.Whenthebequestmotiveisoperative,theoptimaltaxpolicyconsistsofanestatetaxandacapitalincometax. Moreover,inthiscasethepay-as-you-gosocialsecuritysystemisnotrequiredasthereisnooveraccumulationofcapital. Thepaperisorganizedasfollows.Section2presentsthemodel.Section3characterizesthecompetitiveequilibriumwhenthe bequestmotiveisoperativeandwhenitisnot.Section4characterizesthesocialplannersolution.InSection5weconductthe analysisofoptimalitybycomparingthesolutionachievedbytheplannerwiththecompetitivesolution.Section6characterizesthe optimaltaxrates.Section7concludesthepaper.AlltheproofsappearintheAppendixA. 2.Themodel LetusconsideranOLGmodelwhereN identicalindividualsareborninperiodt.Theseindividualslivefortwoperiods.Each t individualhasanoffspringattheendofthefirstperiodofhislifeandthenumberofchildrenperparentisn≥1.AsinDiamond (1965),eachagentsuppliesinelasticallyoneunitoflaborinthefirstperiodofhislifeandisretiredinthelastperiodofhislife.We indexeachgenerationbytheperiodinwhichitsmemberswork. Individualsareassumedtobealtruistictowardstheirchildren.Letb betheamountofbequestthatanoldindividualleavesto t eachoftheirchildreninperiodt.Weimposetheconstraintthatparentscannotforcetheirdescendentstogivethemgifts, btz0: ð1Þ Eachyoungindividualdistributeshislaborincomeandhisinheritancebetweenconsumptionandsaving.Therefore,thebudget constraintfacedbyanindividualduringhisfirstperiodoflifeis wtþbt¼ctþst; ð2Þ wherec istheamountofconsumptionofayoungagent,w isthelaborincomeands istheamountsaved.Inthesecondperiodof t t t lifeindividualsreceiveareturnontheamountoftheirsaving,whichisdistributedbetweenconsumptionandbequestsfortheir children.Therefore,thebudgetconstraintofanoldindividualis Rtþ1st¼xtþ1þnbtþ1; ð3Þ whereR isthegrossrateofreturnonsavingandx istheamountofconsumptionofanoldindividual. t+1 t+1 J.Alonso-Carreraetal./JournalofPublicEconomics92(2008)1751–1764 1753 Theutilityfunctionofanindividualbelongingtogenerationtis Vt¼Uðcˆt;xˆtþ1ÞþbVtþ1; for t¼0;1;2; N ð4Þ where V represents the indirect utility of each of his descendants, the parameter β∈[0,1) is the altruism factor,1 and the t+1 variablescˆ andxˆ representtheeffectiveconsumptioninthefirstandsecondperiodsoflife,respectively,ofarepresentative t t+1 individualbelongingtogenerationt.Weassumethatindividualsdonotderiveutilityfromtheabsolutelevelofconsumptionbut from the comparison between their consumption and some consumption reference. In particular, we assume the following functionalformsforeffectiveconsumption: cˆt¼ct(cid:2)gvyt; ð5Þ and xˆtþ1¼xtþ1(cid:2)dvotþ1; ð6Þ whereγ∈[0,1)andδ∈[0,1)provideameasureoftheintensityoftheconsumptionreference.2Theseconsumptionreferencesare assumedtobeaweightedarithmeticaverageofthepercapitaconsumptionofthetwolivinggenerations.Ontheonehand,we assumethat (cid:1) (cid:3) (cid:1) (cid:3) vyt ¼NtNcttþþhhyyNNtt(cid:2)(cid:2)11xt¼ nþnhy ctþ nþhyhy xt; ð7Þ whereθy∈[0,1]istheweightofconsumptionofarepresentativeoldconsumerinthespecificationofthereferenceforyoung consumers.Ontheotherhand,weassumethat (cid:1) (cid:3) (cid:1) (cid:3) votþ1¼hoNthþo1Ncttþþ11þþNNttxtþ1¼ hohnoþn1 ctþ1þ hon1þ1 xtþ1; ð8Þ whereθo∈[0,1]istheweightofconsumptionofarepresentativeyoungconsumerinthespecificationofthereferenceforold consumers.Notethattherestrictionsimposedonthevaluesoftheparametersθyandθoimplythatwearegivingalargerweightto theaverageconsumptionoftheagentsbelongingtothesamegeneration.Letusdefineey¼ n andeo¼ hon :Then,Eqs.(7)and nþhy honþ1 (8)canberewrittenasfollows: vyt ¼eyctþð1(cid:2)eyÞxt; ð9Þ and votþ1¼eoctþ1þð1(cid:2)eoÞxtþ1: ð10Þ AsinAbel(1986)orLaitner(1988),weassumethatthefunctionU(∙,∙)istwicecontinuouslydifferentiableandadditiveinitstwo arguments.Therefore,wewillusethefollowingfunctionalform: Uðcˆt;xˆtþ1Þ¼uðcˆtÞþquðxˆtþ1Þ; ð11Þ whereρN0isthetemporaldiscountfactor.Weassumethatu′(z)N0,u″(z)b0forzN0andtheInadaconditionslimz→0u′(z)=∞and limz→∞u′(z)=0. Inperiod0thereisanoldgenerationofN−1individualsborninperiod−1.Whentheyareold,theindividualsofgeneration−1 havepreferencesrepresentedbytheutilityfunction: quðxˆ ÞþbV : ð12Þ 0 0 Thereisasinglecommodityinthiseconomy,whichcanbedevotedtoeitherconsumptionorinvestment.Letusassumethat ˆ thiscommodityisproducedbymeansofaneoclassicalproductionfunctionF(K,L),whereK isthecapitalstockandL isthe t t t t amountoflaborusedinperiodt.Capitaldepreciateseveryperiodattherateν∈[0,1].Theproductionfunctionpercapitaisˆf(k), t wherektisthecapitalstockpercapita.Weassumethatˆf′(k)N0,ˆf″(k)b0forallkN0andtheInadaconditionslimk→0ˆf′(k)=∞and limk→∞ˆf′(k)=0.Toeasethenotation,weintroducethefunctionf(kt)=ˆf(kt)+(1−ν)ktand,hence,limk→0f′(k)=∞andlimk→∞f′(k)=1−ν. Asfirmsbehavecompetitively,therentalpricesofthetwoinputsequaltheirmarginalproductivities Rt¼fVðktÞuRðktÞ; ð13Þ wt¼fðktÞ(cid:2)fVðktÞkt¼fˆðktÞ(cid:2)fˆVðktÞktuwðktÞ: ð14Þ 1 Eachparentcaresequallyaboutthefelicityoftheirnchildren.Thus,theintercohortutilitydiscountβcouldberewrittenasβ=nρβ′,whereρwouldbethe temporaldiscountfactorandβ′isthepureinterpersonal(fromparentstochildren)discountfactor. 2 WeassumeanadditivespecificationforeffectiveconsumptioninsteadofthemultiplicativeformulationofAbel(2005)inordertoguaranteeconcavityofthe socialplanner'sutilityfunction(seeAlonso-Carreraetal.,2005). 1754 J.Alonso-Carreraetal./JournalofPublicEconomics92(2008)1751–1764 Inequilibriumthecapitalstockinstalledinperiodt+1isequaltotheaggregatesavinginperiodtand,thus,wehave nktþ1¼st; for t¼0;1;2; N : ð15Þ 3.Competitiveequilibrium Ontheonehand,theproblemfacedbyeachindividualbelongingtogenerationt,t=0,1,2,…istomaximize(4)withrespectto {c, x , b } subject to (1), (2), (3), (5) and (6), which is equivalent to solving the following dynamic programming t t+1 t+1 problem: (cid:4) (cid:5) (cid:4) (cid:5) VtðbtÞ¼fsmt;batþx1gfu wtþbt(cid:2)st(cid:2)gvyt þqu Rtþ1st(cid:2)nbtþ1(cid:2)dvotþ1 þbVtþ1ðbtþ1Þg; ð16Þ with b ≥0, for vy, vo , w and R given for all t. On the other hand, the problem faced by the individuals belonging to t+1 t t+1 t t+1 generation−1whentheyareold(i.e.,inperiod0)isequivalenttothefollowing: (cid:6) (cid:4) (cid:5) (cid:7) max qu R0k0(cid:2)nb0(cid:2)dvo0 þbV0ðb0Þ ; ð17Þ fb0g withb ≥0,fork ,vo,andR given.Notethatk istheendowmentofcapitalofanoldindividualinperiod0. 0 0 0 0 0 UsingtheenvelopetheoreminEq.(16)weobtain, AV Abt¼uVðcˆtÞ; for t¼0;1;2; N : ð18Þ t Using(18),weobtainthefirstorderconditionsforproblem(16)correspondingtothederivativewithrespecttos, t (cid:4) (cid:5) (cid:4) (cid:5) uVct(cid:2)gvyt ¼qRtþ1uVxtþ1(cid:2)dvotþ1 ; for t¼0;1;2; N : ð19Þ Moreover,thefirstorderconditionforproblems(17)and(16)withrespecttobequestsb is t (cid:4) (cid:5) (cid:4) (cid:5) nquVxt(cid:2)dvot zbuVct(cid:2)gvyt ; for t¼0;1;2; N ; ð20Þ wheretheconditionholdswithequalityifb N0.Eq.(19)characterizestheoptimalallocationofconsumptionalongthelifetimeof t anindividual.Ifthebequestmotiveisoperative,thenEq.(20)characterizestheoptimalallocationofconsumptionbetweenthe twoconsecutivegenerationst−1andt.Thisequationtellsusthat,whenthebequestmotiveisoperative(b N0),theutilitylossof t parentsarisingfromalargeramountofbequestmustbeequaltothediscountedutilitygainoftheirdirectdescendants. Thecompetitiveequilibriumofthiseconomyisapath{k ,c,x,b}∞ that,foragiveninitialvalueofk ,solvesthesystemof t+1 t t t t=0 0 difference equations composed of (19) and (20), together with (1), (2), (3), (9), (10), (13), (14), (15) and the transversality condition (cid:4) (cid:5) tlYimlbtuVct bt¼0: ð21Þ Theprevioustransversalityconditionstatesthatthepresentvalueofthelongrunamountofbequeststendstozero. Wewillrestrictouranalysistosteadystateequilibria,thatis,competitiveequilibriawherethevariablesk,c,x andb areall t t t t constant.3Tothisend,wecombine(19)with(9)and(10)toobtain uV½ð1(cid:2)geyÞc(cid:2)gð1(cid:2)eyÞx(cid:3)(cid:2)qRuV½ð1(cid:2)dð1(cid:2)eoÞÞx(cid:2)deoc(cid:3)¼0; whichafterusing(2),(3),(13),(14)and(15)becomes (cid:8) (cid:9) (cid:8) (cid:9) hðk;bÞuuVcˆðk;bÞ (cid:2)qRðkÞuVxˆðk;bÞ ¼0 ð22Þ with cˆðk;bÞ¼ð1(cid:2)geyÞðwðkÞþb(cid:2)nkÞ(cid:2)gð1(cid:2)eyÞnðfVðkÞk(cid:2)bÞ and xˆðk;bÞ¼ð1(cid:2)dð1(cid:2)eoÞÞnðfVðkÞk(cid:2)bÞ(cid:2)deoðwðkÞþb(cid:2)nkÞ: Thefunctionh(k,b)isonlydefinedforthevalueskN0andb≥0forwhichcˆ(k,b)N0andˆx(k,b)N0. Thefollowingtwolemmasprovidetwousefulpropertiesofthefunctionh(k,b).Theproofsofthetwolemmasfollowdirectly fromadirectcomputationofthecorrespondingpartialderivativesofh(k,b)andthecompetitiverentalprices(13)and(14).The nextlemmareferstothebehaviorofthefunctionhwhenthestationaryamountofbequestsvaries: 3 Wewillsuppressthetimesubindexwhenwerefertothesteadystateequilibriumvalueofavariable. J.Alonso-Carreraetal./JournalofPublicEconomics92(2008)1751–1764 1755 Lemma3.1. h uAhb0forallbN0: b Ab Thenextlemmaprovidesasufficientconditionunderwhichthefunctionh(k,b)isincreasinginthecapitalstockpercapitafor allb≥0: Lemma3.2. Assumethatthefollowingconditionholds: jfWðkÞjbminfn=k;fVðkÞ=kg: ð23Þ Then,h uAhN0forallb≥0. k Ak Notethatcondition(23)canbewrittenas fWðkÞkþnN0; ð24Þ and fWðkÞkþfVðkÞN0: ð25Þ Clearly,theinequality(24)impliesthatthestationaryfirstperiodconsumptioncisdecreasinginthestationarycapitalstock, whereastheinequality(25)impliesthatthestationarysecondperiodconsumptionxisincreasinginthestationarycapitalstockat asteadystateequilibrium. AsinAbel(1987),wearegoingtointroducetheassumptionthatthesteadystateequilibriumvaluek¯ofcapitalinaneconomy withnobequestsisuniqueandcompatiblewithpositiveeffectiveconsumptionsandthath(k,0)≷0wheneverk≷k¯.Moreover,we willmakethegenericassumptionthattheslopeofh(k,0)atk¯,h (k¯,0),isdifferentfromzero.Obviously,Lemma3.2providesa k sufficientconditionunderwhichthisassumptionholds.Moreover,noticethattheseassumptionsareimmediatelysatisfiedwhenu islogarithmic,FˆisCobb–Douglasandthevaluesoftheparametersδandγaresufficientlysmall. AssumptionA. Thereexistsauniquestrictlypositivevaluek¯ satisfyingh(k,0)=0withˆc(k¯,0)N0andˆx(k¯,0)N0.Moreover,h k (k¯,0)N0. Letuscombineconditions(19),(20)whenitisjustbinding,and(13),allofthemevaluatedatthesteadystatewithnobequests, toobtainthethresholdvalueofthealtruismfactorβabovewhichbequestsarepositive, bP¼ nP : ð26Þ fVðkÞ Notethatthisthresholdvalueβ¯ coincideswiththeoneobtainedinWeil(1987).Aswewillsee,consumptionexternalitieswill modifythevalueofβ¯ throughtheireffectonthevaluek¯ ofthestationarycapitalstock. Proposition3.3. a)IfAssumptionAholdsandβ≤β¯ thentheuniquesteadystateequilibriumsatisfiesthefollowingequations: P b¼0; (cid:10) (cid:11) P h k;0 ¼0; (cid:10) (cid:11) (cid:10) (cid:11) Pc¼f Pk (cid:2)PkfV Pk (cid:2)nPk; and (cid:10) (cid:11) Px¼nfV Pk Pk; wherek¯,b¯,c¯andx¯arethesteadystatevaluesofcapital,bequestsandconsumptionwhenyoungandwhenold,respectively. b)IfβNβ¯ thenthesteadystateisunique,exhibitsastrictlypositiveamountofbequestsandsatisfiesthefollowingequations: (cid:10) (cid:11) fV k⁎ ¼n; ð27Þ b (cid:10) (cid:11) h k⁎;b⁎ ¼0; (cid:10) (cid:11) (cid:10) (cid:11) c⁎¼f k⁎ (cid:2)k⁎fV k⁎ (cid:2)nk⁎þb⁎; and (cid:10) (cid:11) x⁎¼nfV k⁎ k⁎(cid:2)nb⁎; wherek*,b*,c*andx*arethesteadystatevaluesofcapital,bequestandconsumptionwhenyoungandwhenold,respectively. 1756 J.Alonso-Carreraetal./JournalofPublicEconomics92(2008)1751–1764 ObservethatthecapitalstockwhenthebequestmotiveisoperativeisimplicitlygiveninEq.(27)andisthustheoneassociated with the modified golden rule. However, the capital stock when the bequest motive is inoperative is smaller than the one correspondingtothatrule. Proposition3.4. a)LetAssumptionAandcondition(25)hold.Then,thesteadystateequilibriumwithinoperativebequestmotiveis locallysaddlepathstableforvaluesofδandγsufficientlyclosetozero.b)Thesteadystateequilibriumwithoperativebequestmotiveis locallysaddlepathstable. Whereasthesteadystatewithpositivebequestsisalwayslocallysaddlepathstable,thelocalsaddlepathstabilityofthesteady statewithzerobequestscanbeobtainedunderAssumptionA,condition(25),whichmeansthatsecondperiodconsumptionis locallyincreasinginthestationarycapitalstock,andwhentheintensityofconsumptionexternalities,whichissummarizedbythe valueoftheparametersδandγ,issmall.However,asisshownintheAppendixA,whentheintensityofconsumptionexternalities issufficientlylarge,thesteadystatewithzerobequestsmaynotbesaddlepathstableundertheseconditions.4Forthesakeof completeness,weshowinTable1ofAppendixBhowthestabilitypropertiesofasteadystatewithinoperativebequestmotivevary withthevalueoftheparametersδandγ. Thenextpropositionprovidessomecomparativestaticsresultswhentheintensityofconsumptionexternalitiesvaries: Proposition3.5. a)IfβNβ¯,thenAk⁎¼0; Ak⁎¼0; Ab⁎N0; Ab⁎b0.b)IfAssumptionAholdsandβbβ¯,thenAkPN0,andAkPb0. Ag Ad Ag Ad Ad Ag Thepreviouspropositiontellsusinitspart(a)that,iftheamountofbequestispositive,thenconsumptionexternalitiesmodify theintergenerationaldistributionofconsumptionbutdonotaffectthelongrunvalueofcapital.Inotherwords,consumption externalitiesneithermodifytheamountofsavingnortheoutputlevel,buttheymodifytheallocationofconsumptionbetween youngand oldgenerations.Thischange intheallocationofconsumption isachieved byadjustingtheamountofbequest.An increaseinthevalueoftheparameterγraisesthemarginalvaluationofyoungconsumptionand,asfollowsfrom(20),thisresults inautilitygainfromalargeramountofinheritances.Incontrast,asδincreasesagentsarewillingtoincreaseoldconsumptionand thisrequiresareductionintheamountofbequest. An increase in γ induces agents to increase young consumption, whereas an increase in δ induces agents to increase old consumption.Accordingly,part(b)ofProposition3.5tellsusthat,whentheequilibriumamountofbequestsiszero,agentsrise young(old)consumptionbydecreasing(increasing)theamountofsaving.Thisexplainstheeffectofδandγonthecapitalstock sincesavingscoincidewiththestockofcapitalinequilibrium. Wenextshowhowtheoperativenessofthebequestmotiveisaffectedbyconsumptionspillovers: Proposition3.6. AbPN0andAbPb0. Ad Ag Accordingtothepreviousproposition,ifyoungindividualsbecomemoresensitivetotheothers'consumption(γincreases), positive bequests are more likely to appear in a stationaryequilibrium. The converse occurs when the effect of consumption spillovers on old consumers becomesstronger (δincreases). Clearly, theseresults showthat the introductionof consumption externalitiesaffectstheoperativenessofthebequestmotiveand,thus,affectsthedynamicoptimalityoftheequilibriumpath (Cass,1972). 4.Thesocialplannersolution Weassumethatthesocialplannergivesthesameweighttoalltheindividualsbelongingtothesamegenerationinhisobjective function and the intergenerational discount factor coincides with private altruistic factor β. Therefore, the social planner maximizes5 Xl Uˆt¼b(cid:2)1½quðð1(cid:2)dð1(cid:2)eoÞÞx0(cid:2)deoc0Þ(cid:3)þ bt½uðð1(cid:2)geyÞct(cid:2)gð1(cid:2)eyÞxtÞþquðð1(cid:2)dð1(cid:2)eoÞÞxtþ1(cid:2)deoctþ1Þ(cid:3); ð28Þ t¼0 subjecttotheresourceconstraint x fðktÞ¼ctþntþnktþ1; for t¼0;1;2; N ð29Þ withk given.NotethatthefirsttermintheexpressionforUˆ inEq.(28)referstotheoldgenerationinperiod0.Thus,theLagrangeanof 0 t theplanner'smaximizationproblemcanbewrittenas Xl o¼b(cid:2)1½quðð1(cid:2)dð1(cid:2)eoÞÞx0(cid:2)deoc0Þ(cid:3)þ bt½uðð1(cid:2)geyÞct(cid:2)gð1(cid:2)eyÞxtÞþquðð1(cid:2)dð1(cid:2)eoÞÞxtþ1(cid:2)deoctþ1Þ(cid:3) Xl (cid:10) x (cid:11) t¼0 þ kt fðktÞ(cid:2)ct(cid:2)nt(cid:2)nktþ1 : t¼0 4 InrelatedOLGmodelswhereindividualpreferencesarenotsubjecttoconsumptionexternalities,delaCroixandMichel(2001)andAlonso-Carreraetal. (2007)showthatthesteadystatewithinoperativebequestissaddlepathstablewhenhkN0.However,thisconditionisnotsufficienttoguaranteesaddlepath stabilitywhenconsumptionexternalitiesarepresent. 5 Notethatthisobjectivefunctioncoincideswiththeplanner'sobjectivefunctioninAbel(2005). J.Alonso-Carreraetal./JournalofPublicEconomics92(2008)1751–1764 1757 Thecorrespondingfirstorderconditionswithrespecttoc,x,andk are t t t+1 (cid:10) (cid:11) (cid:10) (cid:11) ð1(cid:2)geyÞbtu0 cˆpt (cid:2)deobt(cid:2)1qu0 xpt (cid:2)kt¼0; ð30Þ (cid:10) (cid:11) (cid:10) (cid:11) k (cid:2)gð1(cid:2)eyÞbtu0 cˆp þ½1(cid:2)dð1(cid:2)eoÞ(cid:3)bt(cid:2)1qu0 xˆp (cid:2) t¼0; ð31Þ t t n and (cid:10) (cid:11) ktþ1f0 kptþ1 (cid:2)nkt¼0; ð32Þ for t=0,1, 2,…, where the superscript p denotes an optimal pathfromthe planner's viewpoint. Combining(30) and (31), we obtain 0 (cid:10) (cid:11)1 uVxˆp (cid:10)q(cid:11) b @ (cid:10) t(cid:11)A ¼ ; ð33Þ uVcˆpt I n where 1(cid:2)gðð1þnÞey(cid:2)nÞ Iu (cid:4) (cid:4) (cid:5) (cid:5): 1(cid:2)d 1(cid:2) 1þ1 eo n Using (30), (31) and (32), we get 0 (cid:10) (cid:11)1 @uV(cid:10)cˆptþ1(cid:11) A(cid:1)b(cid:3)¼ (cid:10)1 (cid:11): ð34Þ uVcˆp n fV kp t tþ1 n o l Thesocialplannersolutionisapath kp ;cp;xp that,foragiveninitialvalueofkp,solvesthesystemofdifferenceEqs.(29), tþ1 t t t¼0 0 (33)and(34),togetherwiththetransversalitycondition h (cid:10) (cid:11) (cid:10) (cid:11) i tlYiml btuVcˆpt ð1(cid:2)geyÞ(cid:2)bt(cid:2)1quVxˆpt deo ktþ1¼0: Proposition4.1. Thereexistsauniquesteadystateinthesocialplannerproblem.Thissteadystateisgivenby n fVðkpÞ¼ ; ð35Þ b (cid:10) (cid:11) uVxˆp Ib (cid:10) (cid:11)¼ ; ð36Þ uVcˆp nq and xp fðkpÞ¼cpþ þnkp; ð37Þ n wherekp,cpandxparethesteadystatevaluesofcapital,consumptionwhenyoungandwhenold,respectively. Thefollowingpropositioncharacterizesthedynamicsaroundthesteadystateoftheplanner'ssolutionanditsproofisomitted sinceissimilartothatofpart(b)ofProposition3.4: Proposition4.2. Thesteadystateofthesocialplannersolutionislocallysaddlepathstable. 5.Planneroptimality Therearetwodifferentsourcesofdeviationsfromtheplanner'soptimalsolutioninoureconomy:thecontemporaneousconsumption externalitiesandtheinoperativenessofthebequestmotive.Inwhatfollows,wewillanalyzetheeffectsofthesedifferentsourcesof suboptimality,whichinteractinanon-obviousway.Tothisend,wefirstcomparethesocialplannersolutionwiththecompetitive equilibriumsolutionwhenbequestsarepositive,andthenweperformthesamecomparisonwhenbequestsarezero. 1758 J.Alonso-Carreraetal./JournalofPublicEconomics92(2008)1751–1764 5.1.Suboptimalityoftheequilibriumpathwhenthebequestmotiveisoperative Whenthebequestmotiveisoperative,consumptionexternalitiesaretheonlysourceofdeviationfromplanneroptimality.Note thatthedemographicstructureofourOLGmodelmakesthiscasedifferentfromthemodelwithaninfinitely-livedrepresentative agent,whichweconsideredinAlonso-Carreraetal.(2004).Whentheindividualsofthesamefamilyareeffectivelylinkedthrough positive bequests, the path of aggregate consumption in a given period is optimal in spite of contemporaneous externalities. However,theexistenceofcontemporaneousconsumptionexternalitieswhenthereareagentswithdifferentageslivinginthe sameperiodmakessuboptimaltheintratemporalallocationofconsumptionbetweenthetwogenerations.6 Wecancomparethesocialplannersolution,whichischaracterizedbyEqs.(29),(33)and(34),withthecompetitiveequilibrium solutionwhenthebequestmotiveisoperative,whichischaracterizedbyEqs.(19),(20)and(29).Wefirstrewritetheequilibrium solutionbyrearranging(20)asfollows: (cid:1) (cid:3) uVðxˆtÞ q¼b; ð38Þ uVðcˆtÞ n wherethelefthandside(LHS)istheprivatemarginalrateofsubstitution(MRS)betweenyoungandoldconsumptionatperiodt andtherighthandside(RHS)istheprivatemarginalrateoftransformation(MRT).Thus,Eq.(38)determinestheintratemporal allocationofconsumptionbetweenagentsbelongingtodifferentgenerationsalongtheequilibriumpath.Combining(19)with (20),weobtain (cid:1) (cid:3)(cid:1) (cid:3) uVðcˆtþ1Þ b ¼ 1 ; ð39Þ uVðcˆtÞ n fVðktþ1Þ wheretheLHSistheprivateMRSbetweenyoungandoldconsumptionofindividualsbelongingtogenerationtandtheRHSisthe corresponding private MRT. It then follows that Eq. (39) determines the intertemporal allocation of consumption along the equilibriumpath. Wefollowasimilarreasoningwiththesocialplannersolution.Ontheonehand,(33)determinestheoptimalintratemporal allocationofconsumptionbetweenagentsbelongingtodifferentgenerations.Ontheotherhand,(34)determinestheoptimal intertemporalallocationofconsumption.ThisequationistheKeynes–Ramseyequationthat,givenaninitialconditiononthestock ofcapital,characterizestheoptimalpathofsavingandthustheoptimalpathofcapitalstockandoutput. From the comparison of (33) and (34) with (38) and (39) we see that consumption externalities affect the intratemporal allocationofconsumptionbetweengenerations,astheprivateandsocialMRSdonotcoincide,butdonotaffecttheintertemporal allocationofconsumption.Therefore,consumptionexternalitiesdonotaffecttheoptimalityofthecapitalpathwhenthebequest motiveisoperative.Giventhatproductionandsavingsareatitsoptimallevel,thissuboptimalallocationofconsumptionbetween youngandoldagentsisassociatedwithasuboptimalpathofbequests.Thesizeofthedifferencebetweentheprivateandsocial MRSisgivenbythevalueofthevariableI,whichprovidesameasureoftheinefficiencyduetoconsumptionexternalities.Thus,the amountofbequestissuboptimallysmall(large)whentheexternalitiesmakeagentsvalueold(young)consumptioninexcessto young(old)consumption.Infact,itcanbeshownthatbequestsaresuboptimallysmall(large)wheneverIN(b)1.Notealsothatthe twoconsumptionexternalitiesresultinoppositeeffectsand,infact,whenI=1thecompetitiveequilibriumisefficienteventhough consumptionexternalitiesarepresent. 5.2.Suboptimalityoftheequilibriumpathwhenthebequestmotiveisinoperative Whentheamountofbequestiszero,theequilibriumischaracterizedbyEqs.(3),(19)and(29).Weproceedtocomparethese equationswiththosecharacterizingthesocialplannersolution.First,wecombine(33)with(34)toobtain 0 (cid:10) (cid:11)1 @uV(cid:10)xˆptþ1(cid:11) A(cid:10)q(cid:11)¼ (cid:10)1 (cid:11); ð40Þ uVcˆp I fV kp t tþ1 wheretheLHSisthesocialMRSbetweenconsumptionwhenyoungandwhenoldandtheRHSisthecorrespondingsocialMRT.We cancomparethisequationwiththeequilibriumEq.(19),whichcanberewrittenas (cid:4) (cid:5)! uVxˆ(cid:4)tþ(cid:5)1 q¼ 1 ; uVcˆt fVðktþ1Þ 6 InAlonso-Carreraetal.(2004)thereisnoheterogeneityamongagentssothattheoptimalityoftheaggregateconsumptionpathimpliesanoptimal intratemporalallocationofconsumption.Wealsoproveinthatpaperthatcontemporaneousconsumptionexternalitiesgiverisetosuboptimalconsumption pathsonlyiftheyinteractwiththeconsumptionofpreviousperiods. J.Alonso-Carreraetal./JournalofPublicEconomics92(2008)1751–1764 1759 wheretheLHSistheprivateMRSandtheRHSisthecorrespondingprivateMRT.Thisequationdrivestheintertemporalmargin between consumptionwhenyoung and when old along an equilibriumpath with inoperativebequestmotive. Notethat this equilibriummargindiffersfromtheoptimalmargininboththeMRSandintheMRT.Thedifferencebetweenthesocialandthe privateMRSisduetoconsumptionexternalitiesandthedifferencebetweenthesocialandtheprivateMRTarisesbecausethe competitivestockofcapitaldiffersfromitsplannedcounterpartwhenthebequestmotiveisnotoperative.Toseethis,notethat (34) does not hold along an equilibrium path when bequests are zero. Moreover, as follows from (3) and (19), consumption spilloversmodifytheequilibriumstockofcapitaland,hence,theprivateMRTwhenbequestsarezero.Thus,whenthebequest motiveisnotoperative,consumptionexternalitiesaffectboththeMRSandtheMRTandthusgiverisetobothasuboptimallevelof productionandasuboptimalallocationofconsumption. Thelongrunvalueofthestockofcapitalisnotoptimalinthiscase.Theoptimallongrunvalueofthestockofcapitalkpis obtainedfrom(34),whereasthelongrunvaluek¯ofthestockofcapitalinthecompetitiveequilibriumcomesfromtheequationh (k¯,0)=0.Asfollowsfromthecondition(26)fortheoperativenessofthebequestmotive,k¯Nkp.Thus,theinoperativenessofthe bequestmotiveimpliesasuboptimallylargecapitalstock.Thestockofcapitalinasteadystateequilibriumcanbeexpressedasa functionofγandδ,k¯(γ,δ)whereastheoptimalstockofcapitalcanbewrittenasafunctionofthealtruismfactor,kp(β).Theoverall inefficiencycould be measured bythe difference k¯(γ, δ)−kp(β). This inefficiencycan be divided into two components: (i) the inefficiency due to the inoperativeness of the bequest motive; and (ii) the inefficiency due to consumption externalities. The formerinefficiencyisgivenbyk¯(0,0)−kp(β).Sincethestrengthofaltruismrisestheoptimalstockofcapital(see(35))butdoesnot affecttheequilibriumstockofcapitalwhenthebequestmotiveisinoperative,thisinefficiencydecreasesasβincreases.Onthe otherhand,theinefficiencyduetoconsumptionexternalitiesisgivenbyk¯(γ,δ)−k¯(0,0).FromProposition3.5,wecanconclude thatthesizeofthisinefficiencydecreaseswithγandincreaseswithδ. 6.Optimaltaxes Inthissectionweproceedtocharacterizetheoptimaltaxratestoimplementanoptimalallocationwhenconsumptionexternalities interactwithaltruism.Weconsiderataxpolicyconsistingofanestatetax,acapitalincometaxandasystemoflump-sumtaxes. Concerningthelump-sumtaxes,weassumethatyoungagentspayalump-sumtaxτyandtherevenuesaredevotedtofinancealump- t sumsubsidytotheold−τo.Therefore,thesetwotaxratesarerelatedbythefollowingbalancedbudgetconstraint: t so¼(cid:2)nsy: ð41Þ t t Wealsoassumethatyoungagentspayanestatetaxontheinheritancetheyreceiveandthattherevenuesaccruingfromthesetaxesare returnedtothesameyoungagentsbymeansofalump-sumsubsidy.Thus,thereisasecondgovernmentbudgetconstraint,which is /yt ¼sbtbt; ð42Þ where/yisalump-sumsubsidyandτbistheestatetaxrate.Finally,weassumethatoldagentspayacapitalincometaxonthereturnsof t t savingsandthattheserevenuesarereturnedtotheseagentsbymeansofalump-sumsubsidy.Therefore,anothergovernmentbudget constraintis /ot ¼sktstfVðktþ1Þ; ð43Þ whereϕoisalump-sumsubsidyandτkisthecapitalincometaxrate. t t Consideranindividualbelongingtogenerationt=0,1,2,…whomaximizes(4)withrespectto{c,x ,b }subjectto(1)and t t+1 t+1 thefollowingconstraints: (cid:10) (cid:11) ct¼wt(cid:2)syt þ/yt þ 1(cid:2)sbt bt(cid:2)st; ð44Þ (cid:10) (cid:11) xtþ1¼ 1(cid:2)sktþ1 Rtþ1stþ/otþ1(cid:2)nbtþ1(cid:2)sotþ1; ð45Þ whichamountstosolvethefollowingdynamicprogrammingproblem: (cid:10) (cid:10) (cid:11) (cid:11) (cid:10)(cid:10) (cid:11) (cid:11) VtðbtÞ¼fsmt;batþx1gfu wt(cid:2)syt þ/yt þ 1(cid:2)sbt bt(cid:2)st(cid:2)gvyt þqu 1(cid:2)sktþ1 Rtþ1stþ/otþ1(cid:2)nbtþ1(cid:2)sotþ1(cid:2)dvotþ1 þbVtþ1ðbtþ1Þg; withb ≥0,forvy,vo ,w andR givenfort=0,1,2,…. t+1 t t+1 t t+1 Theproblemfacedbytheindividualsbelongingtogeneration−1inperiod0isthefollowing: n (cid:10)(cid:10) (cid:11) o mfba0gx qu 1(cid:2)sk0 R0k0þ/o0(cid:2)nb0(cid:2)so0(cid:2)dvo0ÞþbV0ðb0Þ ; withb ≥0,fork ,vo,andR given. 0 0 0 0 1760 J.Alonso-Carreraetal./JournalofPublicEconomics92(2008)1751–1764 Thefirstorderconditionsoftheprevioustwoproblemswithrespecttos andb are t t (cid:4) (cid:5) (cid:10) (cid:11) (cid:4) (cid:5) uVct(cid:2)gvyt ¼q 1(cid:2)sktþ1 Rtþ1uVxtþ1(cid:2)dvotþ1 ð46Þ and (cid:4) (cid:5) (cid:10) (cid:11) (cid:4) (cid:5) nquVxt(cid:2)dvot z 1(cid:2)sbtþ1 buVct(cid:2)gvyt ; ð47Þ fort=0,1,2,…,wherethelastconditionholdswithequalityifb N0. t Thecompetitiveequilibriumofthiseconomywithtaxesisapath{k,c,x,b,ϕy,ϕo}∞ that,foragiveninitialvalueofk ,solves t t t t t t t=0 0 the system of difference equations composed of (46) and (47), together with (13), (14), (15), (41), (42), (43), (44), (45) and the transversalitycondition(21)foragivenpathof{τtyn,τot,τtb,τtk}t∞=0. o Letusdenotethepathofoptimaltaxratesas ∽sy;∽so;∽sb;∽sk l .Theseoptimaltaxratesaresuchthatmaketheequilibrium t t t t t¼0 pathof{k,c,x}coincidewiththeoptimalpath{kp,cp,xp},characterizedby(29),(33)and(34).Byusing(3),weobtainthatthe t t t t t t optimalpathofbequestimpliedbytheplanners'solutionisgivenby (cid:4) (cid:5) xp bp¼fVkp kp(cid:2) t : ð48Þ t t t n Apositiveoptimalamountofbequestimpliesthatthebequestmotiveisoperativealonganequilibriumpaththatattainsthefirst bestsolutionandanegativeoptimalamountofbequestimpliesthatthebequestmotiveisinoperativealongthisequilibriumpath. Tocharacterizetheoptimaltaxrates,wemustdistinguishbetweenthesetwocases. Whentheoptimalamountofbequestispositive,theequilibriumpathassociatedtotheoptimaltaxratesischaracterizedby (29),(45)andthefollowingtwoequations,whichareobtainedfromcombining(46)and(47): 0 1 (cid:1) (cid:3) (cid:1) (cid:3) Rðktþ1Þ uuVðcVðˆctˆþtÞ1Þ ¼ nb @(cid:10)1(cid:2)∽sb (cid:11)1(cid:10)1(cid:2)∽sk (cid:11)A; ð49Þ tþ1 tþ1 and (cid:1) (cid:3)(cid:1) (cid:3) nq uVðxˆtÞ ¼1(cid:2)∽sb: ð50Þ b uVðcˆtÞ t FromcomparingthepairofEqs.(49)and(50)with(33)and(34),weobtainthefollowingresult: Proposition6.1. Whentheoptimalamountofbequestispositive,theoptimaltaxratesareτ~b=1−Iandτ~k=1−1. t t I Iftheoptimalamountofbequestispositiveandconsumptionexternalitiesaretheonlysourceofsuboptimality,thenlump-sumtaxes areirrelevantduetoRicardianequivalence.Inthiscase,becausethespecificationoftheconsumptionexternalityallowsadifferentlevelof distortioninyouthandoldage,anappropriatetaxonbequests(estatetax)couldoutweightheeffectofexternalities(see(50)).However, theestatetaxaffectsthedegreeofcapitalaccumulationaccordingtoEq.(49).Therefore,iftheoptimaltaxrateonbequestsispositive,we shouldsubsidizecapitalaccumulationsoasnottocreateadistortionwherenoneoriginallyexisted.Conversely,ifasubsidyonbequests counterbalancestheeffectofconsumptionexternalities,weshouldintroducepositivetaxationoncapitalincometobringtheamountof capitaltoitsoptimallevel.Inthisrespectnotethatthesignofτ~kistheoppositeofthatofτ~b. t t Whentheoptimalamountofbequestisnegative,theequilibriumpathassociatedwiththeoptimaltaxratesischaracterizedby b =0andEqs.(29),(45)and(46).Weproceedtocharacterizetheoptimaltaxrates.Fromthecomparisonbetween(40)and(46),it fotllowsthattheoptimalcapitalincometaxrateis∽sk ¼1(cid:2)1.Thistaxsolvesthesuboptimalityduetoconsumptionexternalities, t I whereasthesuboptimalityduetotheinoperativenessofthebequestmotiveisthussolvedthroughlump-sumtaxes.Toobtainthe latteroptimaltaxes,weuse(13),(15),(43)and(45)toobtain xt¼nfVðktÞkt(cid:2)sot: ð51Þ Fromthecomparisonbetween(48)and(51),weobtainthatτ~o=nbpand,using(41),wegetτ~y=−bp,wherebpisdefinedinEq.(48). t t t t t Giventhatbpb0,weobtainthatτ~ob0andτ~yN0.Thus,theoptimalsystemoflump-sumtaxescorrectstheexcessofcapitalby t t t meansofreducingtheincomeoftheyoungagentsandincreasingtheincomeoftheoldagents.Inthissense,theoptimallump- sumtaxesareapay-as-you-gosocialsecuritysystem.Theseresultsaresummarizedinthefollowingproposition: Proposition6.2. Whentheoptimalamountofbequestisnegative,theoptimaltaxratesare∽sk¼1(cid:2)1;∽so¼nbpand∽sy¼(cid:2)bp. t I t t t t Wehavethusshownthatifagentsarealtruistictheoptimaltaxpolicydependsontheoperativenessofthebequestmotivealongan optimalpath.Ontheonehand,ifbequestsarezerothen,asinAbel(2005),theoptimaltaxpolicyconsistsofataxoncapitalincomeanda pay-as-yougosocialsecuritysystem.Thelattersolvestheexcessofcapitalaccumulationduetotheinoperativenessofthebequestmotive andtheformersolvesthesuboptimalallocationofconsumptionduetoconsumptionexternalities.Notethattheoptimalcapitalincome taxratewillbepositiveornegative,dependingontherelativeintensityofthetwoexternalities.Thus,thisoptimaltaxisconstructedina waythatstimulatesordeterssavingdependingontheoveralleffectofexternalitiesontheallocationofconsumption.
Description: