Springer Texts in Statistics SeriesEditors: G.Casella S.Fienberg I.Olkin Forfurthervolumes: http://www.springer.com/series/417 Richard Durrett Essentials of Stochastic Processes Second Edition 123 RichardDurrett DukeUniversity DepartmentofMathematics Box90320 Durham NorthCarolina USA ISSN1431-875X ISBN978-1-4614-3614-0 ISBN978-1-4614-3615-7(eBook) DOI10.1007/978-1-4614-3615-7 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2012937472 ©SpringerScience+BusinessMedia,LLC1999,2012 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) 70 10-Sep 60 10-Jun 10-May 50 at expiry 40 30 20 10 0 500 520 540 560 580 600 620 640 660 680 700 Preface Betweenthefirstundergraduatecourseinprobabilityandthefirstgraduatecourse that uses measure theory, there are a number of courses that teach Stochastic Processes to students with many different interests and with varying degrees of mathematicalsophistication.Toallowreaders(andinstructors)tochoosetheirown levelofdetail,manyoftheproofsbeginwithanonrigorousanswertothequestion “Why is this true?” followed by a Proof that fills in the missing details. As it is possibletodriveacarwithoutknowingabouttheworkingoftheinternalcombustion engine, it is also possible to apply the theory of Markov chains without knowing the details of the proofs.It is my personalphilosophythat probabilitytheory was developed to solve problems, so most of our effort will be spent on analyzing examples. Readers who want to master the subject will have to do more than a fewofthe20dozencarefullychosenexercises. ThisbookbeganasnotesItypedinthespringof1997asIwasteachingORIE 361 at Cornell for the second time. In Spring 2009, the mathematics department there introduced its own version of this course, MATH 474. This started me on the task of preparing the second edition. The plan was to have this finished in Spring2010afterthesecondtimeItaughtthecourse,butwhenMayrolledaround completing the book lost out to getting ready to move to Durham after 25 years in Ithaca. In the Fall of 2011,I taughtDuke’s versionof the course, Math 216,to 20 undergradsand 12 graduate students and over the Christmas break the second editionwascompleted. Thesecondeditiondifferssubstantiallyfromthefirst,thoughcuriouslythelength andthenumberofproblemshasremainedroughlyconstant.Throughoutthe book there are many new examples and problems, with solutions that use the TI-83 to eliminate the tediousdetails of solving linear equationsby hand.My studentstell meIshouldjustuseMATLABandmaybeIwillforthenextedition. The Markov chains chapter has been reorganized. The chapter on Poisson processeshasmovedupfromthirdtosecond,andisnowfollowedbyatreatmentof thecloselyrelatedtopicofrenewaltheory.ContinuoustimeMarkovchainsremain fourth, with a new section on exit distributions and hitting times, and reduced coverageofqueueingnetworks.Martingales,a difficultsubjectforstudentsatthis vii viii Preface level,nowcomesfifth,inordertosetthestagefortheiruseinanewsixthchapter onmathematicalfinance.Thetreatmentoffinanceexpandsthetwosectionsofthe previous treatment to include American options and the the capital asset pricing model.BrownianmotionmakesacameoappearanceinthediscussionoftheBlack- Scholestheorem,butincontrasttothepreviousedition,isnotdiscussedindetail. As usual the second edition has profited from people who have told me about typosoverthelastdozenyears.Ifyoufindnewones,email:[email protected]. RickDurrett Contents 1 MarkovChains............................................................... 1 1.1 DefinitionsandExamples............................................. 1 1.2 MultistepTransitionProbabilities .................................... 8 1.3 ClassificationofStates ................................................ 12 1.4 StationaryDistributions ............................................... 20 1.5 LimitBehavior......................................................... 26 1.6 SpecialExamples...................................................... 34 1.6.1 DoublyStochasticChains..................................... 34 1.6.2 DetailedBalanceCondition................................... 37 1.6.3 Reversibility ................................................... 42 1.6.4 TheMetropolis-HastingsAlgorithm ......................... 43 1.7 ProofsoftheMainTheorems(cid:2)........................................ 46 1.8 ExitDistributions...................................................... 52 1.9 ExitTimes.............................................................. 58 1.10 InfiniteStateSpaces(cid:2).................................................. 64 1.11 ChapterSummary...................................................... 71 1.12 Exercises............................................................... 75 2 PoissonProcesses............................................................. 93 2.1 ExponentialDistribution .............................................. 93 2.2 DefiningthePoissonProcess ......................................... 97 2.3 CompoundPoissonProcesses......................................... 103 2.4 Transformations........................................................ 106 2.4.1 Thinning ....................................................... 106 2.4.2 Superposition.................................................. 107 2.4.3 Conditioning................................................... 108 2.5 ChapterSummary...................................................... 110 2.6 Exercises............................................................... 111 3 RenewalProcesses ........................................................... 119 3.1 LawsofLargeNumbers............................................... 119 ix x Contents 3.2 ApplicationstoQueueingTheory..................................... 124 3.2.1 GI/G/1Queue.................................................. 125 3.2.2 CostEquations................................................. 126 3.2.3 M/G/1Queue.................................................. 127 3.3 AgeandResidualLife* ............................................... 129 3.3.1 DiscreteCase.................................................. 129 3.3.2 GeneralCase................................................... 131 3.4 ChapterSummary...................................................... 133 3.5 Exercises............................................................... 134 4 ContinuousTimeMarkovChains.......................................... 139 4.1 DefinitionsandExamples............................................. 139 4.2 ComputingtheTransitionProbability ................................ 144 4.3 LimitingBehavior ..................................................... 149 4.4 ExitDistributionsandHittingTimes ................................. 156 4.5 MarkovianQueues..................................................... 160 4.6 QueueingNetworks*.................................................. 167 4.7 ChapterSummary...................................................... 174 4.8 Exercises............................................................... 175 5 Martingales................................................................... 185 5.1 ConditionalExpectation............................................... 185 5.2 Examples,BasicProperties ........................................... 188 5.3 GamblingStrategies,StoppingTimes................................ 192 5.4 Applications............................................................ 195 5.5 Convergence ........................................................... 200 5.6 Exercises............................................................... 204 6 MathematicalFinance....................................................... 209 6.1 TwoSimpleExamples................................................. 209 6.2 BinomialModel ....................................................... 213 6.3 ConcreteExamples.................................................... 218 6.4 CapitalAssetPricingModel .......................................... 223 6.5 AmericanOptions ..................................................... 226 6.6 Black-ScholesFormula................................................ 230 6.7 CallsandPuts.......................................................... 234 6.8 Exercises............................................................... 236 A ReviewofProbability........................................................ 241 A.1 Probabilities,Independence........................................... 241 A.2 RandomVariables,Distributions...................................... 245 A.3 ExpectedValue,Moments............................................. 251 References......................................................................... 259 Index............................................................................... 261