ebook img

Essentials of applied mathematics for scientists and engineers PDF

180 Pages·2007·1.189 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Essentials of applied mathematics for scientists and engineers

MOBK070-FM MOBKXXX-Sample.cls March22,2007 13:6 Essentials of Applied Mathematics for Scientists and Engineers MOBK070-FM MOBKXXX-Sample.cls March22,2007 13:6 Copyright© 2007byMorgan&Claypool Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedin anyformorbyanymeans—electronic,mechanical,photocopy,recording,oranyotherexceptforbriefquotations inprintedreviews,withoutthepriorpermissionofthepublisher. EssentialsofAppliedMathematicsforScientistsandEngineers RobertG.Watts www.morganclaypool.com ISBN:1598291866 paperback ISBN:9781598291865 paperback ISBN:1598291874 ebook ISBN:9781598291872 ebook DOI10.2200/S00082ED1V01Y200612ENG003 APublicationintheMorgan&ClaypoolPublishersseries SYNTHESISLECTURESONENGINEERINGSEQUENCEINSERIES#3 Lecture#3 SeriesISSN: 1559-811X print SeriesISSN: 1559-8128 electronic FirstEdition 10987654321 MOBK070-FM MOBKXXX-Sample.cls March22,2007 13:6 Essentials of Applied Mathematics for Scientists and Engineers RobertG.Watts TulaneUniversity SYNTHESISLECTURESONENGINEERINGSEQUENCEINSERIES#3 M &C & M o r g a n C l a y p o o l P u b l i s h e r s MOBK070-FM MOBKXXX-Sample.cls March22,2007 13:6 iv ABSTRACT This is a book about linear partial differential equations that are common in engineering and the physical sciences. It will be useful to graduate students and advanced undergraduates in all engineering fields as well as students of physics, chemistry, geophysics and other physical sciences and professional engineers who wish to learn about how advanced mathematics can be used in their professions. The reader will learn about applications to heat transfer, fluid flow, mechanical vibrations. The book is written in such a way that solution methods and applicationtophysicalproblemsareemphasized.Therearemanyexamplespresentedindetail and fully explained in their relation to the real world. References to suggested further reading areincluded.Thetopicsthatarecoveredincludeclassicalseparationofvariablesandorthogonal functions,Laplacetransforms,complexvariablesandSturm-Liouvilletransforms. KEYWORDS Engineering mathematics, separation of variables, orthogonal functions, Laplace transforms, complexvariablesandSturm-Liouvilletransforms,differentialequations. MOBK070-FM MOBKXXX-Sample.cls March22,2007 13:6 v Contents 1. PartialDifferentialEquationsinEngineering...................................1 1.1 IntroductoryComments .................................................. 1 1.2 FundamentalConcepts ................................................... 1 Problems......................................................3 1.3 TheHeatConduction(orDiffusion)Equation..............................3 1.3.1 RectangularCartesianCoordinates.................................3 1.3.2 CylindricalCoordinates ........................................... 5 1.3.3 SphericalCoordinates.............................................6 TheLaplacianOperator........................................6 1.3.4 BoundaryConditions..............................................7 1.4 TheVibratingString ..................................................... 7 1.4.1 BoundaryConditions..............................................8 1.5 VibratingMembrane..................................................... 8 1.6 LongitudinalDisplacementsofanElasticBar...............................9 FurtherReading..........................................................9 2. TheFourierMethod:SeparationofVariables ..................................11 2.1 HeatConduction ....................................................... 12 2.1.1 ScalesandDimensionlessVariables................................12 2.1.2 SeparationofVariables...........................................13 2.1.3 Superposition ................................................... 14 2.1.4 Orthogonality...................................................15 2.1.5 Lessons.........................................................15 Problems .................................................... 16 2.1.6 ScalesandDimensionlessVariables................................16 2.1.7 SeparationofVariables...........................................17 2.1.8 ChoosingtheSignoftheSeparationConstant......................17 2.1.9 Superposition ................................................... 19 2.1.10 Orthogonality...................................................19 2.1.11 Lessons.........................................................20 2.1.12 ScalesandDimensionlessVariables................................20 MOBK070-FM MOBKXXX-Sample.cls March22,2007 13:6 vi ESSENTIALSOFAPPLIEDMATHEMATICSFORSCIENTISTSANDENGINEERS 2.1.13 GettingtoOneNonhomogeneousCondition ...................... 20 2.1.14 SeparationofVariables...........................................21 2.1.15 ChoosingtheSignoftheSeparationConstant......................21 2.1.16 Superposition ................................................... 22 2.1.17 Orthogonality...................................................22 2.1.18 Lessons.........................................................23 2.1.19 ScalesandDimensionlessVariables................................23 2.1.20 RelocatingtheNonhomogeneity..................................24 2.1.21 SeparatingVariables ............................................. 25 2.1.22 Superposition ................................................... 25 2.1.23 Orthogonality...................................................25 2.1.24 Lessons.........................................................26 Problems .................................................... 26 2.2 Vibrations..............................................................26 2.2.1 ScalesandDimensionlessVariables................................27 2.2.2 SeparationofVariables...........................................27 2.2.3 Orthogonality...................................................28 2.2.4 Lessons.........................................................29 Problems .................................................... 29 FurtherReading ........................................................ 29 3. OrthogonalSetsofFunctions.................................................31 3.1 Vectors.................................................................31 3.1.1 OrthogonalityofVectors.........................................31 3.1.2 OrthonormalSetsofVectors......................................32 3.2 Functions .............................................................. 32 3.2.1 OrthonormalSetsofFunctionsandFourierSeries..................32 3.2.2 BestApproximation..............................................34 3.2.3 ConvergenceofFourierSeries.....................................35 3.2.4 ExamplesofFourierSeries........................................36 Problems .................................................... 38 3.3 Sturm–LiouvilleProblems:OrthogonalFunctions..........................39 3.3.1 OrthogonalityofEigenfunctions..................................40 Problems .................................................... 42 FurtherReading ........................................................ 43 4. SeriesSolutionsofOrdinaryDifferentialEquations............................45 4.1 GeneralSeriesSolutions.................................................45 MOBK070-FM MOBKXXX-Sample.cls March22,2007 13:6 CONTENTS vii 4.1.1 Definitions......................................................45 4.1.2 OrdinaryPointsandSeriesSolutions..............................46 4.1.3 Lessons:FindingSeriesSolutionsforDifferentialEquations withOrdinaryPoints.............................................48 Problems .................................................... 48 4.1.4 RegularSingularPointsandtheMethodofFrobenius...............49 4.1.5 Lessons:FindingSeriesSolutionforDifferentialEquationswith RegularSingularPoints .......................................... 54 4.1.6 LogarithmsandSecondSolutions.................................55 Problems .................................................... 57 4.2 BesselFunctions........................................................58 4.2.1 SolutionsofBessel’sEquation.....................................58 HerearetheRules............................................61 4.2.2 Fourier–BesselSeries.............................................64 Problems .................................................... 68 4.3 LegendreFunctions.....................................................69 4.4 AssociatedLegendreFunctions...........................................72 Problems .................................................... 73 FurtherReading ........................................................ 74 5. SolutionsUsingFourierSeriesandIntegrals...................................75 5.1 Conduction(orDiffusion)Problems......................................75 5.1.1 Time-DependentBoundaryConditions............................80 5.2 VibrationsProblems.....................................................83 Problems .................................................... 88 5.3 FourierIntegrals........................................................89 Problem.....................................................93 FurtherReading ........................................................ 93 6. IntegralTransforms:TheLaplaceTransform..................................95 6.1 TheLaplaceTransform..................................................95 6.2 SomeImportantTransforms.............................................96 6.2.1 Exponentials....................................................96 6.2.2 Shiftinginthes-domain ......................................... 96 6.2.3 ShiftingintheTimeDomain.....................................96 6.2.4 SineandCosine.................................................97 6.2.5 HyperbolicFunctions............................................97 6.2.6 Powersoft:tm .................................................. 97 MOBK070-FM MOBKXXX-Sample.cls March22,2007 13:6 viii ESSENTIALSOFAPPLIEDMATHEMATICSFORSCIENTISTSANDENGINEERS 6.2.7 HeavisideStep .................................................. 99 6.2.8 TheDiracDeltaFunction.......................................100 6.2.9 TransformsofDerivatives.......................................100 6.2.10 LaplaceTransformsofIntegrals..................................101 6.2.11 DerivativesofTransforms.......................................101 6.3 LinearOrdinaryDifferentialEquationswithConstantCoefficients.........102 6.4 SomeImportantTheorems ............................................. 103 6.4.1 InitialValueTheorem...........................................103 6.4.2 FinalValueTheorem ........................................... 103 6.4.3 Convolution ................................................... 103 6.5 PartialFractions ....................................................... 104 6.5.1 NonrepeatingRoots ............................................ 104 6.5.2 RepeatedRoots.................................................107 6.5.3 QuadraticFactors:ComplexRoots...............................108 Problems ................................................... 109 FurtherReading.......................................................110 7. ComplexVariablesandtheLaplaceInversionIntegral.........................111 7.1 BasicProperties........................................................111 7.1.1 LimitsandDifferentiationofComplexVariables: AnalyticFunctions..............................................115 Integrals....................................................117 7.1.2 TheCauchyIntegralFormula....................................118 Problems ................................................... 120 8. SolutionswithLaplaceTransforms...........................................121 8.1 MechanicalVibrations..................................................121 Problems ................................................... 125 8.2 DiffusionorConductionProblems ...................................... 125 Problems ................................................... 134 8.3 Duhamel’sTheorem....................................................135 Problems ................................................... 138 FurtherReading.......................................................139 9. Sturm–LiouvilleTransforms.................................................141 9.1 APreliminaryExample:FourierSineTransform..........................141 9.2 Generalization:TheSturm–LiouvilleTransform:Theory..................143 9.3 TheInverseTransform.................................................146 MOBK070-FM MOBKXXX-Sample.cls March22,2007 13:6 CONTENTS ix Problems ................................................... 151 FurtherReading.......................................................151 10. IntroductiontoPerturbationMethods........................................153 10.1 ExamplesfromAlgebra.................................................153 10.1.1 RegularPerturbation............................................153 10.1.2 SingularPerturbation...........................................155 AppendixA:TheRootsofCertainTranscendentalEquations..................159 AppendixB:................................................................165 AuthorBiography...........................................................169 MOBK070-FM MOBKXXX-Sample.cls March22,2007 13:6

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.