ebook img

Essential Solar Neutrinos PDF

39 Pages·1.6 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Essential Solar Neutrinos

C. Giunti & M. Laveder, ESSENTIAL SOLAR NEUTRINOS 1 d n u U o N b / 3 ESSENTIAL SOLAR NEUTRINOSi 0 t 0 n n 2 C. Giunti & M. Laveder n u a U J i 1 g 3 1 o - / v t 6 7 3n1 January 2i003 . 2 n 1 0 i 3 r f 0 n / t h i p u . - Neutrino Unbound p o e e h http://www.tto.infn.it/~giunti/NU v: . i N w X r a w w hep-ph/0301276 / / : p t t h C. Giunti & M. Laveder, ESSENTIAL SOLAR NEUTRINOS 2 Contents d Contents 2 1 Standard Solar Model n 3 2 Solar Neutrino Bibliography 4 u U 3 Homestake 7 o N 4 Gallium Experiments: SAGE, GALLEX, GNO 8 b / 5 SAGE: Soviet-American Gallium Experiment i 8 t 6 GALLEX: GALLium EXperiment n n 9 u 7 GNO: Gallium Neutrino Observatory 9 U i 8 Kamiokande 10 g 9 Super-Kamiokande - 10 o / 10 SNO: Sudbury Neutrino Observatory t 12 n i . 11 Main characteristics of solar ν data 14 n i 12 Solar neutrino transitions f 15 r n 13 Two-neutrino oscillattions in vacuum and matter 16 i u . 14 Fits of current solar neutrino data 21 o 15 ν ν ,ν aellowed regions from Ref. [39] 22 e µ τ t → . 16 νe νNµ,ντ allowed regions frwom Ref. [86] 23 → 17 ν ν ,ν allowed regions from Ref. [80] 24 e µ τ w → 18 KamLAND = LMA 25 ⇒ w 19 Fits of reactor + solar neutrino data 26 / / 20 Allowed reactor + solar region from Ref. [88] 27 : p 21 Allowed reactor + solar region from Ref. [132] 28 t 22tAllowed reactor + solar region from Ref. [40] 29 h 23 Allowed reactor + solar region from Ref. [79] 30 Bibliography 31 C. Giunti & M. Laveder, ESSENTIAL SOLAR NEUTRINOS 3 1 Standard Solar Model Current Standard Solar Model (SSM): BP2000 [46, 28] d pp and CNO cycles: 4p+2e− 4He+2ν +26.731MeV n e → u U 2 + (cid:0) 2 (pp) p+p ! H+e +(cid:23)e p+e +op ! H+(cid:23)e (pNep) 99.6%XXXXXXXXXXXX(cid:24)(cid:24)(cid:24)(cid:24)(cid:24)(cid:24)(cid:24)(cid:24)b(cid:24)(cid:24)(cid:24)(cid:24) 0.4% ti/ n n ? u 2 3 H+p ! UHe+(cid:13) i g 85% (cid:24)(cid:24)(cid:24)(cid:24)(cid:24)(cid:24)(cid:24)(cid:24)(cid:24)(cid:24)(cid:24)(cid:24)(cid:24)(cid:24)(cid:24)o(cid:24) (cid:24)(cid:24)XXXXXXtX/X-XXXXXXXXXX 2(cid:2)10(cid:0)5% n i ? . ? n 3 3 4 3 4 + He+ He ! He+2p i He+p ! He+e +(cid:23)e f r 15% ppI n? (hep) t 3 4 7 He+iHe ! Be+(cid:13) u . o (cid:16)P (cid:16) P e (cid:16) P t(cid:16)(cid:16) PP (cid:16) P 99.87%(cid:16)(cid:16).(cid:16) PPP0.13% N w ? ? 7 7 (cid:0) 7 7 8 ( Be) Be+we ! Li+(cid:23)e Be+p ! B+(cid:13) w ? ? / 7 4 8 8 (cid:3) + 8 / Li+p ! 2 He B ! Be +e +(cid:23)e ( B) : p ppII ? t t 8 (cid:3) 4 Be ! 2 He h ppIII Figure 1: pp cycle. C. Giunti & M. Laveder, ESSENTIAL SOLAR NEUTRINOS 4 12 13 - 13 13 + 13 C+p ! N+(cid:13) N ! C+e +(cid:23)e ( N) d 6 (cid:27)- (cid:24) ? n 15N+p ! 12C+4He CN ? 13C+p ! 14N+(cid:13) 6 (cid:26)(cid:27) (cid:25) 6 u 99:9% U ? (15O) 15O ! 15N+e+ +(cid:23)e (cid:27) 14N+p ! 15oO+(cid:13) N 6 0:1% b / i ? t 15 16 17 14 4 N+p ! O+(cid:13) nO+p ! N+ He n 6 u U ? i 16O+p ! 17F+(cid:13) - 17F ! 17O+ge+ +(cid:23)e (17F) - o Figure 2: CNO cycle. / t n i . Luminosity = (2.400 0.005) 1039MeVs−1 ⊙ n L ± × Radius i ⊙ = 6.961 1010cm Rf × Mass r = (1.989 0.003) 1033g ⊙ Mn ± × Astronomical Unit 1a.u. = 1.496 1013cm t × Solar Constant K i/4π(1a.u.)2 = 8.534 1011MeVcm−2s−1 u ⊙ ≡.L⊙ × o Table 1: Fundamental characteristics of the Sun and Sun-Earth system [101]. One astronomical unit is the mean sun-earth e distance. The solar constant K is the meatn solar photon flux on the Earth. ⊙ . N w w Luminosity Constraint [33]: α Φ = K (r = pp,pep,hep,7Be,8B,13N,15O,17F) (1) r r ⊙ Xr w 2 Solar Neutrino Bibliography / / : Books: [p153, 30] Revitews: [70, 163, 136] t Bhahcall’s Standard Solar Models: [29, 41, 47, 44, 45, 34, 46, 28] Detection cross sections: [30, 37, 32, 28, 143, 69, 138, 20] C. Giunti & M. Laveder, ESSENTIAL SOLAR NEUTRINOS 5 d n u U o N b / i t n n u (a) Figure from Ref. [70]. U (b) Figure from Ref. [28]. i Figure 3: Energy spectra of neutrino fluxes from the pp and CNO chains, as predicgted by the Standard Solar Model. For continuous sources, the differential flux is in cm−2s−1 MeV−1. For the lines, the flux is in cm−2s−1. The percentages in Fig. 3(b) indicate the uncertainties on the values of the fluxes. - o / t n i . n i f r n t i u . o e t . N w w w / / : p t Figutre 4: Differential fraction df/dR of produced neutrinos as a function of radius R, normalized to the solar radius R . Fhigure from Ref. [70]. ⊙ C. Giunti & M. Laveder, ESSENTIAL SOLAR NEUTRINOS 6 E Emax α Source r Reaction h ir r r (MeV) (MeV) (MeV) pp p+p d+e+ +ν 0.2668 0.423 0.03 13.09d87 e → ± pep p+e− +p d+ν 1.445 1.445 11.9193 → e n hep 3He+p 4He+e+ +ν 9.628 18.778 3.7370 e → u 0.3855 0.3855 7Be e− +7Be 7Li+ν 12.6008 U → e 0.8631 0.8631 o 8B 8B 8Be∗ +e+ +ν 6.735 0.036 15 6.6305 N e → ± ∼ 13N 13N 13C+e+ +νe 0.7063 b1.1982 0.0003 3.4/577 → ± i 15O 15O 15N+e+ +ν 0.9964 1.7317 0.0005 t21.5706 e → n ± n 17F 17F 17O+e+ +ν 0.9977 1.7364 0.0003 2.363 e → ± u U Table 2: Sources of solar neutrinos [30, 37, 32, 31]. For each reaction r, hEir is the aiverage neutrino energy, Ermax is the maximum neutrino energy and α is the average thermal energy released together wgith a neutrino from the source r [33], r that enters in the luminosity constraint (1). - o / t Source r (cFmlu−x2sΦ−r1) n (10h−σ4C4lcimr 2) .i(SSNC(rUl)) (10h−σ4G4acimr 2) (SSNG(rUa)) n pp 5.95 1010(i1 0.01) – – 0.117 0.003 69.7 f × r± ± pep 1.40 108(1 0.015) 0.n16 0.22 2.04+0.35 2.8 ×t ± −0.14 i hep u9.3×103 .390 0.04 714−+121248 0.1 o 7Be 4.77 109(1 0.10) 0.024 1.15 0.717+0.050 34.2 e × ± −0.021 t 8B 5.05 106 1+0.20 114 11 5.76 240+77 12.1 × −.0.16 ± −36 N (cid:0)w (cid:1) 13N 5.48 108 1+0.21 0.017 0.09 0.604+0.036 3.4 × −0.17 −0.018 (cid:0) (cid:1) 15O 4.80 w108 1+0.25 0.068 0.001 0.33 1.137+0.136 5.5 × −0.19 ± −0.057 (cid:0) (cid:1) 17F 5.63 106(1 0.25) 0.069 0.0 1.139+0.137 0.1 w × ± −0.057 Total 6.54 1010 7.6+1.3 128+9 / × −1.1 −7 / : Table 3: BP2000 Standard Solar Model [46] neutrino fluxes, average neutrino cross sections [30, 37, 32] and BP2000 SSM p predictions for the neutrino capture rates [46] in the chlorine (Cl) Homestake experiment and in the gallium (Ga) GALLEX, SAGE and GNO experiments. t t h C. Giunti & M. Laveder, ESSENTIAL SOLAR NEUTRINOS 7 3 Homestake radiochemical experiment [29, 77] d νe +37 Cl 37 Ar+e− [150, 19] n (2) → Homestake Gold Mine (Lead, South Dakota, USA) u U 1478 m deep, 4200 m.w.e. = Φ 4m−2day−1 µ ⇒ ≃ o N steel tank, 6.1 m diameter, 14.6 m long (6 105 liters) b× / i 615 tons of tetrachloroethylene (C Cl ), 2.16 1030 atoms of 37Cl (133ttons) 2 4 × n n energy threshold: ECl = 0.814MeV = 8B, 7Be, pep, hep th ⇒ u U data taking: 1970–1994, 108 extractions [75] – historyi: [36, 35] g - o / t n i . n i f r n t i u . o e t . N w w w / / Figure5: Resultsofthe108individualsolarneutrinoobservationsmadewiththeHomestakechlorinedetector. Theproduction : rate of 37Ar shown has already had all known sources of nonsolar 37Ar production subtracted from it. The errors shown for p individual measurements are statistical errors only and are significantly non-Gaussian for results near zero. The error shown for the cumulative result is the combination of the statistical and systematic errors in quadrature. Figure from Ref. [75]. t t h Rexp = 2.56 0.16 0.16SNU = 2.56 0.23SNU [75] (3) Cl ± ± ± RSSM = 7.6+1.3SNU [46, 28] (4) Cl −1.1 C. Giunti & M. Laveder, ESSENTIAL SOLAR NEUTRINOS 8 4 Gallium Experiments: SAGE, GALLEX, GNO radiochemical experiments d νe +71Ga 71Ge+e− [125] n (5) → threshold: EGa = 0.233MeV = all ν fluxes (pp, 7Be, 8B, pep, hep, 13N, 15O, 17F) th ⇒ u U SAGE + GALLEX + GNO = Rexp = 72.4 4.7SNU (6) ⇒ Ga ± o Standard Solar Model = RSSM = 128+9SNU [46, 28] N (7) ⇒ Ga −7 b / i 5 SAGE: Soviet-American Gallium Experiment t n n Baksan Neutrino Observatory, northern Caucasus, 3.5 km from entrance of horizontal adit u U 50 tons of metallic 71Ga, 2000 m deep, 4700 m.w.e. = Φ i2.6m−2day−1 µ ⇒ g≃ data taking: 1990 – 2001, 92 runs [1, 2-, 5, 6, 7] o / detector test: 51Cr Source (R = 0.95t+0.11+0.06) [3, 4] n i−0.10−0.05 . n i f 400 r n t i L+K peaks u . K peak only 300 o ) U N e S t d e ( . ne Ne rat 200 w mbi r o u c pt s a w n C u r 100 All w L K / /0 : p 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 Mean extraction time t t Fhigure 6: Capture rate for all SAGE extractions as a function of time. Error bars are statistical with 68% confidence. The combined result of all runs in the L peak, the K peak, and both L and K peaks is shown on the right side. The last 3 runs are still counting and their results are preliminary. Figure from Ref. [7]. RSAGE = 70.8+5.3+3.7SNU = 70.8+6.5SNU [7] (8) Ga −5.2−3.2 −6.1 C. Giunti & M. Laveder, ESSENTIAL SOLAR NEUTRINOS 9 6 GALLEX: GALLium EXperiment Gran Sasso Underground Laboratory, Italy, overhead shielding: 3300 m.w.e. d 30.3 tons of gallium in 101 tons of gallium chloride (GaCl -HCl) soluntion 3 data taking: May 1991 – Jan 1997, 65 runs [21, 22, 23, 25, 105, 108] u U detector tests: 51Cr Source (R = 0.93 0.08) [24, 106], 71As Test [107] o ± N RGALLEX = 77.5 6.2+4.3SNU = 77.5+7.6SNU [108] (9) Ga ± −4.7 −7.8b / i t 7 GNO: Gallium Neutrino Observatonry n u successor of GALLEX, GNOU30: 30.3 tons of gallium i g data taking: May 1998 – Jan 2000, 19 runs [18] - o RGNO = 65.8+10.2+3.4SNU = 65.8+10.7/SNU [18] (10) Ga −9.6 −3.6 −10.2 t n i . n i f r n t i u . o e t . N w w w / / : p Figuret7: GNO and GALLEX single run results. Error bars are statistical only. Open dots represent group mean values; the boldtsquarerepresentstheglobalresultofGALLEX;theboldsoliddotrepresentstheglobalresultofGNOandGallex. Figure fhrom Ref. [18]. GALLEX + GNO = RGALLEX+GNO = 74.1 5.4+4.0SNU = 74.1+6.7SNU [18] (11) ⇒ Ga ± −4.2 −6.8 C. Giunti & M. Laveder, ESSENTIAL SOLAR NEUTRINOS 10 8 Kamiokande real-time water Cherenkov detector ν +e− ν +e− [117, 15d9] → Sensitive to ν , ν , ν , but σ(ν ) 6σ(ν ) n e µ τ e µ,τ ≃ Kamioka mine (200 km west of Tokyo), 1000 m underground, 2u700 m.w.e. U 3000 tons of water, 680 tons fiducial volume, 948 PMTs o N threshold: EKam 6.75MeV = 8B, hep th ≃ ⇒ b / i t data taking: Jan 1987 – Feb 1995 (2079 days) [110, 111, 112, 114, 113, 94] n n ΦKam = 2.82+0.25 0.27 106cm−2s−1 = 2.82 0.37 106cm−u2s−1 [94] (12) νe −0.24 ± × U ± × Standard Solar Model = Φ8B = 5.05+1.01 106cm−2is−1 [46, 28] (13) ⇒ νe −0.81 × g - 9 Super-Kamiokande o / t successor of Kamiokande, 50nktons of water, 22.5 kitons fiducial volume, 11146 PMTs . n tihreshold: EKam 4.75MeV = 8B, hep th ≃ f ⇒ r n data taking: 1996 – 2001 (1496 days) [95, 96, 97, 92, 91, 93] t i ΦSK = 2.u348 0.025+0.071 10.6cm−2s−1 = 2.348+0.075 106cm−2s−1 [93] (14) νe ± −0.061 ×o −0.066 × e t N w Event/day/kton/binw0.2.5 0.2 w 0.15 / 0.1 / : p 0.05 t 0 t -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 cos ΘSun h Figure 8: Super-Kamiokande cosθ distribution. The points represent observed data. The histogram shows the best-fit sun signal (shaded) plus background. The horizontal dashed line shows the estimated background. Figure from Ref. [155].

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.