ebook img

Essential Dynamics and Relativity PDF

330 Pages·2014·3.268 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Essential Dynamics and Relativity

PHYSICS O Essential ’ D Essential Dynamics & Relativity provides an introduction to the core o n aspects of dynamics and special relativity. The author reiterates important n e ideas and terms throughout and covers concepts that are often missing from l Dynamics l other texts at this level. He also places each topic within the wider constructs of the theory, without jumping from topic to topic to illustrate a point. E The first section of the book focuses on dynamics, discussing the basic s & aspects of single particle motion and analyzing the motion of multi-particle s e systems. The book also explains the dynamical behavior of both composite bodies (rigid bodies) and objects in non-inertial frames of reference (rotating n Relativity reference frames). t i a The second section concentrates on relativity. The author describes the ideas l leading to the inception of special relativity. He also formulates fundamental D aspects, such as time dilation, length contraction, Lorentz transformations, and the visual aids of Minkowski diagrams, necessary to develop more y sophisticated ideas. He then develops the concepts within the context of n relativistic mechanics. a m Features • Explains the main elements of dynamics and special relativity together i in one convenient, entry-level text c s • Helps readers understand the precise nomenclature of dynamics Peter J. O’Donnell & • Presents the mathematics of special relativity in a straightforward way • Includes numerous examples and exercises that are integral to fully R understand the concepts e This text makes the often daunting and confusing ideas of dynamics and l a special relativity accessible to readers studying the subjects for the first time. t i v i t K20382 y 6000 Broken Sound Parkway, NW Suite 300, Boca Raton, FL 33487 ISBN: 978-1-4665-8839-4 711 Third Avenue 90000 New York, NY 10017 an informa business 2 Park Square, Milton Park www.crcpress.com Abingdon, Oxon OX14 4RN, UK 9 781466 588394 w w w . c r c p r e s s . c o m K20382 cvr mech.indd 1 10/21/14 8:52 AM Essential Dynamics & Relativity K20382_FM.indd 1 10/30/14 11:34 AM TThhiiss ppaaggee iinntteennttiioonnaallllyy lleefftt bbllaannkk Essential Dynamics & Relativity Peter J. O’Donnell Department of Applied Mathematics and Theoretical Physics University of Cambridge Fellow of St. Edmund’s College, Cambridge K20382_FM.indd 3 10/30/14 11:34 AM CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2015 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20141021 International Standard Book Number-13: 978-1-4665-8840-0 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information stor- age or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copy- right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro- vides licenses and registration for a variety of users. For organizations that have been granted a photo- copy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com In memory of Professor C. D. Collinson TThhiiss ppaaggee iinntteennttiioonnaallllyy lleefftt bbllaannkk Contents List of Symbols xi Preface xiii About the Author xv Acknowledgments xvii I Dynamics 1 1 The Galileo–Newton Formulation of Dynamics 3 1.1 Galilean relativity . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.1 Frames of reference . . . . . . . . . . . . . . . . . . . . 4 1.1.2 Galileo’s law of inertia and inertial frames . . . . . . . 10 1.1.3 Galilean transformations . . . . . . . . . . . . . . . . . 12 1.1.4 General Galilean transformations . . . . . . . . . . . . 15 1.2 Newton’s dynamical laws . . . . . . . . . . . . . . . . . . . . 16 1.3 Gravitational and inertial mass . . . . . . . . . . . . . . . . . 19 1.3.1 The weak equivalence principle . . . . . . . . . . . . . 20 1.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2 Particle Dynamics in One Dimension 25 2.1 Motion of a particle under a force . . . . . . . . . . . . . . . 25 2.1.1 Potential energy . . . . . . . . . . . . . . . . . . . . . 27 2.1.2 Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2 Potential energy diagrams . . . . . . . . . . . . . . . . . . . 30 2.3 Tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.4 Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.5 Resistive motion . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.5.1 Vertical motion in a resistive medium . . . . . . . . . 43 2.6 Escape velocity . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3 Oscillations 57 3.1 Hooke’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2 Simple harmonic motion . . . . . . . . . . . . . . . . . . . . 60 3.3 Period of small oscillations . . . . . . . . . . . . . . . . . . . 64 vii viii Contents 3.4 Damped simple harmonic motion . . . . . . . . . . . . . . . 67 3.5 Damped simple harmonic motion with a forcing term . . . . 71 3.5.1 Resonance . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.6 The LCR circuit . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4 Particle Dynamics in Two and Three Dimensions 83 4.1 Projectiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.1.1 Projectiles without air resistance . . . . . . . . . . . . 84 4.1.2 Projectiles with linear air resistance . . . . . . . . . . 87 4.2 Energy and force . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.2.1 Work and kinetic energy . . . . . . . . . . . . . . . . . 88 4.2.2 Potential energy and conservative force . . . . . . . . 90 4.3 Charged particles in an electromagnetic field . . . . . . . . . 94 4.3.1 Particle in a magnetic field . . . . . . . . . . . . . . . 94 4.3.2 Crossed electric and magnetic fields . . . . . . . . . . 96 4.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5 Central Forces and Orbits 101 5.1 Central forces and angular momentum . . . . . . . . . . . . 101 5.2 Circular motion . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.2.1 Plane polar coordinates . . . . . . . . . . . . . . . . . 104 5.2.2 Motion of a particle in a circular orbit . . . . . . . . . 106 5.2.3 Motion of a particle in a vertical circle . . . . . . . . . 107 5.3 Orbital motion . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.4 The inverse square law . . . . . . . . . . . . . . . . . . . . . 111 5.5 The orbital equation . . . . . . . . . . . . . . . . . . . . . . . 114 5.5.1 Orbital paths . . . . . . . . . . . . . . . . . . . . . . . 115 5.5.2 Orbital energy . . . . . . . . . . . . . . . . . . . . . . 118 5.6 Perturbed orbits . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.7 Kepler’s laws of planetary motion . . . . . . . . . . . . . . . 125 5.8 The perihelion precession of Mercury . . . . . . . . . . . . . 127 5.9 Rutherford scattering . . . . . . . . . . . . . . . . . . . . . . 129 5.9.1 Scattering angle and impact parameter . . . . . . . . 130 5.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 6 Multi-Particle Systems 137 6.1 Conservation of linear momentum . . . . . . . . . . . . . . . 138 6.2 Conservation of angular momentum . . . . . . . . . . . . . . 140 6.3 The centre of mass frame . . . . . . . . . . . . . . . . . . . . 141 6.3.1 Linear momentum . . . . . . . . . . . . . . . . . . . . 143 6.3.2 Angular momentum . . . . . . . . . . . . . . . . . . . 143 6.3.3 Torque . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 6.3.4 A caveat to the torque equation . . . . . . . . . . . . 145 6.3.5 Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Contents ix 6.4 The two-body problem . . . . . . . . . . . . . . . . . . . . . 150 6.5 Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 6.5.1 Elastic collisions in the laboratory (LAB) frame. . . . 155 6.5.2 Elastic collisions in the centre of mass (CM) frame . . 158 6.5.3 Transformations between CM and LAB frames . . . . 160 6.6 Inelastic collisions . . . . . . . . . . . . . . . . . . . . . . . . 166 6.6.1 The coefficient of restitution. . . . . . . . . . . . . . . 169 6.7 Variable mass problems . . . . . . . . . . . . . . . . . . . . . 171 6.7.1 Rocket motion . . . . . . . . . . . . . . . . . . . . . . 171 6.7.2 A falling raindrop . . . . . . . . . . . . . . . . . . . . 175 6.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 7 Rigid Bodies 181 7.1 Rotation of a rigid body about a fixed axis . . . . . . . . . . 181 7.1.1 Angular velocity and kinetic energy . . . . . . . . . . 181 7.1.2 Moment of inertia . . . . . . . . . . . . . . . . . . . . 183 7.1.3 Angular momentum . . . . . . . . . . . . . . . . . . . 184 7.1.4 Calculating the centre of mass and the moment of iner- tia of some uniform rigid bodies . . . . . . . . . . . . 185 7.1.5 Parallel axis theorem . . . . . . . . . . . . . . . . . . . 194 7.1.6 Perpendicular axis theorem . . . . . . . . . . . . . . . 196 7.2 Planar motion of a rigid body . . . . . . . . . . . . . . . . . 198 7.2.1 Kinetic energy . . . . . . . . . . . . . . . . . . . . . . 199 7.2.2 Instantaneous centre . . . . . . . . . . . . . . . . . . . 199 7.2.3 The compound pendulum . . . . . . . . . . . . . . . . 202 7.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 8 Rotating Reference Frames 211 8.1 Rates of change in a rotating frame . . . . . . . . . . . . . . 211 8.2 Newton’s second law in a rotating frame . . . . . . . . . . . 214 8.3 The centrifugal force . . . . . . . . . . . . . . . . . . . . . . 216 8.3.1 Actual and apparent gravitational acceleration . . . . 217 8.4 The Coriolis force . . . . . . . . . . . . . . . . . . . . . . . . 222 8.4.1 Motion of a freely falling body . . . . . . . . . . . . . 224 8.4.2 Foucault’s pendulum . . . . . . . . . . . . . . . . . . . 228 8.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 II Relativity 235 9 Special Relativity 237 9.1 Inception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 9.1.1 The Michelson–Morley experiment (a pr´ecis) . . . . . 238 9.2 Einstein’s postulates of special relativity . . . . . . . . . . . 240 9.3 Lorentz transformations . . . . . . . . . . . . . . . . . . . . . 241 9.4 Minkowski diagrams (space-time diagrams) . . . . . . . . . . 245 9.4.1 Calibration hyperbolae and the s2 invariant . . . . . . 246

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.