RESEARCHARTICLE Establishing Functional Relationships between Abiotic Environment, Macrophyte Coverage, Resource Gradients and the Mytilus trossulus Distribution of in a Brackish Non-Tidal Environment JonneKotta1*,KatarinaOganjan1,VeldaLauringson1,MerliPärnoja1,AntsKaasik2, LiisaRohtla1,3,IlmarKotta1,HelenOrav-Kotta1 1 UniversityofTartu,EstonianMarineInstitute,DepartmentofMarineBiology,Mäealuse14,12618Tallinn, Estonia,2 UniversityofTartu,InstituteofEcologyandEarthSciences,ChairofZoology,Vanemuise46, 51014,Tartu,Estonia,3 NovaSoutheasternUniversity,HalmosCollegeofNaturalSciencesand Oceanography,8000NorthOceanDrive,DaniaBeach,Florida,UnitedStatesofAmerica * [email protected] OPENACCESS Citation:KottaJ,OganjanK,LauringsonV,Pärnoja Abstract M,KaasikA,RohtlaL,etal.(2015)Establishing FunctionalRelationshipsbetweenAbiotic Environment,MacrophyteCoverage,Resource Benthicsuspensionfeedingmusselsareanimportantfunctionalguildincoastalandestua- GradientsandtheDistributionofMytilustrossulusin rineecosystems.Todatewelackinformationonhowvariousenvironmentalgradientsand aBrackishNon-TidalEnvironment.PLoSONE10(8): bioticinteractionsseparatelyandinteractivelyshapethedistributionpatternsofmussels e0136949.doi:10.1371/journal.pone.0136949 innon-tidalenvironments.Opposingtotidalenvironments,musselsinhabitsolelysubtidal Editor:FrankMelzner,GEOMARHelmholtzCentre zoneinnon-tidalwaterbodiesand,thereby,drivingfactorsformusselpopulationsare forOceanResearchKiel,GERMANY expectedtodifferfromthetidalareas.Inthepresentstudy,weusedtheboostedregression Received:March26,2015 treemodelling(BRT),anensemblemethodforstatisticaltechniquesandmachinelearning, Accepted:August10,2015 inordertoexplainthedistributionandbiomassofthesuspensionfeedingmusselMytilus Published:August28,2015 trossulusinthenon-tidalBalticSea.BRTmodelssuggestedthat(1)distributionpatternsof Copyright:©2015Kottaetal.Thisisanopen M.trossulusarelargelydrivenbyseparateeffectsofdirectenvironmentalgradientsand accessarticledistributedunderthetermsofthe partlybyinteractiveeffectsofresourcegradientswithdirectenvironmentalgradients.(2) CreativeCommonsAttributionLicense,whichpermits Withinitssuitablehabitatrange,however,resourcegradientshadanimportantroleinshap- unrestricteduse,distribution,andreproductioninany ingthebiomassdistributionofM.trossulus.(3)Contrarytotidalareas,musselswerenot medium,providedtheoriginalauthorandsourceare credited. competitivelysuperiorovermacrophyteswithpatternsindicatingeitherfacilitativeinterac- tionsbetweenmusselsandmacrophytesorco-varianceduetocommonstressor.Tocon- DataAvailabilityStatement:Allrelevantdataare withinthepaperanddownloadableathttp://loch.ness. clude,directenvironmentalgradientsseemtodefinethedistributionpatternofM.trossulus, sea.ee/gisservices2/LiikideInfoportaal/index.html. andwithinthefavourabledistributionrange,resourcegradientsininteractionwithdirect Funding:Fundingforthisresearchwasprovidedby environmentalgradientsareexpectedtosetthebiomasslevelofmussels. InstitutionalresearchfundingIUT02-20ofthe EstonianResearchCouncil.Thestudyhasbeenalso supportedbytheEstonianScienceFoundationgrant 8807,theproject"Thestatusofmarinebiodiversity anditspotentialfuturesintheEstoniancoastalsea" No3.2.0801.11-0029ofEnvironmentalprotectionand technologyprogramoftheEuropeanRegionalFund. PLOSONE|DOI:10.1371/journal.pone.0136949 August28,2015 1/19 FactorsContributingtotheSpatialPatternsofMytilustrossulus TheprojecthasreceivedfundingfromtheBONUS Introduction projectBIO-C3,fundedjointlyfromtheEuropean Union’sSeventhProgrammeforresearch, Akeymissioninecologyistounderstandbioticpatternsandtheirchangesinnature.Inorder technologicaldevelopmentanddemonstrationand toachievesuchanunderstandinginthemarinerealm,ecologistshaveinitiatedamultitudeof fromtheEstonianResearchCouncil.Thefunders projectsaimingtomapmarinebiotaorperformedexperimentstodemonstrateinteractions hadnoroleinstudydesign,datacollectionand betweenphysicalenvironmentandorganisms.However,asdirectmappingofbiotais analysis,decisiontopublish,orpreparationofthe extremelycostlyinmarineenvironment,modellinghasbecomeanunavoidabletool,andsev- manuscript. eralrefinedstatisticalapproacheshavebeenalreadyappliedinthefield[1] CompetingInterests:Theauthorshavedeclared Distributionpatternsofspeciesdependontheirecologicalniche,whichconsistsofamulti- thatnocompetinginterestsexist. dimensionalenvironmentalspace.Ingeneral,non-independenteffectsarecommoninnature [2,3]and,therefore,neitherthespeciesnichenortheresultingdistributionrangecanbepre- dictedfromseparateeffectsofanindividualenvironmentalvariable.Asuitablehabitatisoften definedbycomplexinterrelationshipsamongamultitudeofenvironmentalvariablesthatcan belargelydividedintothreebroadcategories[4].Theseincludeindirectenvironmentalgradi- ents,resourcegradientsanddirectenvironmentalgradients.Indirectenvironmentalgradients canoftenbeeasilymeasured,butrepresentonlyproxiesforasetofunderlyinggradients, whichaffectorganismsdirectlywhileitmaybedifficulttomeasureordisentangletheeffectsof theseunderlyinggradients[5,6].Waterdepthcanbeviewedasatypicalindirectenvironmental gradientinthemarinerealm.Resourcegradientsaresubstancesbeingconsumedanddirect environmentalgradientsrepresentfeaturesthathavedirectphysiologicalimpactongrowth butarenotconsumed.Thepicturegetsmorecomplicatedasthesamefactormayhavean impactsimultaneouslyviadifferentpathways.Forexample,watermovementcanindirectly affectthehabitatofsuspensionfeedingbivalvesbymodifyingsedimentationratesoraffectses- silemusselsdirectlybyphysicallydisturbingordetachinganimals[1,7].Furthermore,theben- thicsuspensionfeedingmodeandsedentarylifestyleofmusselsprescribeanintrinsicneedfor avectoroffooddelivery.Thereby,watermovementcanimpactbenthicsuspensionfeedersalso throughathirdpathway,bymodifyingtheresourcesupplywhilelimitingtheamountoffood reachedbymussels[8,9]. Althoughthenicheconceptintroducedresourceaxesandtheimportanceofcompetition [10],mostoftheecologicalnichemodelinghasbeendealingwithabioticfactorsonly,without consideringinterspecificinteractionsandresources[11–13].Therefore,itislargelyunknown howbioticenvironmentinteractswithHutchinsonianfundamentalnichespaceinstructuring realcommunities[14].Therealizednicheofaspecies,however,dependslargelyonbioticinter- actionswithotherspecies[15–17].Thereby,herewedistinguishbesidesdirect/indirectenvi- ronmentalandresourcegradientsalsothefourthtypeofgradients,namelytheabundancesof ambientspeciesororganismgroupsotherthandirectresources,buteithercompetitors,preda- torsorfacilitators.Werefertothisgradienttypeasbioticinteractiongradients. Benthicsuspensionfeedingmusselsareanimportantfunctionalguildincoastalandestua- rineecosystems.Thisfunctionalguildfeedsonsuspendedfood,usuallymicroalgae,frombot- tom-reachingwatermasses[18].Despitealargebodyoffieldandexperimentalworks[19,20] westilllackknowledgeonhowvariousenvironmentalgradientsseparatelyandinteractively shapethedistributionpatternsofsuspensionfeedingmusselsindifferentecosystems.Therea- sonforthisis,firstly,becausethedistributionofsuspensionfeedersiscontrolledbyalarge numberofprocessesinvolvingbothbenthicandpelagicenvironments(e.g.substratecoloniza- tion,watermovement,phytoplanktonproduction,physicaldisturbances)aswellasmany interactionsbetweentheseprocesses[1,21].Secondly,duetothiscomplexityindrivingforces, thedirectionandmagnitudeofenvironmentalimpactonmusselsisexpectedtovaryhighly amongdifferentecosystems[22,23].Todate,thedistributionpatternsofmusselshavebeen extensivelystudiedintidalhabitats[19,24–26]whereasstudiesonnontidalareasarestill PLOSONE|DOI:10.1371/journal.pone.0136949 August28,2015 2/19 FactorsContributingtotheSpatialPatternsofMytilustrossulus scarce.Contrastingtotidalareas,musselsinhabitsolelysubtidalzoneinnontidalwaterbodies [27]anddrivingfactorsformusselpopulationsareexpectedtodifferfromthetidalareas[23]. Inthetidalzonespeciesareconstantlychallengedbyfluctuatingenvironmentalconditionsand thebioticpatternsoftenreflectthestresstoleranceofspecies[28–30].Ontheotherhand,subti- dalareasofferspeciessomestability;thus,thedistributionpatternsofmusselsareexpectedto beshapedprimarilybyhabitatandfoodavailabilityaswellaspredationpressure[31]. Therisinginterestinmarinehabitatmappinghasresultedinnumerousmodellingstudies focussedonthedistributionofspecies[32–35].However,traditionalstatisticalmodellingmay notbethemostrewardingwaytounderstandenvironmental-speciesrelationships,asitstarts byassuminganappropriatedatamodel,andmodelparametersarethenestimatedfromthe data[36].Duetothelackofasolidknowledgeonhowtheexternalenvironmentimpactsthe speciesthatwearetryingtomodel,thepredictiveperformanceofthesemodelsisexpectedto bemoderate.Ontheotherhand,duetotimeconstraintsandlimitedmanpower,experimental studiescannotresolvecausalconnectionsbeyondoneortwoenvironmentalvariables.More- over,experimentsareonlyseldomreplicatedinspaceandtime.Asaconsequence,theexperi- mentalapproachcanprovideusaverylocalizedsnapshot,butnotagenericunderstandingon environment-biotarelationships. Machinelearningprovidesatheoreticalframeworkthatmovesbeyondtraditionalparadigm boundaries.Considering„complexrealism”andourweaktheoreticalfoundations,modellingis seenhereasasophisticatedtooltoimproveourunderstandingontherelationshipbetween environmentandbiota.Bycontrasttotraditionalmethods,machinelearningavoidsstarting withadatamodelandratherusesanalgorithmtolearntherelationshipbetweentheresponse anditspredictors[37].Butevenheresomeecologicalunderstandingisaprerequisitewhenit comestoselectingenvironmentalvariablesforthemodel.Specifically,inordertosucceedin identifyingandquantifyingrelationshipsbetweentheenvironmentandbiota,themodel shouldincorporateatleastthemostimportantdirectandresourcegradientsaswellasrecap- turemultitudeofinteractionsbetweentheseenvironmentalgradientsandbiota.Thenovelpre- dictivemodellingtechniquecalledBoostedRegressionTrees(BRT)combinesthestrengthsof machinelearningandstatisticalmodelling.BRThasnoneedforpriordatatransformationor eliminationofoutliersandcanfitcomplexnonlinearrelationships.TheBRTalsoavoidsover- fittingthedata,therebyprovidingrobustestimates.Whatisthemostimportantintheecologi- calperspective:itautomaticallydetectsandmodelsinteractiveeffectsbetweenpredictors.The methodcopeswithdifferentnon-linearrelationshipsincludingthresholdsandunimodal responseswhicharecommoninecologicaldatabutdifficulttoanalyseusingmoretraditional methods.Duetoitsstrongpredictiveperformance,BRTisincreasinglyusedinecology [38,39].Although,weadmitthattheresultsofdistributionmodellingarepurelycorrelative andcausalinterpretationsneedtobevalidatedbyfutureexperimentalmanipulations,machine learningalgorithmsenableapowerfulinitialinsighttothekeydriversaswellastotheinterac- tionsbetweentheenvironmentandthebiota. Bluemusselsconsistofagroupofthreecloselyrelatedtaxa,knownastheMytilusedulis complex.ThecommonmusselMytilusedulisinsensustrictoisnativetotheNorthAtlantic, theMediterraneanmusselMytilusgalloprovincialisisnativeintheMediterranean,theBlack SeaandWesternEuropeandthebaymusselMytilustrossulusisnativetoNorthPacific,north- ernpartsoftheNorthAtlanticandBalticSea.Thetaxacanhybridisewitheachother,ifpresent atthesamelocality.M.trossulusinhabitsbothsubtidalaswellasintertidalareas,toleratesa widerangeofenvironmentalconditionsandthereforegainshighbiomassesatdifferenthabitat types[40].Thismakesthespeciesagoodmodelorganismtoimproveourunderstandingon therolesofmultipleenvironmentalgradientsonthedistributionofbenthicsuspensionfeeders. InthebrackishnontidalBalticSea,M.trossulusisanimportantorganisminvarioushardand PLOSONE|DOI:10.1371/journal.pone.0136949 August28,2015 3/19 FactorsContributingtotheSpatialPatternsofMytilustrossulus mixedbottomsubtidalhabitats.HereM.trossuluscoexistswithM.edulis,butasakeyecologi- caldifferentiationM.trossulustolerateslowersalinitycomparedtoM.edulisandtherebydis- tributesalmostthewholerangeoftheBalticSea[41,42].However,therearenopureM. trossulusintheBalticSeawithallmytilidsbeinghybrids,withvaryingfractionsofM.edulis allelesintheirgenomes[43]. Inthepresentstudy,weaimedtodescribetherealizednicheofthemusselM.trossulusin thenortheasternBalticSea,bothintermsofdistributionandthesizeofpopulations.Weused theBRTmodelling(1)toquantifytherelativecontributionofresource,abioticenvironmental andbioticinteractiongradientsonthedistributionofM.trossulusintheBalticSea(2)Wealso soughthowtheavailabilityofresourcesaffectsthestandingstockofspeciesand(3)howbiotic interactionsanddifferentdirectenvironmentalgradientsincludingkeydisturbanceseither separatelyorinteractivelymodulatetheresource-biomassrelationship. Weexpectedthatattheregionalscale,salinityisconsideredasthemainfactordrivingthe distributionofMytilustrossulus[42].Locally,however,alargearrayofenvironmentalvariables suchassubstratetype,watertemperature,flowvelocity,winter-timeicescour,areexpectedto eitherseparatelyorinteractivelyshapethedistributionpatternofmussels[7,44–47].Wealso expectedthatwithinafavourablehabitat,theavailabilityoffoodresourcesdefinesthebiomass ofspecies[47].Nevertheless,resourcegradientsinthisspacemayinteractwithdirectenviron- mentalgradients,whichactasvalvesregulatingtheavailabilityofresources.Asbenthicsuspen- sionfeederslinktwospatiallydistinctsystems,specificabioticenvironmentalconditionsmay beofutmostimportanceforthemindeterminingtheamountofresourcetobereceived[47– 49].Inaddition,disturbancemayreduceorultimatelyevendisruptthelinkbetweenresource parametersandthedistributionofspecies[50].Thismayexplainwhysomehighlytrophic areaswithe.g.sufficientamountofhardbottomandsuitablesalinitylackdensemusselpopula- tions[51].Finally,weexpectthattheinterspecificcompetitionbetweenmusselsandother biotaismoderate,rarelyoutperformingtheeffectsofabioticenvironmentaldisturbances[44]. Itisexpectedthatmacroalgaecompetewithmusselsforsubstrate,although,thishasnotbeen experimentallydemonstratedintheBalticSea.Instead,musselsareknowntofacilitatethe growthofmacroalgae[52]and,thus,mutualisticinteractionsbetweenmusselsandmacroalgae (e.g.dampeningdifferenttypesofdisturbances,intensifyingturbulentflowsatthebottom- waterinterface)mayactuallyoutweighapotentialreductioninadvectionbycanopymacroal- gae[53].Ascomparedtotheoceanicwaters,theBalticSealacksthemajorepibenthicpredators andthereforethepredationpressureonmusselsisalsolow[27,54].Predationbyvertebratesin thestudyareaisrare,decliningandhardlydetectable,therefore,wedecidednottoincludepre- dationtothedistributionmodel[55]. Methods 1.Studyarea ThestudyarealiesinthenortheasternBalticSea,intheEstoniancoastalsea(Fig1).Itischar- acterizedbyfullysubmergedhabitatduetotheabsenceoftides,althoughveryshallowwaters maybeirregularlyexposedbytheactionofwind.Salinityisconstantlylowandclosetothe physiologicaltoleranceofmussels.Opposingtomoresalinerangeofthespecies,invertebrate predationisabsentinthestudyarea[27,54].Thestudyareaencompassesmajorgeomorpho- logicalstructuresincludingdifferenttypesofsoft,limestoneandgranitebedrock,allowingthus togeneralizetheobtainedresultsoverlargepartsoftheBalticSea[56,57].Largepartsofthe studyareaarerelativelyflatandshallow,lackingsteepslopes.Shallowareasmayalsobesub- jectedtointensewinter-timeicescour.Waveenergyislowerthanonthecoastsoflargeoceans, butmaystillberemarkableforthebottomfaunaatshallowexposedsites,especiallyduring PLOSONE|DOI:10.1371/journal.pone.0136949 August28,2015 4/19 FactorsContributingtotheSpatialPatternsofMytilustrossulus Fig1.Mapofthesamplingstationsinthestudyarea.FilledcirclesindicatethelocationsofM.trossulus. doi:10.1371/journal.pone.0136949.g001 autumnandwinterstorms.Someareasaresubjectedtolocalupwellingeventsinducedbywind conditions.Often,angiospermormacroalgalcommunitiesinhabitthesebottomsatdepths downto20m.ThemusselM.trossulusexhibitsgenerallylowbiomassandsparsedistribution. Onlyatveryexposedopen-seaareas,thebiomassmayexceed1kgdwm-2[58]. 2.Biologicaldata Altogether3585stationsweresampledwithintheEstonianterritorialwatersduringtheice- freeseasonsbetween2005and2009.Themajorityofstationsweresampledonlyonce.Within eachwaterbodyapproximately15stationsweresampledannually.Inordertoestablishthe samplingstations,agridofrectangularcellswasgeneratedwithcellsizesof300musingthe SpatialAnalysttoolofArcInfo10[59].Thenwecalculatedthevaluesofwaveexposureand inclinationofcoastalslopesforeachgridcell(seebelow).Theexposureandslopeclasseswere combinedtotheavailableinformationondepthandbottomsediments(dividedintoclay,silt, sand,gravel,boulderandrockbottoms)availableinthedatabasesoftheEstonianMarineInsti- tute.Samplingsiteswerelocatedrandomlyinawaythateachcombinationofexposure,slope, depthandsedimentclasshadacomparablenumberofsamplingsites(Table1). PLOSONE|DOI:10.1371/journal.pone.0136949 August28,2015 5/19 FactorsContributingtotheSpatialPatternsofMytilustrossulus Table1. MeasuredenvironmentalvariablesintheoverallsamplingareaandintheareawhereM.trossuluswasfound. Variable Unit Samplingarea Distributionarea Mean Min Max Mean Min Max Depth m 11.77 0.10 75 8.87 0.2 47 Exposure m2s-1 229020 5672 968957 277950 5672 968957 Slope ° 0.66 0 13.47 0.79 0 10.56 Icethickness m 0.28 0 0.50 0.26 0 0.48 Temperature °C 12.95 0.03 22.23 12.88 0.03 22.23 Salinity psu 6.26 3.70 8.05 6.66 4.42 7.93 Oxygen mmolm-3 319 0 376 325 0 375 Velocity cms-1 3.75 0 15.26 3.58 0 13.34 Siltclaycover % 13.34 0 100 6.22 0 100 Sandcover % 38.12 0 100 21.96 0 100 Bouldercover % 37.87 0 100 58.15 0 100 Chlorophylla mgm-3 19.54 0.66 45 19.00 0.66 45 Plantcover % 31.65 0 100 44.43 0 100 doi:10.1371/journal.pone.0136949.t001 Ateachsamplingsitethecoverageofdifferentsedimenttypes(rock,boulders,pebbles, gravel,sand,silt)andmacrophytes(bothmacroalgaeandhigherordervegetation)wasesti- matedeitherdirectlybydiverorremoteunderwatervideodevice.Theunderwatercamerawas setatanangleof35°belowhorizontomaximisethefieldofviewandtherangeoftheforward viewwasabout2minclearwaters. InadditionateachsamplingsitequantitativesamplesofM.trossuluswerecollectedinthree replicateseitherbyadiverusingastandardbottomframe(0.04m2)onhardbottoms,orbya quantitativeEkman-Lenzgrabsampler(0.02m2)onsoftbottoms.Althoughthesampleswere collectedusingtwodifferentmethodswithdifferentaccuracy,thesetwomethodsarecompara- bleinthecaseofM.trossuluswithlimitedescapeabilitiesandrelativelyhomogenousseafloor area.Samplesweresievedatthefieldon0.25mmmeshscreens.Theresidueswerestoredat −20°Candsubsequentsortingandcountingofspecieswasperformedinthelaboratoryusinga stereomicroscope.Thedryweightofmusselswasobtainedafterdryingtheindividualswith shellsat60°Cfor2weeks. BiomasssamplingandanalysisfollowedtheguidelinesdevelopedfortheHELCOMCOM- BINEprogramme[60].AccordingtotheProtectionRulesoftheEstoniancoastalwaters,bio- logicalsamplingdoesnotrequirespecificpermitsorapprovals.Thestudyareaisnotprivately- ownedandthestudydidnotinvolveendangeredorprotectedspecies. 3.Environmentaldata Asetofenvironmentalvariableswerechosenfortheanalysesbasedonthetheoreticalassump- tionsoftheroleofenvironmentonthemusseldistribution(Table1).Thevaluesofwatertem- perature,salinityandwatervelocitywereobtainedfromtheresultsofhydrodynamicalmodel calculationsfrom2005−2009.Asannualaverages,minimaandmaximaofthestudiedhydro- logicalvariableswerehighlyintercorrelated,weusedannualaveragesinthefinalmodels.The calculationswerebasedontheCOHERENSmodelwhichisaprimitiveequationoceancircula- 0 0 tionmodel.Itwasformulatedwithsphericalcoordinatesona1 ×1 minutehorizontalgrid and30verticalsigmalayers.Themodelwasforcedwithhourlymeteorologicalfieldsof2mair temperature,windspeed,windstressvector,cloudcoverandrelativehumidity.Themeteoro- logicalfieldswereobtainedfromanoperationalatmosphericmodel.Themodelwasvalidated PLOSONE|DOI:10.1371/journal.pone.0136949 August28,2015 6/19 FactorsContributingtotheSpatialPatternsofMytilustrossulus againstwaterlevel,temperature,salinityandwatervelocitymeasurementsfromthestudyarea [61]. Winter-timeicedisturbanceisthekeydisturbanceformacrophyteandbenthicinvertebrate communitiesintheBalticSearange[62,63].FinnishMeteorologicalInstituteprovidedice coveroverthestudyareafortheinvestigatedperiod.Icecoverandthicknesswereproducedon dailybasisatanominalresolutionof500mandwerebasedonthemostrecentavailableice chartandsyntheticapertureradar(SAR)image.Theiceregionsintheicechartswereupdated accordingtoaSARsegmentationandnewiceparametervalueswereassignedtoeachSARseg- mentbasedontheSARbackscatteringandtheicethicknessrangeatthatlocation. Theamountofavailablefoodresourcesaffectsthedensitiesofspecies[64].Forsuspension feeders,thiscouldbetranslatedfromtheamountoforganicsestoninthewater.Waterchloro- phyllaisagoodproxyforthefoodsupplyofmussels[8].Inthisstudyweusedthesatellitesen- sorMODISAquaderivedwaterchlorophyllavalues.Thismeasureislimitedtosurfacewaters only;however,duetointensivemixinginourshallowwaterecosystem,thesatellitederivedval- uesrepresentwellnear-bottomconditions.Satelliteobservationswererecordedonweekly basisoverthewholeice-freeperiod.Cloud,landandotherprocessingflagswereidentifiedand maskedbyNASALevel2OceanColorProcessing.Thespatialresolutionofsatellitedatawas1 km.Erroneouszerochlorophyllavaluesmayoccurduetodifferentproblemsinimagepro- cessingchain.Theerroneousvalueshavetoberemovedpriortostatisticalanalysis.Asinall yearroundchlorophyllavaluesonlyveryrarelydropbelow0.2inthestudyarea,weuseda thresholdof0.1tofilteroutallthesefalsezeroconcentrations. Anothervariableaffectingmusselsalongdifferentpathwaysisexposuretowaves[1,7]. Exposuredefinesthewaterexchangebothbetweencoastalandopenseaaswellasbetween watersurfaceandbottomlayers[65].Thus,theinteractionbetweenchlorophyllaandexposure isexpectedtoindicatethefluxoffoodintothesite[50].Besidesbeingimportantforresource allocation,waveexposureisalsoadirectvariabletransportinglarvaeandaffectingadults directly[45].TheSimplifiedWaveModelmethodwasusedtocalculatethewaveexposurefor meanwindconditionsrepresentedbythetenyearperiodbetween1January1997and31 December2006[66].Anested-gridtechniquewasusedtotakeintoaccountlongdistance effectsonthelocalwaveexposureregime.Theresultinggridshadaresolutionof25m.Inthe modellingtheshorelinewasdividedintosuitablecalculationareas,fetchandwaveexposure gridswerecalculatedandsubsequentlytheseparategridswereintegratedintoaseamless descriptionofwaveexposurealongthestudyarea.Thismethodresultsinapatternwherethe fetchvaluesaresmoothedouttothesides,andaroundislandandskerriesinasimilarwaythat refractionanddiffractionmakewavesdeflectaroundislands. Althoughdepthistraditionallyregardedamongstthemostimportantparametersdescrib- ingspatialpatternofmussels[1,48],initiallywedidnotincludedepthinourmodel.Thisis becausedepthisasurrogateofseveraldirectvariablessuchaslightavailability,temperature, salinity,pressure,waveaction,icescouringortheircombinations[13].Thus,spatialmodels thatincorporatedepthasaindependentvariablearedifficulttointerpretduetoamultitudeof thecause-effectrelationshipsinvolved.Moreover,itislikelythatthedepth-biotarelationship changeswhenmovingfromonegeographicregiontoanother,orwhenextendingthestudy areatoincludealargerregion[1].However,forenvironmentalmanagementitmightbestill appealingtofindagoodapproximationofspatialdistributionasafunctionofasingleandeasy tomeasureparameteraswaterdepth.Therefore,werunadditionalmodelwhereonlydepth wasusedasapredictorofthespatialpatternofmussels. InordertomatchtemporalpatternsrelevanttothelifespanofM.trossulusandtogetridof potentialnoiseduetotheshort-termvariabilityofenvironmentalvariables,annualaveragesof PLOSONE|DOI:10.1371/journal.pone.0136949 August28,2015 7/19 FactorsContributingtotheSpatialPatternsofMytilustrossulus hydrophysicalvariables,waveexposureandwaterchlorophyllaandawintertimeaverageof icedisturbancewereusedwhenmodellingthepatternsofmussels. 4.BoostedRegressionTrees(BRT)modelling PriortomodellingthePearsoncorrelationanalysisbetweenallenvironmentalvariableswas runinordertoavoidsituationsofincludinghighlycorrelatedvariablesintothemodelling.The correlationanalysisshowedthatmostofvariableswereonlyweaklyintercorrelatedatr<0.1. However,moreexposedareaswerealsocharacterizedbyhighersalinity(r=0.60,p<0.001), lowerchlorophylla(r=-0.59,p<0.001)andlowericecover(r=-0.44,p<0.001).Inaddi- tion,thecoverageofstoneswasinverselyrelatedtosandcover(r=-0.59,p<0.001).Neverthe- less,thesevaluesarefarbelowacriticalthresholdwhencollinearitybeginstoseverelydistort modelestimationandsubsequentprediction[67]. ThecontributionofdifferentenvironmentalvariablesonthedistributionofM.trossulus wasexploredusingtheBoostedRegressionTreetechnique(BRT).BRTmodelsarecapableof handlingdifferenttypesofpredictorvariablesandtheirpredictiveperformanceissuperiorto mosttraditionalmodellingmethods(seee.g.comparisonswithGLM,GAMandmultivariate adaptiveregressionsplines,[68,69]).Whileoverfittingisoftenseenasaprobleminstatistical modelling,thisproblemcanbeovercomebyusingindependentdatasets.TheBRTmodelling iterativelydevelopsalargeensembleofsmallregressiontreesconstructedfromrandomsubsets ofthedata.Eachsuccessivetreepredictstheresidualsfromtheprevioustreetograduallyboost thepredictiveperformanceoftheoverallmodel[38]. TheBRTmodellingconsistedofatwo-stageprocess.InthefirstBRTmodelallstudiedenvi- ronmentalvariables(coverageofdifferentsedimentfractions,icethickness,oxygen,salinity, slope,watertemperature,waveexposure,velocity,chlorophylla,coverageofmacroalgae)were regressedtopredictthepresenceofM.trossulus.InthesecondBRTmodelonlythesamples containingM.trossuluswereusedtopredictthebiomassofM.trossulus.Inaddition,thepres- enceandbiomassofM.trossuluswereregressedusingonlydepthasasingleindependent predictor. InfittingaBRTthelearningrateandthetreecomplexitymustbespecified.Thelearning ratedeterminesthecontributionofeachsuccessivetreetothefinalmodel,asitproceeds throughtheiterations.Thetreecomplexityfixeswhetheronlymaineffects(treecomplexity=1) orinteractionsarealsoincluded(treecomplexity>1).Ultimately,thelearningrateandtree complexitycombineddeterminethetotalnumberoftreesinthefinalmodel.Followingthe suggestionsbyElithetal.[38]themodellearningratewaskeptat0.1andtreecomplexityat5 forbothmodels.Itwasalsocheckedthatthefinalmodelshadmorethan1000trees.Neverthe- less,aselectionofmodelparametershadonlymarginalimpactonmodelperformancewith optimalmodelsimprovingpredictionslessthan1%.Inordertoavoidpotentialproblemsof overfitting,unimportantvariablesweredroppedusingasimplifytool.Thistoolisacross-vali- dationbasedprogramdescribedbyElithandcolleagues[[38],detailsinAppendixS2].In ordertoeliminatenon-informativevariables,thetoolprogressivelysimplifiesmodel,thenre- fitsthemodelandsequentiallyrepeatstheprocessuntilsomestoppingcriterionisreached. Suchsimplificationismostusefulforsmalldatasetswhereredundantpredictorsmaydegrade performancebyincreasingvariance.Asaconsequence,ourfinalmodelsdidnotincludeany autocorrelatingvariables.Modelperformancewasevaluatedusingthecrossvalidationstatistics calculatedduringmodelfitting[37].Thus,whenrunningmodelsarandomselectionof80%of thedatawasusedfortrainingthemodelandtherestofthedatai.e.20%wasassignedfortest- ingmodelaccuracy.TheBRTmodellingwasdoneinthestatisticalsoftwareRusingthegbm package[70]. PLOSONE|DOI:10.1371/journal.pone.0136949 August28,2015 8/19 FactorsContributingtotheSpatialPatternsofMytilustrossulus Results 1.Presenceofmussels M.trossuluswasfoundat1635stationsoutof3585.TheBRTmodellingwiththesimplifytool optionondescribed85%ofvariabilityinthepresenceofM.trossulus.Altogethertenindepen- dentvariableswereretainedinthemodel.Over75%ofmodelvariabilitywasduetodirectabi- oticenvironmentalgradientswhereasresourcegradients(exposureandchlorophylla) contributedlessthan25%tothemodel.Ingeneral,directenvironmentalgradientshadstrong separateeffectswhileresourcegradientsimpactedthedistributionpatternofM.trossulus eitherseparatelyorinteractivelywithdirectenvironmentalgradients.FunctionsfittedbyBRT modelswerehighlyvariableinshape,andweremostlynon-linear(Fig2). Thecoverageofboulders,exposuretowaves,watersalinityexplainedover50%ofthe modelvariability.OthervariablescontributedmuchlesstothepresenceofM.trossulus.The increasingcoverofboulders,elevatedexposure,salinityaswellasmoderateicedisturbance separatelyincreasedtheprobabilityofoccurrenceofM.trossulusinthestudyarea.Theproba- bilitytofindM.trossulusincreasedwithalgalcoveruptoathresholdof10%.Abovethislevel furtherincreaseinalgalcoverhadnoeffectonmussels.TheprobabilitytofindM.trossulus increasedbothatlowandhighendsofchlorophyllagradient(Fig2). Exposureandsurfacewaterchlorophyllainteractivelycontributedtothepresenceofmus- selswithchlorophyllabeingimportantatlowexposurevaluesbutnotathighexposurevalues. Interestingly,atlowexposurechlorophyllavaluewasinverselyrelatedtotheprobabilityof occurrenceofM.trossulus.Inaddition,exposurestronglyinteractedwithiceandsiltcover.At lowicethickness,theeffectofexposureonM.trossuluswasonlymarginalwhereasathighice thicknesselevatedexposureexponentiallyincreasedtheprobabilityofoccurrenceofM.trossu- lus.Similarly,atlowexposuretheeffectofsiltonM.trossuluswasmoderatewhereasathigh exposure,elevatedsiltcoverlinearlydecreasedtheprobabilityofoccurrenceofM.trossulus (Fig3). Fig2.Standardizedfunctional-formrelationshipsshowingtheeffectofenvironmentalvariablesonthepresenceofM.trossulusinthestudyarea, whilstallothervariablesareheldattheirmeans.ThevariablesareorderedbytheirrelativecontributionintheBRTmodel(showninbrackets).Upward tickmarksonx-axisshowthefrequencyofdistributionofdataalongthisaxis.Seethesectionofmethodsforfurtherinformationonenvironmentalvariables. doi:10.1371/journal.pone.0136949.g002 PLOSONE|DOI:10.1371/journal.pone.0136949 August28,2015 9/19 FactorsContributingtotheSpatialPatternsofMytilustrossulus Fig3.Three-dimensionalpartialdependenceplotsintheBRTmodelforthepresenceofM.trossulusinthestudyarea. doi:10.1371/journal.pone.0136949.g003 TheBRTmodelincludingonlydepthasasingleindependentpredictorexplainedonly37% ofvariabilityinthepresenceofM.trossulusinthestudyarea. 2.Biomassofmussels Inareaswheremusselswerepresent,thebiomassofM.trossuluswasafunctionofonly3pre- dictors:exposure,coverofmacroalgaeandsalinity.Nevertheless,themodeldescribedonly 65%ofvariabilityinthebiomassofmussels.Atlowexposurevalues,thebiomassofmussel increasedslightlywithincreasingexposure.Abovecertainthreshold,smallincreaseinexposure resultedinadramaticincreaseinthebiomassofmussels.Increaseinbothplantcoverand salinityonlymoderatelyincreasedthebiomassofmussels.Similartothepresencemodel,func- tionsfittedbytheBRTmodelswerehighlyvariableinshape,andnon-linear(Fig4). Importantly,exposureandsurfacewaterchlorophyllainteractivelycontributedtothebio- massofM.trossulusdemonstratingasignificantroleofresourcegradientinthemodelofmus- sels’biomass.Highbiomasseswerefoundeitherunderconditionsoflowchlorophyllaand highexposureorhighchlorophyllaandmoderateexposure.Inadditiontherewerealsostrong interactionsbetweenexposureandthecoverofmacroalgaeandsalinityandexposure.Atlow exposure,relationshipbetweentheplantcoverandM.trossuluswasweak.Athighexposure, Fig4.Standardizedfunctional-formrelationshipsshowingtheeffectofenvironmentalvariableson thebiomassofM.trossuluswithinthedistributionrangeofmussels,whilstallothervariablesare heldattheirmeans.ThevariablesareorderedbytheirrelativecontributionintheBRTmodel(shownin brackets).Upwardtickmarksonx-axisshowthefrequencyofdistributionofdataalongthisaxis.Seethe sectionofmethodsforfurtherinformationonenvironmentalvariables. doi:10.1371/journal.pone.0136949.g004 PLOSONE|DOI:10.1371/journal.pone.0136949 August28,2015 10/19
Description: