ebook img

Essentials of Modern Optical Fiber Communication PDF

343 Pages·2016·12.914 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Essentials of Modern Optical Fiber Communication

Reinhold Noé Essentials of Modern Optical Fiber Communication Second Edition 123 Essentials of Modern Optical Fiber Communication é Reinhold No Essentials of Modern Optical Fiber Communication Second Edition 123 ReinholdNoé Faculty of Computer Science, Electrical EngineeringandMathematics, Institute forElectricalEngineeringandInformation Technology Paderborn University Paderborn Germany ISBN978-3-662-49621-3 ISBN978-3-662-49623-7 (eBook) DOI 10.1007/978-3-662-49623-7 LibraryofCongressControlNumber:2016935217 ©Springer-VerlagBerlinHeidelberg2010,2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringer-VerlagGmbHBerlinHeidelberg Preface This book covers important aspects of modern optical communication. It is inten- dedtoservebothstudentsandprofessionals.Consequently,asolidcoverageofthe necessaryfundamentalsiscombinedwithanin-depthdiscussionofrecent relevant research results. The book has grown from lecture notes over the years, starting 1992. It accompanies my present lectures on Optical Communication A (Fundamentals), B(ModeCoupling),C(ModulationFormats)andD(SelectedTopics)atPaderborn University in Germany. I gratefully acknowledge contributions to this book from Dr. Timo Pfau, Dr. David Sandel and Prof. Dr. Sebastian Hoffmann. v Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Optical Waves in Fibers and Components. . . . . . . . . . . . . . . . . . . . 3 2.1 Electromagnetic Fundamentals. . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Maxwell’s Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.2 Boundary Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.3 Wave Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.4 Homogeneous Plane Wave in Isotropic Homogeneous Medium . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.5 Power and Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Dielectric Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.1 Dielectric Slab Waveguide . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.2 Cylindrical Dielectric Waveguide . . . . . . . . . . . . . . . . . . 38 2.3 Polarization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.3.1 Representing States-of-Polarization . . . . . . . . . . . . . . . . . 52 2.3.2 Anisotropy, Index Ellipsoid . . . . . . . . . . . . . . . . . . . . . . 58 2.3.3 Jones Matrices, Müller Matrices . . . . . . . . . . . . . . . . . . . 65 2.3.4 Monochromatic Polarization Transmission . . . . . . . . . . . . 82 2.3.5 Polarization Mode Dispersion. . . . . . . . . . . . . . . . . . . . . 92 2.3.6 Polarization-Dependent Loss. . . . . . . . . . . . . . . . . . . . . . 100 2.4 Linear Electrooptic Effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 2.4.1 Phase Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 2.4.2 Soleil-Babinet Compensator . . . . . . . . . . . . . . . . . . . . . . 110 2.5 Mode Coupling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 2.5.1 Mode Orthogonality. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 2.5.2 Mode Coupling Theory . . . . . . . . . . . . . . . . . . . . . . . . . 119 2.5.3 Codirectional Coupling in Anisotropic Waveguide. . . . . . . 122 2.5.4 Codirectional Coupling of Two Waveguides. . . . . . . . . . . 129 2.5.5 Periodic Codirectional Coupling . . . . . . . . . . . . . . . . . . . 135 2.5.6 Periodic Counterdirectional Coupling. . . . . . . . . . . . . . . . 140 vii viii Contents 2.6 Differential Group Delay Profiles. . . . . . . . . . . . . . . . . . . . . . . . 142 2.6.1 DGD Profiles and Discrete Mode Coupling . . . . . . . . . . . 142 2.6.2 Polarization Mode Dispersion Compensation. . . . . . . . . . . 148 2.6.3 Chromatic Dispersion Compensation . . . . . . . . . . . . . . . . 154 2.6.4 Fourier Expansion of Mode Coupling . . . . . . . . . . . . . . . 160 2.6.5 DGD and PDL Profiles Determined by Inverse Scattering. . . . . . . . . . . . . . . . . . . . . . . . . . . 165 2.7 Nonlinearities in Optical Fibers. . . . . . . . . . . . . . . . . . . . . . . . . 169 2.7.1 Self Phase Modulation. . . . . . . . . . . . . . . . . . . . . . . . . . 170 2.7.2 Cross Phase Modulation. . . . . . . . . . . . . . . . . . . . . . . . . 181 2.7.3 Four-Wave Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 3 Optical Fiber Communication Systems . . . . . . . . . . . . . . . . . . . . . . 189 3.1 Standard Systems with Direct Optical Detection . . . . . . . . . . . . . 189 3.1.1 Signal Generation, Transmission, and Detection . . . . . . . . 189 3.1.2 Regeneration of Binary Signals. . . . . . . . . . . . . . . . . . . . 206 3.1.3 Circuits and Clock Recovery. . . . . . . . . . . . . . . . . . . . . . 214 3.2 Advanced Systems with Direct Detection . . . . . . . . . . . . . . . . . . 222 3.2.1 Photon Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 3.2.2 Noise Figure of Optical Amplifier. . . . . . . . . . . . . . . . . . 228 3.2.3 Intensity Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 232 3.2.4 Receivers for Amplitude Shift Keying . . . . . . . . . . . . . . . 236 3.2.5 Receivers for Differential Phase Shift Keying . . . . . . . . . . 241 3.2.6 Polarization Division Multiplex. . . . . . . . . . . . . . . . . . . . 256 3.3 Coherent Optical Transmission . . . . . . . . . . . . . . . . . . . . . . . . . 262 3.3.1 Receivers with Synchronous Demodulation. . . . . . . . . . . . 262 3.3.2 Carrier Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 3.3.3 Receivers with Asynchronous Demodulation. . . . . . . . . . . 283 3.3.4 Laser Linewidth Requirements . . . . . . . . . . . . . . . . . . . . 287 3.3.5 Digital Coherent QPSK Receiver. . . . . . . . . . . . . . . . . . . 294 3.3.6 Digital Coherent QAM Receiver. . . . . . . . . . . . . . . . . . . 306 3.3.7 Other Modulation Schemes. . . . . . . . . . . . . . . . . . . . . . . 324 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 Chapter 1 Introduction Attheendofthe1970s,telecomcarriersstartedtolayopticalfiberbetweentelecom exchangeoffices,andcoaxialcableforelectricaldatacommunicationwasnolonger deployed. The performance of optical fiber communication has since then grown exponentially,verymuchlikeMoore’slawforthecomplexityofelectroniccircuits. In the electronic domain, rising clock speeds, miniaturization offeature sizes, and chip size increase along two, maybe soon along the third dimension, are con- tributing to this truly impressive growth. The performance of optical communica- tion is determined by clock speed as offered by a state-of-the-art electronic technology, availability of several or if needed many fibers in one cable, multiple optical channels carried on a single optical fiber by means of wavelength division multiplex, and recently the transmission of several bits per symbol. Theeconomicandsocietalimpactisdramatic:Opticalfibercommunicationisa key enabler of the worldwide web, of e-mail and of all but local telephone con- nections. The technically exploitable fiber bandwidth is roughly 10 THz, orders of magnitude higher than in other media. Fiber attenuation is extremely small: After 100 km offiber there is still about 1 % of the input power left. Optical amplifiers, with 4 THz bandwidth or more, overcome fiber loss so that transoceanic trans- mission is possible without intermediate signal regeneration. Around the year 2000, in the so-called dotcom era, growth rates of information exchange of about one order of magnitude per year were forecast. This triggered massiveinvestmentsandresultedinthefoundingofmanynewcompaniesinashort time. A significant part of that investment was lost, while achieved technical pro- gress remains available at large. The telecom industry has consolidated since then because investments make sense only if customers pay them back. Of course, customers don’t want to spend a significant part of their household budget for communication, even though available bandwidth has grown by more than two orders of magnitude thanks to DSL technology. But today’s communication does indeed grow by a factor of 1.4 per year or so. Private communication such as music downloading, video portals, personal web- sites and of course also the ever more complex and video-laden media and ©Springer-VerlagBerlinHeidelberg2016 1 R.Noé,EssentialsofModernOpticalFiberCommunication, DOI10.1007/978-3-662-49623-7_1 2 1 Introduction enterprise websites are responsible for this, along with video telephony services, drasticallyincreasingusageoftheinternetindevelopingcountries,andsoon.Asa consequence there is healthy business. In contrast, revenues increase only on a single-digit percent scale annually. The quantitative growth is entertained by the technical and productivity progress. With the rather conservative spending pattern of end users in mind, telecom carriers want to preserve their enormous investments in fiber infrastructure, and to use newly deployed fiber most economically. Multilevel modulation schemes, includingtheuseoftwoorthogonalpolarizationmodes,areneededtoexploitfibers optimally. At the same time, phase modulation increases noise tolerance. Recent researchanddevelopmentplacesspecialemphasisontheseissues,andsodoesthis book. Understanding fibers requires a knowledge of dielectric waveguides and their modes,includingpolarizations.Chapter2isthereforedevotedtowavepropagation in ideal and nonideal optical waveguides, also exhibiting polarization mode dis- persion and polarization-dependent loss, to mode coupling, electrooptic compo- nents and nonlinear effects in silica fibers. Most optical components and transmission effects are based on these features. Chapter 3 discusses optical transmission systems of all kinds. The simplest are standard intensity-modulated direct-detection systems. Their reach can be dramat- ically extended by optical amplifiers, the theory of which is thoroughly described. Performance is enhanced by binary and quadrature phase shift keying with inter- ferometric detection. Symbol rate can be doubled by polarization division multi- plex.Thesameispossiblealsowithcoherentopticalsystems.Butthesecanaswell detect signal synchronously, which again increases performance. The principle is that the received signal and the unmodulated signal of a local laser are superim- posed.Thepowerfluctuationsresultingfromthisinterferencearedetected.Several signal superpositions and detectors allow obtaining an electrical replica of the optical field vector. Coherent optical transmission systems can therefore electron- ically compensate all linear distortions suffered during transmission. Signal pro- cessing and control algorithms for high-performance digital synchronous coherent optical receivers conclude the book. Coherent transmission, which increases the traditional fiber capacity 10- or 20-fold, has become a megatrend in optical com- munication since 2007. Fiber-to-the-home services can increase customer data rates by several more orders of magnitude and make it likely that the pressure for increased capacity at moderate cost in metropolitan area and long haul communication will continue. Chapter 2 Optical Waves in Fibers and Components 2.1 Electromagnetic Fundamentals 2.1.1 Maxwell’s Equations Electromagnetic radiations obeys Maxwell’s equations @D curlH¼ þJ Ampere0slaw; ð2:1Þ @t @B curlE¼(cid:2) Maxwell-Faradayequation; ð2:2Þ @t divD¼q Gau(cid:1)0slaw; ð2:3Þ divB¼0 Gau(cid:1)0slaw for magnetism; ð2:4Þ We take the divergence of (2.1) and obtain with div curlA¼0 the @q divJ¼(cid:2) continuityequation; ð2:5Þ @t Itsaysthatthecurrentdrainedfromthesurfaceofadifferentialvolumeelement equals the reduction of charge per time interval (preservation of charge). The equations can be brought into integral form, using Gauß’s and Stokes’s integral theorems, I ZZ (cid:2) (cid:3) H(cid:3)ds¼ @D þJ (cid:3)da¼@We þI ð2:6Þ @t @t ©Springer-VerlagBerlinHeidelberg2016 3 R.Noé,EssentialsofModernOpticalFiberCommunication, DOI10.1007/978-3-662-49623-7_2

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.