ebook img

Essential Partial Differential Equations: Analytical and Computational Aspects PDF

370 Pages·2015·6.95 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Essential Partial Differential Equations: Analytical and Computational Aspects

Springer Undergraduate Mathematics Series David F. Griffiths John W. Dold David J. Silvester Essential Partial Differential Equations Analytical and Computational Aspects Springer Undergraduate Mathematics Series Advisory Board M.A.J. Chaplain, University of Dundee, Dundee, Scotland, UK K. Erdmann, University of Oxford, Oxford, England, UK A. MacIntyre, Queen Mary University of London, London, England, UK E. Süli, University of Oxford, Oxford, England, UK M.R. Tehranchi, University of Cambridge, Cambridge, England, UK J.F. Toland, University of Cambridge, Cambridge, England, UK More information about this series at http://www.springer.com/series/3423 fi David F. Grif ths John W. Dold (cid:129) David J. Silvester Essential Partial Differential Equations Analytical and Computational Aspects 123 DavidF. Griffiths DavidJ. Silvester University of Dundee Schoolof Mathematics Fife TheUniversity of Manchester UK Manchester UK JohnW.Dold Schoolof Mathematics TheUniversity of Manchester Manchester UK ISSN 1615-2085 ISSN 2197-4144 (electronic) SpringerUndergraduate MathematicsSeries ISBN978-3-319-22568-5 ISBN978-3-319-22569-2 (eBook) DOI 10.1007/978-3-319-22569-2 LibraryofCongressControlNumber:2015948777 Mathematics Subject Classification (2010): 35-01, 65L10, 65L12, 65L20, 65M06, 65M12, 65N06, 65N12 SpringerChamHeidelbergNewYorkDordrechtLondon ©SpringerInternationalPublishingSwitzerland2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerInternationalPublishingAGSwitzerlandispartofSpringerScience+BusinessMedia (www.springer.com) In mathematics you don’t understand things. You just get used to them. John von Neumann “Begin at the beginning”, the King said, very gravely, “and go on till you come to the end: then stop”. Lewis Carroll, Alice in Wonderland Preface Thistextbookisaself-containedintroductiontothemathematicalaspectsofpartial differential equations. The book is aimed at undergraduate students studying for a mathematics degree. Selected chapters could also be of interest to engineers and scientists looking to develop an understanding of mathematical modelling and numerical analysis. The material is organised into 13 chapters, with roughly equal emphasis placed on analytical and numerical solution techniques. The first four chapters provide a foundation for the study of partial differential equations. These chapters cover physical derivation, classification, and well-posedness. Classical solution tech- niques are discussed in Chaps. 8 and 9. Computational approximation aspects are developed in Chaps. 6 and 10–12. A clear indication is given in each of these chapters of where the basic material (suitable perhaps for a first course) ends and where we begin to probe more challenging areas that are of both a practical and theoretical interest. The final chapter defines a suite of projects, involving both theory and computation, that are intended to extend and test understanding of the material in earlier chapters. Other than the final chapter, the book does not include programming exercises. We believe that this strategy is in keeping with the aims and objectives of the SUMS series. The availability of software environments like MATLAB (www.mathworks.com), Maple (www.maplesoft.com) and Mathematica (www.wolfram.com) means that there is little incentive for students to write low-level computer code. Nevertheless, we would encourage readers who are ambitioustotrytoreproducethecomputationalresultsinthebookusingwhatever computational tools that they have available. Most chapters conclude with an extensive set of exercises (almost 300 in all). These vary in difficulty so, as a guide, the more straightforward are indicated byI while those at the more challenging end of the spectrum are indicated byH. Full solutions to all the exercises as well as the MATLAB functions that were used to vii viii Preface generate the figures will be available to authorised instructors through the book’s website (www.springer.com). Others will be able to gain access to the solu- tions to odd-numbered exercises though the same web site. Distinctive features of the book include the following. 1. The level of rigour is carefully limited—it is appropriate for second-year mathematicsundergraduatesstudyingintheUK(perhapsthirdorfourthyearin the USA). The ordering of topics is logical and new concepts are illustrated by worked examples throughout. 2. Analyticalandnumericalmethodsofsolutionarecloselylinked,settingbothon an equal footing. We (the authors) take a contemporary view of scientific computing and believe in mixing rigorous mathematical analysis with informal computational examples. 3. Thetextiswritteninalivelyandcoherentstyle.Almostallofthecontentofthe book is motivated by numerical experimentation. Working in the “computa- tionallaboratory”iswhatultimatelydrivesourresearchandmakesourscientific lives such fun. 4. Thebookopensthedoortoawiderangeoffurtherareasofstudyinbothapplied mathematics and numerical analysis. Thematerialcontainedinthefirstninechaptersreliesonlyonfirst-yearcalculus andcouldbetaughtasaconventional“introductiontopartialdifferentialequations” module in the second year of study. Advanced undergraduate level courses in mathematics, computing or engineering departments could be based on any com- bination of the early chapters. The material in the final four chapters is more specialisedand,wouldalmostcertainlybetaughtseparatelyasanadvancedoption (fourth-yearorMSc)entitled“numericalmethodsforpartialdifferentialequations”. Our personal view is that numerical approximation aspects are central to the understandingofpropertiesofpartialdifferentialequations,andourhopeisthatthe entire contents of the book might be taught in an integrated fashion. This would mostprobablybeadouble-semester(44hours)second-(orthird-)yearmoduleina UKuniversity.Havingcompletedsuchanintegrated(core)course,studentswould beperfectlypreparedforaspecialistappliedmathematicsoption,sayincontinuum mechanicsorelectromagnetism,orforadvancednumericalanalysisoptions,sayon finite element approximation techniques. We should like to extend our thanks to Catherine Powell, Alison Durham, Des Higham and our colleagues at Manchester and Dundee, not to mention the many students who have trialled the material over many years, for their careful reading andfrank opinionsofearlier drafts ofthebook. Itisalso apleasure tothank Joerg Sixt and his team at Springer UK. May 2015 David F. Griffiths John W. Dold David J. Silvester Contents 1 Setting the Scene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Some Classical PDEs … . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2 1.2 … and Some Classical Solutions. . . . . . . . . . . . . . . . . . . . . .. 4 2 Boundary and Initial Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 Operator Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 14 2.2 Classification of Boundary Value Problems . . . . . . . . . . . . . .. 16 2.2.1 Linear Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.2 Nonlinear Problems. . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.3 Well-Posed Problems. . . . . . . . . . . . . . . . . . . . . . . . . 21 3 The Origin of PDEs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1 Newton’s Laws. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 27 3.1.1 The Wave Equation for a String . . . . . . . . . . . . . . . . . 27 3.2 Conservation Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 29 3.2.1 The Heat Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2.2 Laplace’s Equation and the Poisson Equation. . . . . . . . 31 3.2.3 The Wave Equation in Water. . . . . . . . . . . . . . . . . . . 32 3.2.4 Burgers’ Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4 Classification of PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.1 Characteristics of First-Order PDEs. . . . . . . . . . . . . . . . . . . .. 38 4.2 Characteristics of Second-Order PDES. . . . . . . . . . . . . . . . . .. 44 4.2.1 Hyperbolic Equations . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2.2 Parabolic Equations. . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.2.3 Elliptic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3 Characteristics of Higher-Order PDEs . . . . . . . . . . . . . . . . . .. 52 4.4 Postscript. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 53 5 Boundary Value Problems in R1 . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.1 Qualitative Behaviour of Solutions . . . . . . . . . . . . . . . . . . . .. 61 5.2 Comparison Principles and Well-Posedness . . . . . . . . . . . . . .. 64 ix x Contents 5.3 Inner Products and Orthogonality . . . . . . . . . . . . . . . . . . . . .. 68 5.3.1 Self-adjoint Operators . . . . . . . . . . . . . . . . . . . . . . . . 71 5.3.2 A Clever Change of Variables . . . . . . . . . . . . . . . . . . 72 5.4 Some Important Eigenvalue Problems . . . . . . . . . . . . . . . . . .. 74 6 Finite Difference Methods in R1 . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.1 The Approximation of Derivatives. . . . . . . . . . . . . . . . . . . . .. 86 6.2 Approximation of Boundary Value Problems . . . . . . . . . . . . .. 90 6.3 Convergence Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 95 6.4 Advanced Topics and Extensions . . . . . . . . . . . . . . . . . . . . .. 103 6.4.1 Boundary Conditions with Derivatives. . . . . . . . . . . . . 103 6.4.2 A Fourth-Order Finite Difference Method. . . . . . . . . . . 109 7 Maximum Principles and Energy Methods . . . . . . . . . . . . . . . . . . 119 7.1 Maximum Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 119 7.2 Energy Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 124 8 Separation of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 8.1 The Heat Equation Revisited . . . . . . . . . . . . . . . . . . . . . . . .. 129 8.1.1 Extension to Other Parabolic Problems .... . . . . . . . . . . 136 8.1.2 ... and to Inhomogeneous Data . . . . . . . . . . . . . . . . . . 140 8.2 The Wave Equation Revisited. . . . . . . . . . . . . . . . . . . . . . . .. 143 8.3 Laplace’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 148 9 The Method of Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . 161 9.1 First-Order Systems of PDEs . . . . . . . . . . . . . . . . . . . . . . . .. 161 9.2 Second-Order Hyperbolic PDEs . . . . . . . . . . . . . . . . . . . . . .. 166 9.3 First-Order Nonlinear PDES. . . . . . . . . . . . . . . . . . . . . . . . .. 171 9.3.1 Characteristics of Burgers’ Equation . . . . . . . . . . . . . . 174 9.3.2 Shock Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 9.3.3 Riemann Problems and Expansion Fans. . . . . . . . . . . . 184 10 Finite Difference Methods for Elliptic PDEs . . . . . . . . . . . . . . . . . 195 10.1 A Dirichlet Problem in a Square Domain. . . . . . . . . . . . . . . .. 196 10.1.1 Linear Algebra Aspects . . . . . . . . . . . . . . . . . . . . . . . 198 10.1.2 Convergence Theory . . . . . . . . . . . . . . . . . . . . . . . . . 202 10.1.3 Improving the Solution Accuracy . . . . . . . . . . . . . . . . 204 10.2 Advanced Topics and Extensions . . . . . . . . . . . . . . . . . . . . .. 207 10.2.1 Neumann and Robin Boundary Conditions. . . . . . . . . . 207 10.2.2 Non-rectangular Domains. . . . . . . . . . . . . . . . . . . . . . 211 10.2.3 Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 10.2.4 Regularity of Solutions . . . . . . . . . . . . . . . . . . . . . . . 221 10.2.5 Anisotropic Diffusion. . . . . . . . . . . . . . . . . . . . . . . . . 223 10.2.6 Advection–Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . 226

Description:
This volume provides an introduction to the analytical and numerical aspects of partial differential equations (PDEs). It unifies an analytical and computational approach for these; the qualitative behaviour of solutions being established using classical concepts: maximum principles and energy metho
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.