Essays on the Foundations of Mathematics by Moritz Pasch THE WESTERN ONTARIO SERIES IN PHILOSOPHY OF SCIENCE A SERIES OF BOOKS IN PHILOSOPHY OF SCIENCE, METHODOLOGY, EPISTEMOLOGY, LOGIC, HISTORY OF SCIENCE, AND RELATED FIELDS Managing Editor WILLIAM DEMOPOULOS Department of Philosophy, University of Western Ontario, Canada Managing Editor 1980–1997 ROBERT E. BUTTS Late, Department of Philosophy, University of Western Ontario, Canada Editorial Board JOHN L. BELL, University of Western Ontario JEFFREY BUB, University of Maryland PETER CLARK, St Andrews University DAVID DEVIDI, University of Waterloo ROBERT DiSALLE, University of Western Ontario MICHAEL FRIEDMAN, Stanford University MICHAEL HALLETT, McGill University WILLIAM HARPER, University of Western Ontario CLIFFORD A. HOOKER, University of Newcastle AUSONIO MARRAS, University of Western Ontario JÜRGEN MITTELSTRASS, Universität Konstanz WAYNE C. MYRVOLD, University of Western Ontario THOMAS UEBFL, University of Manchester ITAMARPITOWSKY† ,Hebrew University VOLUME 83 Stephen Pollard Editor Essays on the Foundations of Mathematics by Moritz Pasch 123 Editor Prof.StephenPollard TrumanStateUniversity Dept.Philosophy&Religion 63501KirksvilleMissouri USA [email protected] ISBN978-90-481-9415-5 e-ISBN978-90-481-9416-2 DOI10.1007/978-90-481-9416-2 SpringerDordrechtHeidelbergLondonNewYork LibraryofCongressControlNumber:2010929951 (cid:2)c SpringerScience+BusinessMediaB.V.2010 Nopartofthisworkmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorby anymeans,electronic,mechanical,photocopying,microfilming recordingorotherwise,withoutwritten permissionfromthePublisher,withtheexceptionofanymaterialsuppliedspecificall forthepurpose ofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthework. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface MoritzPasch(1843–1930)hasasecurereputationasakeyfigur inthehistoryof axiomaticgeometry.Lesswellknownarehiscontributionstootherareasoffounda- tionalresearch.ThisvolumefeaturesEnglishtranslationsoffourteenpapersPasch publishedinthedecade1917–1926duringthesurgeinproductivityafterhisretire- ment from the University of Giessen (Justus-Liebig-Universita¨t Gießen). In them, Pasch argues that geometry and number theory are branches of empirical science; he provides axioms for the combinatorial reasoning essential to Hilbert’s program ofconsistencyproofs;heexploresimplicitdefinitio (ageneralizationofdefinitio by abstraction) and indicates how this technique yields an empiricist reconstruc- tion of set theory; he argues that we cannot fully understand the logical structure of mathematics without clearly distinguishing between decidable and undecidable properties; he offers a rare glimpse into the mind of a master of axiomatics, sur- veying in detail the thought experiments he employed as he struggled to identify fundamental mathematicalprinciples;andmuchmore.Thefourteenpapersinthis volumepresentPasch’smostmaturepositionsonkeyfoundational issuesthathad occupiedhimfordecades.Theywill: • Introduce English speakers to an important body of work from a turbulent and pivotalperiodinthehistoryofmathematics. • Helpuslookbeyondthefamiliartriadofformalism,intuitionism,andlogicism. • Show how deeply we can see with the help of a guide determined to present fundamentalmathematicalideasinwaysthatmatchourhumancapacities. The book should interest researchers in logic and the foundations of mathematics, includinghistorians,mathematicians,andphilosophers. IntranslatingPasch’sGermanintoEnglish,mygoalhasbeentoproduceatext thatmighthavebeencomposedbyamathematicallyandphilosophicallycompetent writerwhosefrstlanguageisEnglish.Imentionthissoreaderswillbeawarethat myerrorswillgenerallynotbeinthedirectionofexcessiveliteralness.Ihavemade no effort to produce a text from which the original German can be mechanically reproduced.TheresultofsuchaneffortisunlikelytobeidiomaticEnglish.Readers shouldalsobeawarethatIhavesilentlycorrectedsomeobviousmisprints.Whenit v vi Preface (cid:2) isclearbeyondanyshadowofadoubtthat,forexample,Paschmeantl ratherthan (cid:2) λ, I do not interrupt the narrative with an explanatory note. I have occasionally provided descriptive section titles where Pasch has only numbers or only generic headings that give no hint about the contents. One last liberty: I have rendered in EnglishthetitlesofGermanworkscitedbyPasch.Readerswhoturntothisvolume becausetheyhavelittleornoGermanmayfin thishelpful. For a period of weeks, my colleague David Gillette was subjected to daily, if nothourly, questionsabout Pasch’sGerman. Iamgratefulforhishelp.Ialsoowe specialthankstoFlorenceEmilyPollardwho“wantedtoseemewriteabook.” Kirksville,Missouri,USA StephenPollard February2010 Contents Translator’sIntroduction ........................................... 1 0.1 PaschofGiessen ........................................... 1 0.2 ChainsandLines........................................... 3 0.3 ExistenceofLines.......................................... 4 0.4 ExtractingLinesfromLines.................................. 6 0.5 JustifyingInduction ........................................ 8 0.6 InitialSegments............................................ 9 0.7 ConformityandAbstraction.................................. 11 0.8 FiniteOrdinals............................................. 12 0.9 AdditionandMultiplication.................................. 15 0.10 HowMuchArithmetic? ..................................... 18 0.11 ToJustifytheWaysofPeanotoMen .......................... 23 0.12 EmpiricistArithmetic? ...................................... 25 0.13 IdealDivisors.............................................. 30 0.14 ImplicitDefinitio .......................................... 36 0.15 Sets ...................................................... 39 References..................................................... 42 1 FundamentalQuestionsofGeometry............................. 45 1.1 DeductivePresentationofGeometry........................... 45 1.2 ApplicabilityofGeometry ................................... 46 1.3 EmpiricistGeometry........................................ 46 1.4 TheLevelsofConceptFormation ............................. 47 1.5 ProofProcedure............................................ 48 1.6 CorePropositionsforStraightLinesandPlanes ................. 49 References..................................................... 49 2 TheDecidabilityRequirement................................... 51 2.1 RigidMathematics ......................................... 51 2.2 Kronecker’sRequirement.................................... 52 2.3 CoreConceptsandPropositions .............................. 53 References..................................................... 54 vii viii Contents 3 TheOriginoftheConceptofNumber ............................ 55 Introduction.................................................... 55 IPreliminaryFacts .............................................. 58 3.1 ThingsandProperNames ................................... 58 3.2 Specification andCollectiveNames .......................... 59 3.3 EarlierandLater ........................................... 59 3.4 FirstandLast.............................................. 60 3.5 Inferences................................................. 61 3.6 Between .................................................. 62 3.7 ImmediateSuccession....................................... 63 3.8 ImmediatePrecedence ...................................... 64 3.9 ThePossibilityofSpecification .............................. 65 3.10 ChainsofEvents ........................................... 67 3.11 LinesofThings ............................................ 68 3.12 Neighbor-Lines ............................................ 69 3.13 PacingOffaLine .......................................... 71 3.14 ApplicationtoCollectiveNames.............................. 72 3.15 ProofbyPacingOff ........................................ 73 3.16 CollectionsofThings ....................................... 75 3.17 ImplicitDefinitio .......................................... 76 3.18 ConsequencesofImplicitDefinitio ........................... 77 3.19 ApplicationsofProofbyPacingOff........................... 78 3.20 BackwardsPacing.......................................... 79 IISummaryofthePrecedingResults ............................... 79 3.21 Summaryof3.1............................................ 79 3.22 Summaryof3.2............................................ 80 3.23 Summaryof3.3............................................ 80 3.24 Summaryof3.4............................................ 81 3.25 Summaryof3.5............................................ 81 3.26 Summaryof3.6............................................ 81 3.27 Summaryof3.7............................................ 81 3.28 Summaryof3.8............................................ 82 3.29 Summaryof3.9............................................ 82 3.30 Summaryof3.10........................................... 82 3.31 Summaryof3.11........................................... 83 3.32 Summaryof3.12........................................... 84 3.33 Summaryof3.13........................................... 84 3.34 Summaryof3.14........................................... 85 3.35 Summaryof3.15........................................... 85 3.36 Summaryof3.16........................................... 85 3.37 Summaryof3.17........................................... 85 3.38 Summaryof3.18........................................... 86 3.39 Summaryof3.19........................................... 86 Contents ix 3.40 Summaryof3.20........................................... 87 IIIPairingsBetweenCollections................................... 87 IVTheNaturalNumbers ......................................... 88 Conclusion..................................................... 91 References..................................................... 93 4 ImplicitDefinitio andtheProperGroundingofMathematics ...... 95 4.1 Introduction ............................................... 95 4.2 TheRiseofProjectiveGeometry.............................. 96 4.3 CoreConceptsandCorePropositions.......................... 97 4.4 TheFundamentalPrinciple .................................. 98 4.5 EuclideanDefinition ....................................... 99 4.6 SomeCorePropositions .....................................100 4.7 NotationforSegments ......................................101 4.8 StraightLines..............................................102 4.9 ImplicitDefinitio ..........................................103 4.10 JustifyingImplicitDefinition ................................104 4.11 EmployingImplicitlyDefine Terms ..........................105 References.....................................................107 5 RigidBodiesinGeometry .......................................109 5.1 Background ...............................................109 5.2 Introduction ...............................................111 5.3 BodiesandTheirShapes ....................................112 References.....................................................116 6 PreludetoGeometry:TheEssentialIdeas.........................117 6.1 Introduction ...............................................117 6.2 CompositionandDecomposition .............................118 6.3 Thickness .................................................119 6.4 Width ....................................................121 6.5 ConstitutionofBodies ......................................122 6.6 Lines.....................................................123 6.7 CongruentLines ...........................................125 6.8 StraightSegments ..........................................128 6.9 Length....................................................130 6.10 Surfaces ..................................................132 6.11 PlanarSurfaces ............................................133 6.12 ExteriorSurfaces...........................................135 6.13 Motion ...................................................136 References.....................................................138