ebook img

Essays in production scheduling with just-in-time related performance measures PDF

215 Pages·1994·8.8 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Essays in production scheduling with just-in-time related performance measures

ESSAYSINPRODUCTIONSCHEDULING WITHJUST-IN-TIMERELATEDPERFORMANCEMEASURES BY FRANZ-JOSEFKRAMER ADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOL OFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENT OFTHEREQUIREMENTSFORTHEDEGREEOF DOCTOROFPHILOSOPHY UNIVERSITYOFFLORIDA 1994 ACKNOWLEDGMENTS TheauthorgratefullyacknowledgesDr. Chung-YeeLee,thecommitteechairman,and Dr. ShermanBai,thecochairman,fortheirexpertguidanceandtheirconstantencour- agementatanytimethroughoutthisstudy. AppreciationisexpressedtotheDepartment ofIndustrialandSystemsEngineeringoftheUniversityofFloridaandinparticulartoits chairmanDr.JackElzingaforthefinancialsupport. Theauthorwishestothankhisfamilyandfriendsfortheircontinuoussupportduring thecourseofthiswork.Specialthanksareduetohisdeceasedfatherwhoinhisearlyyears createdandnurturedhiscommitmenttoeducationandwhohasmadeabundantprovision forhisfamily,andtohislovingmotherwholethimgoacrosstheAtlantictopursuehis goalsanddreams. TheauthoralsowouldliketothankGod. Somanytimesduringthecreativepartof thisresearch,theLordhasprovenHimselffaithfultoHispromise: CommityourworkstotheLord, andyourthoughtsshallbeestablished. (Proverbs16:3). 11 TABLEOFCONTENTS ACKNOWLEDGMENTS ii ABSTRACT v 1 INTRODUCTION 1 2 COMMONDUE-WINDOWSCHEDULING 8 2.1 Introduction 8 2.2 NotationandGeneralProperties 9 2.3 DecisionVariableCase 12 2.4 ParameterCase 18 2.5 FinalRemarksandConclusions 23 3 PARALLELDUEWINDOWSCHEDULING 24 3.1 Introduction 24 3.2 NotationandGeneralProperties 26 3.3 ComplexityandOptimalityProperties 29 33..45 TGehneerTawliozaMtaiconhifnoertChaesemmachinecase 4398 3.6 Summary 53 4 OPTIMALCONTROLOFAPRODUCTIONSYSTEMWITHPERIODICMAIN- TENANCE 54 4.1 Introduction 54 4.2 ProblemDefinition 57 4.3 AOne-CycleProblemanditsOptimalSolution 59 4.3.1 SingularIntervals 62 4.3.2 SwitchingTimesandSwitchingPoints 68 4.3.3 InitialControlLevelu*(0) 73 4.3.4 OptimalSolution 78 4.4 ATwo-CycleProblemanditsOptimalSolution Ill 4.5 4444O....p4444t....i1234malISSOniwpisnittogtiiluacumllhtaaiiClrnoongnISntotPtlrooeuoirttlnvihtaoeLlsnesAvfffeofo-rlorcryPfPcPorrlrroeoobPbbplrllreoeeombmmbllPePPe2m2m2P(2N>3) 111114111126654 4.5.1 SingularIntervalsforProblemPV 144 4.5.2 SwitchingPointsforProblemPjv 144 4.5.3 InitialControlLevelforProblemPjv 144 4.5.4 OptimalSolutionforProblemP^v 144 iii 4.6 TransientStateandSteadyState 155 4.7 Summary 158 APPENDICES A PROOFOFLEMMA1 160 B ALGORITHMFORm=2PARALLELMACHINECASE 165 C CALCULATIONFORAPRODUCTIONSYSTEMWITHPERIODICMAINTE- NANCE 170 C.l Therangeof5i(a;(0))forProblemPi(CaseB4-2) 170 C.2 SwitchingPointforProblemPi(CaseB4-2) 172 C.3 TheSwitchingCurve 173 C.4 TheFirstDerivativeofJJ'^O)) 177 C.5 TheDerivativeofJ{(x(0))(CaseE4) 178 C.6 TheSecondDerivativeofJj*(2(0)) 181 C.7 APropertyofj^jJi(x(0)) 183 C.8 APropertyof^0)^2(x(0)) 187 C.9 AnInitialProductionControlforProblemP2 189 C.10Rewritingaquadraticequation(CaseC4-2) 191 C.ll52(a:(0))ismonotonedecreasing(C4-2-2) 195 C.12EvaluationofS2(d(a- (CaseC4-2-2) 197 REFERENCES 199 BIOGRAPHICALSKETCH 207 IV AbstractofDissertationPresentedtotheGraduateSchool oftheUniversityofFloridainPartialFulfillmentofthe RequirementsfortheDegreeofDoctorofPhilosophy ESSAYSINPRODUCTIONSCHEDULING WITHJUST-IN-TIMERELATEDPERFORMANCEMEASURES By Franz-JosefKramer August1994 Chairman:Dr.Chung-YeeLee Cochairman: Dr.ShermanBai MajorDepartment:IndustrialandSystemsEngineering Just-In-Timeconceptsareofincreasingimportanceintoday’scompetitivemanufactur- ingenvironment.Inthiscontext,westudyseveraldiscreteschedulingproblemsaswellasa productionflowcontrolproblem. Thediscreteschedulingproblemsconsiderthecasewherewehaveacommonduewindow. Jobswhicharecompletedwithintheduewindowincurnopenalty. Completionbeforethe duewindowincursearlinesspenaltyandcompletionaftertheduewindowincurstardiness penalty.Ifthelocationoftheduewindowisadecisionvariable,wecanprovideapolynomial algorithmforthesinglemachinecase.Fortwoparallelmachines,weshowthattheproblem isNP-completeandusedynamicprogrammingtosolveit. Wepresentaheuristicwith polynomialcomplexityformparallelmachinesandshowthattheerrorboundvanishesas thenumberofjobsincreases. Ifthelocationoftheduewindowisagivenparameter,the v problemisNP-completeevenforthesinglemachinecase.Weusedynamicprogrammingto solvethisproblem. Themaincontributionofthisresearchistheextensionofthedue-date concepttothedue-windowconcept.Nopriorresearchhasanalyzedearlinessandtardiness performancemeasuresincombinationwithduewindows. Fortheproductionflowcontrolproblem,weconsiderasystemconsistingofonemachine forwhichmaintenanceisperformedonaperiodicbasis.Thetimeiscontinuousandthetime horizonisfinite. Foreachcycle,boththetimeintervalofoperationandthemaintenance intervalaredeterministic. Duringthemaintenanceinterval,thesystemisshutdownand cannotproduce. Onepart-typeisproducedandthedemandrateisassumedtobeconstant. Thesupplyisassumedtobeunlimited. Inordertomakeon-timedelivery,theobjective istokeeptheproductionasclosetothedemandaspossible. However,themaintenance disruptionsmaketheproductiondeviatefromthedemand. Wemodeltheproblemasan optimalcontrolproblemandsolveitbyPontryagin’sMinimumPrinciple. Wediscussboth thetransient stateandthesteadystate. Themaincontributionistheanalysis ofthe transientstate. vi CHAPTER1 INTRODUCTION Inthe1990s,internationalcompetitionwillincreaseduetoanumberofreasons. One ofthesereasonsisthat advancementsininformationandprocess technologiesoccur at anacceleratedpace. Also,theconsumerdemandsareincreasinglysophisticatedandin- dividualized. Thisresultsintheneedforoperationalmodelswhichreflectlong-termand nonfinancialperformancemeasuressuchascustomersatisfactionwithboththeproduct anditsservice. Revolutionarychangesinthemanagementofproductionsystemsareyet anotherfactorwhichcontributestoanincreasedcompetition. World-Class-Manufacturingrequiresanintegratedmanufacturingstrategy,encompass- ing TotalQuality Control(TQC),Just-In-Time (JIT) Production, FactoryAutomation (FA),andTotalProductiveMaintenance(TPM).Inthisdissertation,wewillfocusour attentiontotheJust-In-Timeproductionstrategy.AccordingtotheJust-In-Timephiloso- phy,theidealsituationistotoeliminateallinventory. Inventoryinitsenlargeddefinition notonlyreferstoeitherpartiallyorfullycompletedproducts,butincludesforexample alsoexcessamountoflaborandmachinetimewhichiscommonlyreferredtoasidletime. TheJust-In-Timephilosophyseekstoavoidinventoryofanykind. Anothermotivationto reduceinventoryisthatinventoryhidesrootcausesofaproblem. Forexample,inventory hidesproblemssuchasrework,machinedowntime,changeorder,longsetups,andvendor delinquencies. Itisthereforedesirabletoidentifyandeliminatewastecomponentssuchas overproduction,waitingtime,transportation,processing,inventory,movement,anddefec- tiveproducts.TheseareimportantstepstowardaJust-In-Timeenvironment.Theprocess 1 2 ofcreatingaJust-In-Timeproductionenvironmentismulti-facetedandinvolvesmanycon- cepts.AveryimportantcomponentinthisprocessistheutilizationofJust-In-Timeoriented productionschedulingtechniques. At this point, wenotethat the areaofboth sequencingand scheduling isofgreat importanceandismotivatedbyproblemsthatariseinproductionplanningandcontrol, andingeneralallsituationsinwhichscarceresourceshavetobeallocatedtoactivities overtime. GeneralreferencesonthesubjectaretheclassicbookbyConway,Maxwelland Miller [30], theintroductorytextsby Baker[17] and French [40],thevolumeedited by Dempster,Lenstra,andRinnooyKan[34],andsurveypaperssuchasbyGraves[51]inthe areaofproductionplanning,andbyLawler,Lenstra,RinnooyKan,andShmoys[75]inthe generalareaofSequencingandScheduling. SequencingandScheduling“isconcernedwith theoptimalallocationofscarceresourcestoactivitiesovertime''’([75]),andmorethanany otherareainoperationsresearch,thetheoryofsequencingandschedulingischaracterized byavirtuallyunlimitednumberofproblemtypes. Inregardtothedeterministicmodels, theproblemscanbeclassifiedaccordingtotheircomplexity. Complexitytheoryprovides amathematicalframeworkwhich canclassify problemsas “easy” oras “hard” (orNP- complete). PioneeringworkinthetheoryofNP-completenesshasbeendonebyCook[28] andKarp[64]and[65].ThetextbyGareyandJohnson[46]isaclassicalguideinthisarea. Formanyyears,schedulingresearchfocusedonsingleperformancemeasuresthatare nondecreasinginjobcompletiontimes. Thesearealsoreferredtoasregularperformance measures. Examplesinclude meanflowtime, meanlateness, numberoftardyjobs,and totaltardiness. Regulardue-date-relatedperformancemeasuresareunabletocaptureany penaltyforearlyjobcompletion. Wethusarerequired tousenonregularperformance measuresinordertomodeltheobjectiveofJust-In-Timeproductionschedulingproblems. Suchperformancemeasurespenalizebothearlinessandtardinesswhereearlinessoccurs whenajobiscompletedbeforetheduedateandtardinessisincurredwhenajobiscompleted aftertheduedate. 3 Inthisstudy,weexamineseveralproductionschedulingproblemswherebothearlyand tardyjobcompletionsarepenalized. Theproblemscanbecategorizedintwogroups:The firstgroupconsistsofproblemswhicharemodelledby discreteschedulingmodels. The secondgroupconsistsofproblemswhicharemodelledbyproductionflowcontrolmodels. Fordiscreteschedulingmodels,weconsidertwoproblemsinChapters2and3.Theper- formancemeasureisdue-dateorientedandpenalizesbothearlinessandtardiness.Accord- ingtotheremarkabove,suchaperformancemeasureisanonregularperformancemeasure. Morespecifically,weconsideradue-datewindowwhichconsistsofanearliestdue-dateand alatestdue-date. Thereareveryfewreferenceswhichallowforazeropenaltywhenthe completiontimefallswithinatimeinterval(seeChapter2),andnoneofthemdevelopthe conceptofdue-windowscheduling. Asurveyofearlinessandtardinessrelatedliteratureis giveninBakerandScudder[20]wherethedue-daterelatedperformancemeasuresinmost casesrefertothesamepointintimefortheearlinesspenaltyaswellasforthetardiness penalty. Whilethismodelisapplicableinmanysituations(forexample,aproductionfine wheredeviationfromapointintimeaffectstheprocessingofthepartatthenextmachine), thereareothersituationswherethereisatimewindowduringwhichnocostisincurred. Consider,forexample,thesituationwhereatruckcanbeloadedovernight. Sothereisa timewindowfromthetimewhenthedriverdeliversthetruckintheeveningtothetime whenthedriverstartsthetripthenextmorningwherethereisnopenaltyfortheproducts whicharecompletedandloadedduringthenightshift.Productswhicharecompletedearly requireholdingandproductswhicharefinishedtardyrequirespecialshipment,forexam- ple. Thus,forsituationswherethedue-dateasonepointintimedoesnotsatisfactorily reflectthesituation,weconsideranintervaloftimeforeachjobduringwhichnopenalty isincurred.Werefertothistimewindowasduewindow. Inthesecondchapter,weconsiderasinglemachineproblemwherenjobshavetobe processed. Wehaveacommonduewindow[e,d]withearliestdue-dateeandlatestdue- datedwhichisthesameforeachjob. Foracompletionbeforetheearliestdue-datee,an 4 earlinesscostisincurred. Completionafterthelatestdue-datedresultsintardinesscost. Thesizeoftheduewindowd—eisagivenparameter.Jobswhicharecompletedwithinthe duewindowdonotincurapenalty. Ourobjectiveistofindaschedulewhichminimizesthe totalpenalty.Wedistinguishbetweentheparametercase,inwhichthelocationofthedue windowisgiven,andthedecisionvariablecase.Inthedecisionvariablecase,thelocation oftheduewindowistobedetermined. Wedonotconsidercostfordue-dateassignment. Forthedecisionvariablecaseandacertaincoststructure,weareabletoprovidean algorithmwhichrequires0(n)time,providedtheindicesaresortedaccordingtotheshortest processingtimeorder. Iftheindicesarenotsorted,thecomplexityis0(nlog(n)). Since eventheeasiestcasewithunitweightsisNP-completeford—e(seeChapter2),thereis norealistichopeinfindingapolynomialalgorithmforthisproblem.Thus,weusedynamic programmingtosolvetheparametercase. Weobservethatinthecasewherethesizeof theduewindowexceedsthelargestprocessingtime,weobtainamoreefficientalgorithm thanforthecorrespondingproblemforthecommonduedatecased=e. Theresultsof thisresearcharetoappearinKramerandLee[72]. Inthethirdchapter,westudytheextensionofthisproblemtoanenvironmentwith parallelmachines. Concerningthelocationoftheduewindow,weconsiderthedecision variablecase.Weshowthattheeasiesttwo-machineproblem(whichhasunitcost)isNP- completeandprovideadynamicprogrammingalgorithmtosolvefortheoptimalsolution. Subsequently,wepresentaheuristicforthetwo-machineandforthem-machinecase. We giveanexpressionfortheupperboundoftheabsoluteerrorandshowthattherelative errorvanishesasthenumberofjobsincreases.Theresultsofthisresearcharetoappearin KramerandLee[73]. Chapter3concludestheproblemswithdiscreteschedulingmodels. Wethenturntothesecondgroupofproblemswhicharemodelledasproductionflow controlmodels. Thetermproductionflowcontrolmodelincludestwoconcepts:production flowandcontrol. Bymodellingtheproductionasaproductionflow,wemodeladiscrete processbyacontinuousproductionrate. Thishasthedisadvantageofintroducingsome

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.