ebook img

ESC NN-Potentials in Momentum Space. II. Meson-Pair Exchange Potentials PDF

27 Pages·0.34 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview ESC NN-Potentials in Momentum Space. II. Meson-Pair Exchange Potentials

ESC NN-Potentials in Momentum Space II. Meson-Pair Exchange Potentials Th.A. Rijken and H. Polinder Institute for Theoretical Physics Nijmegen, University of Nijmegen, Nijmegen, The Netherlands J. Nagata∗ Venture Business Laboratory, Hiroshima University, Kagamiyama 2-313, Higashi-Hiroshima, Japan (Dated: version of: February 4, 2008) The partial wave projection of the Nijmegen soft-core potential model for Meson-Pair-Exchange (MPE)forNN-scatteringinmomentumspaceispresented. Here,nucleon-nucleonmomentumspace MPE-potentialsareNN-interactionswhereeitheroneorbothnucleonscontainsameson-pairvertex. Dynamically, the meson-pair vertices can be viewed as describing in an effective way (part of) the effectsofheavy-mesonexchangeandmeson-nucleonresonances. Fromthepointofviewof“duality,” 2 these two kinds of contribution are roughly equivalent. Part of the MPE-vertices can be found in 0 the chiral-invariant phenomenological Lagrangians that have a basis in spontaneous broken chiral 0 symmetry. It is shown that the MPE-interactions are a very important component of the nuclear 2 force, which indeed enables a very succesful description of the low and medium energy NN-data. Here we present a precise fit to the NN-data with the extended-soft-core (ESC) model containing n OBE-,PS-PS-,and MPE-potentials. Anexcellent description oftheNN-datafor T 350 MeV a Lab J is presented and discussed. Phase shifts are given and a χ2p.d.p. =1.15 is reached. ≤ 8 PACSnumbers: 13.75.Cs,12.39.Pn,21.30.+y 1 v 0 I. INTRODUCTION grams. This in order to distinct these from the planar 2 and crossed-box diagrams, which were given Ref. [3]. 0 Thetwotypesoftwo-meson-exchangepotentialsTME, In the previous paper [1], henceforth refered to as pa- 1 see I, and MPE presented here are part of our program 0 per I, the techniques for the momentumspace treatment toextendtheNijmegensoft-coreone-boson-exchangepo- 2 of the extended soft-core model, hereafter referred to as tential [5, 6, 7] to arrive at a new extended soft-core 0 the ESC-model, are described. This implies first the de- / velopment of a representation of the ESC-model suit- nucleon-nucleon model, hereafter referred to as the ESC h potential [4, 8, 9, 10]. t able for the projection onto the Pauli-spinor rotational - In the introduction to Ref. [4] a rather complete de- invariant operators, and secondly the partial wave anal- l c ysis. This partial wave analysis is organized along simi- scription is given of the physical background behind the u MPE-potentials, and we refer the interested reader to lar lines as used for the soft-core OBE-models [2]. In [1] n that reference. thenucleon-nucleonpartialwavecontributionshavebeen : v worked out in detail. These are the analogs of the con- We apply the potentials derivedin this work to fit the Xi figuration space two-meson-exchange (TME) potentials NN-data. IntheTME-potentialswerestrictourselvesto givenine.g. [3]. Here,theTME-potentialsaredefinedto the ps-ps exchange. Or, phrased differently, we include r a containtheplanar-andcrossed-boxtwo-meson-exchange only the Goldstone-boson sector. This because it gives potentials. thecompletelong-rangecontribution,OPEP+TPEPand the inclusion of η etc. is necessary for (i) (approximate) In this second paper on soft-core two-meson-exchange chiral symmetry, and (ii) for completeness in the sense potentials in momentum space, occasiously refered to as ofSU (3),whichallowsanextensiontohyperon-nucleon paper II in the following, we derive the same representa- f and hyperon-hyperon [10]. tion as in paper I, but now for the contributions to the In fact, this fit has been performed in the configuration nucleon-nucleonpotentialswheneitheroneorbothnucle- space version. However,the results were checkednumer- ons contains a pair vertex, i.e. the MPE-potentials. We ically in momentum space, using the formulas of papers givethepartialwavepotentialsinthesimilarrepresenta- I and II. tionasusedinpaperI.InRef.[4]theMPE-contributions This paper is organized as follows. In section II and totheconfigurationspacenucleon-nucleonpotentials,i.e. III,wegivetheessentialsoftheprocedurefollowedinde- when either one or both nucleons contains a pair ver- riving the new momentum space representation. In sec- tex, have been derived. The corresponding “seagull” tion IV the projection of the MPE on the Pauli-spinor diagrams are refered to as one-pair and two-pair dia- invariants is worked out for the adiabatic contributions. In section V the same is done for the 1/M-corrections: thenon-adiabaticandthepseudo-vector-vertexterms. In ∗Present address: Kyushu International University, Fukuoka 805- sectionVIthepartialwaveanalysisisindicated. Thepro- 8512,Japan cedureforthepartialwaveprojectioniscompletelyanal- 2 ogoustothatofpaperI,andcanbetranscribedimmedi- tegrationdictionaryforthe gaussianintegralsthatoccur ately comparing the invariant contributions Ω (k2;t,u) inMPEbutnotinTME.InAppendix Daderivationfor j for MPE to those for TME in I. In section VII the re- the potentials due to the ’derivative scalar pair’ interac- sultsfromafittotheNN-dataareshownanddiscussed. tion, see the g′ -coupling in A1a is outlined. This for (ππ)0 Here, phase shifts are givenfor TLab 350MeV and the completeness,sincealthoughwedo notemploythis kind ≤ pair-couplingsare comparedto the values expected from of pair interaction, it occurs occurs often in the current e.g. chiral lagrangians. literature. InAppendixEthefullSU (3)contentsofour f In Appendix A the pair-interaction Hamiltonians are pair interactions is shown. listed. InAppendixBtheλ-representationsfortheMPE- denominators are given. In Appendix C we give the in- II. MOMENTUM SPACE REPRESENTATION MPE-POTENTIALS Here, we give an outline the essentials of the procedure to derive our new momentum space representation for the MPE-potentilas. These procedures have been described in I, to which we refer for details. Here, we focuss on the peculiar features that occur in the application to the MPE-potentials. The starting point is the basic convolutive integral d3k d3k V (k) = 1 2δ(k k k ) F˜ (k2,m )G˜ (k2,m ) M,N (2π)3 − 1− 2 M 1 1 N 2 2 ZZ d3∆ e = F˜ (∆2,m ) G˜ ((k ∆)2,m ) , (2π)3 M 1 N − 2 Z (2.1) where F˜ (k2) and G˜ (k2) can be of the form M N exp k2/Λ2 M =0: F˜ (k2) = exp k2/Λ2 , M =2: F˜ (k2)= − 1 , 0 − 1 2 k2+m2 (cid:2) 1 (cid:3) (cid:2) (cid:3) exp k2/Λ2 N =0: G˜ (k2) = exp k2/Λ2 , N =2: G˜ (k2)= − 2 , 0 − 2 2 k2+m2 (cid:2) 2 (cid:3) (cid:2) (cid:3) (2.2) i.e. M,N =2 is the modified Yukawa type and M,N =0 is the Gaussiantype. Below,we give for the different cases the momentum space representation, similar to the one that has been developed in paper I: (i) M =N =2: In paper I using twice the identity exp −k2/Λ2 =em2/Λ2 ∞dt exp k2+m2 t (2.3) k2+m2 Λ2 − Λ2 (cid:2) (cid:3) Z1 (cid:20) (cid:18) (cid:19) (cid:21) the ∆-integral has been carried out. After a redefinition of the variables t t/Λ2 and u u/Λ2 the result in I is → 1 → 2 V˜ (k) = (4π)−3/2em21/Λ21em22/Λ22 ∞dt ∞duexp[−(m21t+m22u)] 2,2 (t+u)3/2 · Zt0 Zu0 tu exp k2 (t =1/Λ2,u =1/Λ2) . (2.4) × − t+u 0 1 0 2 (cid:20) (cid:18) (cid:19) (cid:21) (ii) M = 2,N = 0: Using the identity (2.3) once, and performing similar steps as in paper I, one easily derives that for this case V˜ (k) = (4π)−3/2em21/Λ21em22/Λ22 ∞dt ∞duexp[−(m21t+m22u)] 2,0 (t+u)3/2 · Zt0 Zu0 tu exp k2 δ(u u ) . (2.5) 0 × − t+u · − (cid:20) (cid:18) (cid:19) (cid:21) Here,isdefinedδ(u u ) lim δ(u u ),whereu =u ǫ. Thisdefinitionimpliesthatin(2.5)theu-integration 0 ǫ↓0 0,ǫ 0,ǫ 0 − ≡ − − can simply be performed by the substitution u u in the integrand. 0 → 3 (iii) M =0,N =2: Similarly to the previous case, one has V˜ (k) = (4π)−3/2em21/Λ21em22/Λ22 ∞dt ∞duexp[−(m21t+m22u)] 0,2 (t+u)3/2 · Zt0 Zu0 tu exp k2 δ(t t ) . 0 × − t+u · − (cid:20) (cid:18) (cid:19) (cid:21) (2.6) Forthe integralsV˜ ofthissection,andsimilarintegralsbelowinthispaper,weintroducethefollowingconvenient M,N short-hand notation. We write ∞ ∞ tu V˜ (k) = dt du w(t,u) v (t,u) exp k2 , (2.7a) M,N M,N · − t+u Zt0 Zu0 (cid:26) (cid:20) (cid:18) (cid:19) (cid:21)(cid:27) with common weight function w (t,u) defined as 0 w (t,u) (4π)−3/2em21/Λ21em22/Λ22exp[−(m21t+m22u)] . (2.7b) 0 ≡ (t+u)3/2 The form in which these basic integrals appear in MPE depends on two factors: (i) The denominators D(ω ,ω ). In the next section we will give a catalogue of these. 1 2 (ii) The operators O˜(k ,k ). Also these will be given in the next section. 1 2 III. MESON-PAIR EXCHANGE POTENTIALS 1,2 is given by g(1)(αβ) = g g g , (αβ) NNα NNβ In [4] the derivation of the pair-exchange potentials both in momentum and in configuration space is given. g(2)(αβ) = g2 , (3.2) (αβ) In this reference the configuration space potentials with appropriatepowersofm , depending onthe defini- are worked out fully. The topic of this paper is to π tion of the Hamiltonians given in [4], section II. do the same for the momentum space description. In particular,thepartialwaveanalysisisperformedleading The momentum-dependent operators O(n) are given αβ,p to a representation which is very suitable for numerical inTablesIVandVI. Forcompleteness,theseTablesalso evaluation. contain the isospin factors C(n)(αβ) as derived in Ap- pendix B of[4]. The momentumoperatorsfor(ππ) and 0 (ππ) both contain a term antisymmetric in k k , From[4]andequation(3.1)itfollowsthatthemomen- 1 1 2 ↔ whichonly contributes in the nonadiabatic contribution, tum space MPE-potential can be represented in general see[4],section4. Intheadiabaticpotential,asexplained in the form in [4], they drop out when we integrate over k and k . 1 2 Vα(βn)(k) = C(n)(αβ)g(n)(αβ) d3(k21πd)33k2 detTahileienne[4rg])y, dseecntoiomninIaIt,oirns Dtep(rnm)saoref athlseotdimisceu-osrsdedereind ZZ processes involvedin one- and two-pairexchange. These e ×δ(k−k1−k2) F˜0(k21)G˜0(k22) denominators depend on the energies of the exchanged × O˜α(nβ),p(k1,k2) Dp(n)(ω1,ω2), mdeepseonnds,enic.ee.comωe1sfraonmdvωer2t.icesAwniotthhdeerrisvoautirvsees,oafndω1t,h2e- p X non-adiabatic expansion terms. It appears from [4] that (3.1) in general one can write where the index n distinguishes one-pair (n = 1) and D(n)(ω ,ω ) = c(n) D , (3.3) two-pair (n = 2) meson-pair exchange, and (αβ) refers {p} 1 2 p1,p2,p3 {p1,p2,p3} to the particular meson pair that is being exchanged. p1X,p2,p3 The subscript p= ad,na,pv distinguishes respectively where in terms of the integer powers p (i = 1,2,3) the { } i the adiabatic-, the non-adiabatic-, pseudovector vertex-, denominators can be written and off-shell-contributions. Here, the last three are the 1 1 1 1/M-correctionsto the MPE-potentials. D = . (3.4) The product of the coupling constants in the cases n = {p1,p2,p3} ω1p1 ω2p2 (ω1+ω2)p3 4 TheenergydenominatorsD(n) arelistedinTablesVand p p’ -p’ p’ -p’ VI. k 2 -p’’ Theevaluationofthemomentumintegrationscannow k2 k1 readily be performed using the methods given in [4, 11]. There it was shown that the full separation of the k 1 -p’’ and k dependence can be achieved in all cases using 2 k the λ-integral representation, first introduced in [11]. In 1 Appendix B the occurring λ-integrals are listed. From p -p p -p the listinginBonereadilyseesthatforthe derivationof the representation similar to that one in Eqs. (2.4)-(2.6) ( a ) ( c ) we need to start out from the generalization of (2.1): p’ -p’ p’ -p’ k 2 k 2 -p’’ 2 ∞ d3∆ k V (k,λ)= dλf (λ) 1 M,N π M,N (2π)3 · k Z0 Z 1 eF˜ (∆2, m2+λ2) G˜ ((k ∆)2, m2+λ2()3..5) p -p p -p × M 1 N − 2 q q ( b ) ( d ) FIG. 1: Time-ordered (a)-(c) one-pair and (d) two-pair dia- grams. Thedashedlinewithmomentumk referstothepion 1 and the dashed line with momentum k refers to one of the 2 other (vector, scalar, or pseudoscalar) mesons. To these we In paper I it has been shown that all the occurring λ- have to add the “mirror” diagrams, where for the one-pair integrals can be performed analytically. The result for diagrams thepair vertex occurs on the othernucleon line. all cases can be written as d3∆ V (k) = F˜ (∆2,m ) G˜ ((k ∆)2,m ) D (ω ,ω ) p1,p2,p3 (2π)3 0 1 0 − 2 {p1,p2,p3} 1 2 Z ∞ ∞ tu e = dt du w (t,u) d (t,u) exp k2 . (3.6) 0 · {p1,p2,p3} − t+u Zt0 Zu0 (cid:26) (cid:20) (cid:18) (cid:19) (cid:21)(cid:27) All functions d (t,u) that occur in this work use only representations with M = N = 2, so that no {p1,p2,p3} are given in Table VII. As noted in section II we will δ(t t ) or δ(u u ) occurs. 0 0 − − IV. PROJECTION MPE ON SPINOR INVARIANTS I ADIABATIC CONTRIBUTIONS The MPE-contributions from the adiabatic terms, the non-adiabatic- and pseudovector vertex corrections are the central-, spin-spin-, tensor-, and spin-orbit momentum space analogs of those given in Reference [4] in configuration space. From(3.1),TablesIV-VI,andTableVitisreadilyverifiedthattheprojectionontothepotentialsV ,similarly j 5 to the paper I, can be written as ∞ ∞ tu V(n)(αβ) = dt du w (t,u) exp k2 Ω(n)(k2;t,u) (αβ) . (4.1) pair 0 − t+u j Zt0 Zu0 (cid:26) (cid:20) (cid:18) (cid:19) (cid:21) (cid:27) ThefunctionsΩ(n)eareworkedoutinthesubsectionsbelow. LikeinI,wealsointroduceforconveniencetheexpansion j in k2: K Ω(ad,na,pv)(k2;t,u)=C(n)(αβ)g(n)(αβ) Υ(ad,na,pv)(t,u) k2 k . (4.2) j · j,k k=0 X (cid:0) (cid:1) Below in this section we give the results for the adiabatic contributions. The coefficients Υad are tabulated in j,k Tables VIII-XII. A. JPC =0++: Adiabatic (ππ) -Exchange potentials 0 The 1-pair and 2-pair contributions are g f2 3 tu 1 Ω(1)(k2;t,u) = 6 (ππ)0 NNπ d (t,u) + k2 , (4.3a) 1 m m2 · {2,2,0} 2 − t+u · t+u (cid:18) π (cid:19)(cid:18) π (cid:19) (cid:26) (cid:18) (cid:19) (cid:27) g 2 Ω(2)(k2;t,u) = 3 (ππ)0 d (t,u) (4.3b) 1 − m2 · {1,1,1} (cid:18) π (cid:19) B. JPC =1−−: Adiabatic (ππ) -Exchange potentials 1 (i) 1-pair exchange: g f2 3 tu 1 Ω(1)(k2;t,u) = 4(τ τ ) (ππ)1 NNπ d (t,u) + k2 , (4.4a) 1 − 1· 2 m2 m2 · 1,1,1 −2 t+u · t+u (cid:18) π (cid:19)(cid:18) π (cid:19) (cid:26) (cid:18) (cid:19) (cid:27) g f2 (1+κ ) 1 1 Ω(1)(k2;t,u) = 2(τ τ ) (ππ)1 NNπ 1 d (t,u) + k2 , (4.4b) 2 − 1· 2 m2 m2 M · 2,2,0 · 3 · t+u (cid:18) π (cid:19)(cid:18) π (cid:19) g f2 (1+κ ) 1 1 Ω(1)(k2;t,u) = 2(τ τ ) (ππ)1 NNπ 1 d (t,u) , (4.4c) 3 − 1· 2 m2 m2 M · 2,2,0 ·−2 · t+u (cid:18) π (cid:19)(cid:18) π (cid:19) g f2 1 1 Ω(1)(k2;t,u) = 2(τ τ ) (ππ)1 NNπ d (t,u) , (4.4d) 4 − 1· 2 m2 m2 M · 2,2,0 · t+u (cid:18) π (cid:19)(cid:18) π (cid:19) (ii) 2-pair exchange: 1 g 2 Ω(2)(k2;t,u) = (τ τ ) (ππ)1 [d +d 4d ](t,u) . (4.4e) 1 −2 1· 2 m2 · 1,0,0 0,1,0− 0,0,1 (cid:18) π (cid:19) C. JPC =1++: Adiabatic (πρ) -Exchange potentials 1 (i) 1-pair exchange: 2 g f g Ω(1)(k2;t,u) = (τ τ ) (πρ)1 NNπ NNρ d (t,u) 2 M 1· 2 m m · 2,2,0 · (cid:18) π (cid:19)(cid:18) π (cid:19) 1 1 u2 1 4 tu 1 + k2 + (1+κ ) 2 k2 , (4.5a) ρ × 2 3 t+u 2 − 3t+u · t+u (cid:26)(cid:20) (cid:18) (cid:19) (cid:21) (cid:20) (cid:21)(cid:27) 2 g f g Ω(1)(k2;t,u) = (τ τ ) (πρ)1 NNπ NNρ d (t,u) 3 M 1· 2 m m · 2,2,0 · (cid:18) π (cid:19)(cid:18) π (cid:19) u2 1 2tu 1 + (1+κ ) , (4.5b) ρ × t+u 2 t+u · t+u (cid:26) (cid:27) 6 (ii) 2-pair exchange: g 2 Ω(2)(k2;t,u) = (τ τ ) (πρ)1 d (t,u) (4.5c) 2 − 1· 2 m2 · 1,1,1 (cid:18) π (cid:19) D. JPC =1++: Adiabatic (πσ)-Exchange potentials (i) 1-pair exchange: g f g Ω(1)(k2;t,u) = +(τ τ ) (πσ) NNπ NNσ d (t,u) 2 1· 2 m2 m · 2,2,0 · (cid:18) π (cid:19)(cid:18) π (cid:19) 2 tu u2 1 2+ − k2 , (4.6a) × − 3 t+u · t+u (cid:20) (cid:18) (cid:19) (cid:21) g f g Ω(1)(k2;t,u) = +2(τ τ ) (πσ) NNπ NNσ d (t,u) 3 1· 2 m2 m · 2,2,0 · (cid:18) π (cid:19)(cid:18) π (cid:19) tu u2 1 − , (4.6b) × t+u · t+u (cid:18) (cid:19) (ii) 2-pair exchange: 1 g 2 Ω(2)(k2;t,u) = (τ τ ) (πσ)1 d (t,u) 2 −2 1· 2 m2 · 1,1,1 · (cid:18) π (cid:19) 2 2 1 t u + − k2 , (4.6c) ×(t+u 3 t+u ) (cid:18) (cid:19) 1 g 2 t u 2 Ω(2)(k2;t,u) = (τ τ ) (πσ)1 d (t,u) − , (4.6d) 3 −2 1· 2 m2 · 1,1,1 t+u (cid:18) π (cid:19) (cid:18) (cid:19) E. JPC =1+−: Adiabatic (πω)-Exchange potentials (i) 1-pair exchange: g f g Ω(1)(k2;t,u) = (τ τ ) (πω) NNπ NNω d (t,u) 2 1· 2 m m · 2,2,0 · (cid:18) π (cid:19)(cid:18) π (cid:19) 2 tu+u2 1 k2 , (4.7a) × 3 t+u · t+u (cid:20) (cid:18) (cid:19) (cid:21) g f g Ω(1)(k2;t,u) = +2(τ τ ) (πω) NNπ NNω d (t,u) 3 1· 2 m m · 2,2,0 · (cid:18) π (cid:19)(cid:18) π (cid:19) tu+u2 1 , (4.7b) × t+u · t+u (cid:18) (cid:19) (ii) 2-pair exchange: 1 g 2 Ω(2)(k2;t,u) = (τ τ ) (πω)1 2 −2 1· 2 m2 · (cid:18) π (cid:19) 1 d +d k2d (t,u) , (4.7c) 1,0,0 0,1,0 1,1,1 × − 3 (cid:26) (cid:27) 1 g 2 Ω(2)(k2;t,u) = + (τ τ ) (πω)1 d (t,u) . (4.7d) 3 2 1· 2 m2 · 1,1,1 (cid:18) π (cid:19) 7 F. JPC =1++: Adiabatic (πP)-Exchange potentials ThetreatmentofthePomeronhasbeenexplainedin[3]. ThisimpliestheuseofG /M2 insectionII. Furthermore, 0 N w.r.t. σ-exchange there is a ( )-sign for P-exchange. Therefore, comparing to (4.6a-4.6d) we obtain the following − potentials: e (i) 1-pair exchange: g f g 1 Ω(1)(k2;t,u) = (τ τ ) (πP) NNπ NNP d (t,u) 2 − 1· 2 m2 m · M2 · 2,0,0 · (cid:18) π (cid:19)(cid:18) π (cid:19) N 2 tu u2 1 2+ − k2 δ(u u ) , (4.8a) 0 × − 3 t+u · t+u · − (cid:20) (cid:18) (cid:19) (cid:21) g f g 1 Ω(1)(k2;t,u) = 2(τ τ ) (πP) NNπ NNP d (t,u) 3 − 1· 2 m2 m · M2 · 2,0,0 · (cid:18) π (cid:19)(cid:18) π (cid:19) N tu u2 1 − δ(u u ) . (4.8b) 0 × t+u · t+u · − (cid:18) (cid:19) (ii) 2-pair exchange: 1 g 2 1 Ω(2)(k2;t,u) = + (τ τ ) (πP)1 d (t,u) 2 2 1· 2 m · M2 · 1,1,1 · (cid:18) π (cid:19) N 2 1 t u 2 + − k2 δ(u u ) , (4.8c) 0 ×(t+u 3(cid:18)t+u(cid:19) )· − 1 g 2 1 t u 2 Ω(2)(k2;t,u) = + (τ τ ) (πP)1 d (t,u) − δ(u u ) . (4.8d) 3 2 1· 2 m2 · M2 · 1,1,1 t+u · − 0 (cid:18) π (cid:19) N (cid:18) (cid:19) Notice that in (4.8a)-(4.8d) u =1/4m2. 0 P G. JPC =0++: Adiabatic ’derivative’ (ππ) -Exchange potentials 0 The derivative pair-potentials in coordinate space have been derived in [12] in detail. A summary of this is given in appendix D. A short derivation of the p-space potentials is also can be found there. (i) 1-pair exchange: g′ f 2 Ω(1)(k2;t,u) = 12 (ππ)0 NNπ d (t,u) 1 − m3π !(cid:18) mπ (cid:19) · 2,2,0 · 15 1t2 8tu+u2 t2u2 1 + − k2+ k4 , (4.9a) × 4 2 t+u (t+u)2 · (t+u)2 (cid:20) (cid:21) (ii) 2-pair exchange: g′ 2 15 t2 3tu+u2 t2u2 d (t,u) Ω(2)(k2;t,u) = 6 (ππ)0 + − k2+ k4 1,1,1 1 − m3π ! ·(cid:26)(cid:20) 4 t+u (t+u)2 (cid:21) (t+u)2 1 3 m2t+m2u d (t,u) + (m2+m2)+ 1 2 k2+m2m2(t+u) 1,1,1 2 2 1 2 t+u 1 2 t+u (cid:20) (cid:21) 3 tu d (t,u) + k2 0,0,1 . (4.9b) 2 − t+u t+u (cid:20) (cid:21) (cid:27) H. JPC =0++: Adiabatic (σσ)-Exchange potentials 8 (i) 1-pair exchange: g Ω(1)(k2;t,u) = 2 (σσ) g2 d (t,u) , (4.10a) 1 m · NNσ· 2,2,0 (cid:18) π (cid:19) (ii) 2-pair exchange: g 2 Ω(2)(k2;t,u) = (σσ) d (t,u) , (4.10b) 1 − m 1,1,1 (cid:18) π (cid:19) V. PROJECTION MPE ON SPINOR INVARIANTS II 1/M CORRECTIONS The non-adiabatic- and pseudovector vertex-corrections have been given in [4], section IV. Similar to Eq. (4.1) we write these contributions in the form ∞ ∞ tu V(na,pv)(αβ) = dt du w (t,u) d(n) (t,u) exp k2 Ω(n)(k2;t,u) . (5.1) pair 0 {p1,p2,p3} − t+u j Zt0 Zu0 (cid:26) (cid:20) (cid:18) (cid:19) (cid:21) (cid:27) e A. Non-adiabatic Corrections From Eqs. (4.5)-4.8) of [4] one readily obtains the momentum space equivalents using the replacements: d3k d3k d3k d3k 1 2 ei(k1+k2) 1 2 δ(k k k ) (2π)6 → (2π)3 − 1− 2 Z Z Z Z Then, by comparison one can easily read off the diverse quantities O˜(na) and D(na)(ω ,ω ) that occur in Eq. (3.1) αβ,p p 1 2 for the non-adiabatic potentials. The projections onto the Ω(na) in Eq. (5.1) yield j (i) (ππ) : 0 g f 2 3 15 Ω(na)(k2;t,u) = (ππ)0 NNπ d (t,u) + 1 − m m M · {na} 4 π (cid:18) π (cid:19) (cid:26) 1 t2 8ut+u2 t2u2 1 + − k2+ k4 , (5.2a) 2 t+u (t+u)2 · (t+u)2 (cid:18) (cid:19) (cid:18) (cid:19) (cid:27) g f 2 3 1 Ω(na)(k2;t,u) = (ππ)0 NNπ d (t,u) . (5.2b) 4 − m m M · {na} · t+u π (cid:18) π (cid:19) (ii) (ππ) : 1 g f 2 1 15 Ω(na)(k2;t,u) = 2(τ τ ) (ππ)1 NNπ d (t,u) + 1 − 1· 2 m m M · {2,2,0} 4 π (cid:18) π (cid:19) (cid:26) 1 t2 8ut+u2 t2u2 1 + − k2+ k4 , (5.3a) 2 t+u (t+u)2 · (t+u)2 (cid:18) (cid:19) (cid:18) (cid:19) (cid:27) g f 2 1 1 Ω(na)(k2;t,u) = 2(τ τ ) (ππ)1 NNπ d (t,u) . (5.3b) 4 − 1· 2 m m M · {2,2,0} · t+u π (cid:18) π (cid:19) (iii) (σσ): g g2 3 tu 1 Ω(na)(k2;t,u) = (σσ) NNσ d (t,u) + k2 . (5.4) 1 m M · {na} −2 t+u · t+u π (cid:26) (cid:18) (cid:19) (cid:27) 9 (iv) (πσ): g f g Ω(na)(k2;t,u) = +(τ τ ) (πσ)1 NNπ NNσ d (t,u) 2 1· 2 m2 m M · {na} · π π 5 1t2 13tu+6u2 1tu2(t u) 1 + − k2+ − k4 , (5.5a) × 2 6 t+u 3 (t+u)2 · (t+u)2 (cid:26) (cid:27) g f g Ω(na)(k2;t,u) = +(τ τ ) (πσ)1 NNπ NNσ d (t,u) 3 1· 2 m2 m M · {na} · π π 1t2 7tu+6u2 tu2(t u) 1 − + − k2 . (5.5b) × 2 t+u (t+u)2 · (t+u)2 (cid:26) (cid:27) (v) (ππ) (’derivative’): 0 g′ f 2 1 Ω(na)(k2;t,u)= 12 (ππ)0 NNπ 1 − m3π !(cid:18) mπ (cid:19) 2M ·(cid:26) 15 1 t2 8tu+u2 t2u2 d (t,u) + + − k2+ k4 1,1,1 , 4 2 t+u (t+u)2 (t+u)2 (cid:20) (cid:18) (cid:19) (cid:21) 105 15 t2 5tu+u2 3 t2 5tu+u2 t3u3 d (t,u) + − k2 tu − k4 k6 na , (5.6a) − 8 4 t+u − 2 (t+u)2 − (t+u)3 (t+u)3 (cid:20) (cid:18) (cid:19) (cid:18) (cid:19) (cid:21) (cid:27) g′ f 2 1 d (t,u) tu d (t,u) Ω(na)(k2;t,u)= 12 (ππ)0 NNπ 1,1,1 + 5+2 k2 na . (5.6b) 4 − m3π !(cid:18) mπ (cid:19) 2M ·(cid:26) t+u (cid:20)− t+u (cid:21) (t+u)2 (cid:27) Here, d (t,u) is defined in (B3). {na} B. Pseudovector-vertex Corrections FromEqs.(4.9)-4.11)of[4]likewiseasinthecaseofthenon-adiabaticcorrectionsoneobtainsforthepseudovector- vertex corrections: (i) (ππ) : 0 g f 2 3 t2+u2 1 Ω(pv)(k2;t,u) = + (ππ)0 NNπ d (t,u) 3+ k2 , (5.7a) 1 m m M · {1,1,1} t+u · t+u π (cid:18) π (cid:19) (cid:26) (cid:18) (cid:19) (cid:27) g f 2 3 Ω(pv)(k2;t,u) = +2 (ππ)0 NNπ d (t,u) . (5.7b) 4 m m M · {1,1,1} π (cid:18) π (cid:19) (ii) (ππ) : 1 g f 2 1 3 u2 Ω(pv)(k2;t,u) = +(τ τ ) (ππ)1 NNπ + k2 d (t,u) 1 1· 2 m m M · 2 t+u {2,0,0} π (cid:18) π (cid:19) (cid:20)(cid:18) (cid:19) 3 t2 1 + + k2 d (t,u) (5.8a) 2 t+u {0,2,0} · t+u (cid:18) (cid:19) (cid:21) g f 2 1 u t Ω(pv)(k2;t,u) = +2(τ τ ) (ππ)1 NNπ d + d . (5.8b) 4 1· 2 m m M · t+u {2,0,0} t+u {0,2,0} π (cid:18) π (cid:19) (cid:20) (cid:21) (iii) (πσ): g f g 1t2 tu 1 Ω(pv)(k2;t,u) = (τ τ ) (πσ)1 NNπ NNσ d (t,u) 1+ − k2 . (5.9a) 2 − 1· 2 m2 m M · {1,1,1} · 3 t+u t+u π π (cid:26) (cid:27) g f g t2 tu 1 Ω(pv)(k2;t,u) = (τ τ ) (πσ)1 NNπ NNσ d (t,u) − . (5.9b) 3 − 1· 2 m2 m M · {1,1,1} · t+u · t+u π π (cid:18) (cid:19) 10 (iv) (ππ) (’derivative’): 0 Ω(pv)(k2;t,u) = 6 g(′ππ)0 fNNπ 2 1 d (t,u) m2 m2 2 1 − m3π !(cid:18) mπ (cid:19) 2M · 1,1,1 ·(cid:26) 1− 2 (cid:0) (cid:1) m2(3t2 u2)+m2(3u2 t2) 1 3(m2+m2)+ 1 − 2 − k2 − 1 2 t+u t+u (cid:20) (cid:21) t2+2tu+u2 t2+2tu+u2 1 k2+2tu k4 , (5.10a) − t+u (t+u)2 (t+u)2 (cid:20)(cid:18) (cid:19) (cid:18) (cid:19) (cid:21) (cid:27) g′ f 2 1 Ω(pv)(k2;t,u) = 24 (ππ)0 NNπ d (t,u) 4 − m3π !(cid:18) mπ (cid:19) 2M · 1,1,1 · 3 t2+tu+u2 1 m2+m2 + + k2 . (5.10b) × 1 2 2 t+u t+u (cid:26) (cid:20) (cid:18) (cid:19) (cid:21) (cid:27) (cid:0) (cid:1) The coefficients Υna,pv defined in (4.2) are tabulated in Tables VIII-XII. j,k For(πP)-exchange,the 1/M non-adiabaticandpseudo-vectorvertexcorrectionscanbereadofffromthosefor(πσ) N and making the same adjustments as given already for the adiabatic contributions. In Table XIII the Ω(pv,ad) for i (πP)-pair exchange are given explicitly. VI. PARTIAL WAVE ANALYSIS Like the TME-potentials in I, the general form of the MPE-potentials in momentum space is ∞ ∞ tu V(n)(k) = dt du w(n) (t,u) exp k2 Ω(n)(k2;t,u) , (6.1) j {p1,p2,p3} − t+u j Zt0 Zu0 (cid:26) (cid:20) (cid:18) (cid:19) (cid:21) (cid:27) e where w(n) (t,u)=w (t,u) d(n) (t,u) . {p1,p2,p3} 0 {p1,p2,p3} Therefore, the partial wave analysis runs along the same lines as described in sections VI and VII of paper I for the TME-potentials. We refer the reader to this paper for the details. VII. ESC-MODEL, RESULTS the gaussian cut-off’s Λ. The used α =: F/(F + D)- ratio’s for the OBE-couplings are: pseudo-scalar mesons α = 0.355, vectormesons αe = 1.0,αm = 0.275, The momentum space formulas for the potentials of pv V V and scalar-mesons α = 0.914, which is computed us- this paper and paper I have been checked numerically. S ing the physical S∗ =: f (993) coupling etc.. In Ta- This is done by solving the Lippmann-Schwinger equa- 0 ble II we show the MPE-coupling constants. The used tion and comparingthe phase shifts with those obtained α=:F/(F +D)-ratio’s for the MPE-couplingsare: (πη) by solving the Schr¨odinger equation using the x-space etc. and (πω) pairs α( 8 ) = 1.0, (ππ) etc. pairs equivalent of the potentials. { s} 1 αe ( 8 ) = 0.4,αm( 8 ) = 0.335, (πρ) etc. pairs After the completion of the p-space formalismwe per- V { }a V { }a 1 α ( 8 )=0.335. formedaχ2-fitwiththeESC-modeltothe1993Nijmegen A { }a representationoftheχ2-hypersurfaceoftheNN scatter- We emphasize that we use the single-energy (s.e.) ing data below Tlab =350 MeV [15]. phases and χ2-surface [17] only as a means to fit the This fitting was executed in x-space using the equiva- NN-data. As stressed in [15] the Nijmegen s.e. phases lent x-space potentials. The reason for this is the much have not much significance. The significant phases are faster evaluation of the ESC-model in x-space. We ob- the multi-energy (m.e.) ones, see the dashed lines in the tained a χ2/Ndata = 1.15. The phase shifts are shown figures. One notices that the central value of the s.e. in Fig.s 2-5. In Table III the results are shown for the phases do not correspond to the m.e. phases in gen- ten energy bins, where we compare the results from the eral, illustrating that there has been a certain amount updated partial-wave analysis with the ESC potentials. of noice fitting in the s.e. PW-analysis, see e.g. ǫ and 1 In Table I we show the OBE-coupling constants and 1P at T = 100 MeV. The m.e. PW-analysis reaches 1 lab

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.