ebook img

Eric Keto & George B. Field, 2005, ApJ, 635, 1151 PDF

15 Pages·2005·0.56 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Eric Keto & George B. Field, 2005, ApJ, 635, 1151

TheAstrophysicalJournal,635:1151–1165,2005December20 A #2005.TheAmericanAstronomicalSociety.Allrightsreserved.PrintedinU.S.A. DARK CLOUD CORES AND GRAVITATIONAL DECOUPLING FROM TURBULENT FLOWS Eric Keto1 and George Field1 Received2005February25;accepted2005August25 ABSTRACT Wetestthehypothesisthatthestarlesscoresmaybegravitationallyboundcloudssupportedlargelybythermal pressurebycomparingobservedmolecularlinespectratotheoreticalspectraproducedbyasimulationthatincludes hydrodynamics,radiativecooling,variablemolecularabundance,andradiativetransferinasimpleone-dimensional model.Theresultssuggestthatthestarlesscorescanbedividedintotwocategories:stablestarlesscoresthatarein approximate equilibrium and will not evolve to form protostars, and unstable prestellar cores that are proceeding towardgravitationalcollapseandtheformationofprotostars.Thestarlesscoresmightbeformedfromtheinterstellar mediumasobjectsatthelowerendoftheinertialcascadeofinterstellarturbulence.Inaddition,weidentifyathermal instabilityinthestarlesscores.Underparticularconditionsofdensityandmass,acoremaybeunstabletoexpansion if the density is just above the critical density for the collisional coupling of the gas and dust so that as the core expands,thegas-dustcouplingthatcoolsthegasisreducedandthegaswarms,furtherdrivingtheexpansion. Subject headings: ISM: individual (L1544, B68, L1517B) — ISM: molecules — radiative transfer— stars: formation Online material: color figures 1. INTRODUCTION clouds, and star formation takes place within these collapsing clouds within one crossing time (Elmegreen 2000). The ineffi- Observations ofmolecular clouds show a power-law depen- ciencyorslowrateofstarformationisthenattributedtothein- dence between the size (length and mass) scales of the clouds efficiencyintheformationofthesegravitationallyboundcloudsin andthevelocitydispersionwithinthecloudsthatextendsfrom theturbulentinterstellarmedium. thelargestgiantmolecularcloudsdowntothescaleatwhichthe Whilethetheoryoftheturbulentinterstellarmediumdoesnot turbulentvelocitiesbecomesubsonic(Larson1981;Leungetal. predictanymolecularcloudsinequilibrium,theobservedprop- 1982;Myers1983;Sandersetal.1985;Dameetal.1986;Fuller ertiesofthesmallmolecularcloudsatthelowendofthecloud &Myers1992).Thespectrummatchesthatexpectedinaturbu- massspectrumknownasstarlesscoresareremarkablywellde- lent cascade, suggesting that the clouds are hierarchical struc- scribedasdiscretedynamicalunitsofstable,boundgaswithan turesinasupersonicturbulentflow(MacLow&Klessen2004; internalbalanceofforces.Thesestarlesscoresaredenseregions Elmegreen&Scalo2004;Scalo&Elmegreen2004).Thepower- (n (cid:1)104–106cm(cid:2)3)indarkcloudswithlinearscalesoftenths lawrelationshipsbetweenthemass,length,andvelocitydisper- H2 ofpcandtotalmassesofafewsolarmasses.Thestarlesscores sionalsofittherelationofvirialequilibrium,(cid:1)2(cid:1)2GM/L,asif v contain no infrared sources above the sensitivity level of the the cloudsweregravitationally bound structures. Ina picture of Infrared Astronomical Satellite (IRAS; about 0.1 L at the dis- theinterstellarmediumdominatedbyturbulence,therelationship (cid:3) tanceofTaurus)andthusarethoughttobesitesofpossiblefu- ofapparentvirialequilibriumreflectsadynamicequipartitionasa tureratherthancurrentstarformation(Myersetal.1983;Myers resultofthecouplingbetweenkineticandpotentialenergiesinthe &Benson1983;Benson&Myers1989;Beichmanetal.1986; turbulentflowratherthanastaticequilibriumwithingravitation- Ward-Thompson et al. 1994; Tafalla et al. 1998; Lee & Myers allyboundclouds(Larson1981;Ballesteros-Paredesetal.1999; 1999;Leeetal.2001). Klessenetal.2005).Whilegravitymaybelargelyresponsiblefor Observations of dust column density in the starless cores generatingthesupersonicflowsthatformtheclouds,theclouds appearapproximatelyasexpectedforcoresinhydrostaticequi- themselvesaretheresultofcompressionduetoinertialforcesin librium. The observed density profiles are characterized by a theturbulenthydrodynamics.Cloudsareformedwhereconverg- core-envelopestructurewithaninnerregionofweaklydecreas- ingstreamsintheturbulencecreatezonesofhigh-densitygas,but ing density and a surrounding envelope with a steeper density thesecloudsformedbycompressionmayjustaseasilydissipate gradient (Ward-Thompson et al. 1999; Bacmann et al. 2000; astheflowschangedirectionandvelocityonacrossingtimescale. Shirleyetal.2000,2002;Evansetal.2001;Youngetal.2003; In the inertial range of the interstellar turbulence, there are no Ketoetal.2004).Detailedobservationsofsomeindividualdark cloudswithaninternalequilibriumbetweenself-gravityandthe clouds show density profiles that appear to match within a few supporting forces of thermal, turbulent, or magnetic pressure. percentthoseofpressure-confined,hydrostaticspheres(Bonnor- Gravitationally bound clouds may form if the compression is Ebertspheres;Bonnor1956;Alvesetal.2001;Tafallaetal.2004). strongenoughtoboostthelocalgasdensitybeyondgravitational Whiletheobservedmorphologiesofthestarlesscoresarenotal- instability.However,thesecloudswillbeshort-lived,collapsing wayssphericalandaspectratiosof2:1arecommon,theobserved toformstarswithinafree-falltime.Inthetheoryoftheturbulent densityprofilesdonotdeviatesignificantlyfromthoseexpected interstellar medium, these are the only gravitationally bound innear-equilibrium. Radio-frequency spectral line observations that reveal the 1 Harvard-SmithsonianCenterforAstrophysics,60GardenStreet,Cambridge, gas velocities within the cores confirm this near-equilibrium MA02138. state.Theobservedspectrallinesofallthestarlesscoresarequite 1151 1152 KETO & FIELD Vol. 635 narrowwithnowingsandnearlythermalwidths,anindication Our research thus aims to reduce the ambiguity of the com- thatanygasvelocitiesareafewtenthsofthesoundspeedorless parison by considering information that could be derived from (Zhou et al. 1994; Wang et al. 1995; Gregersen et al. 1997; molecularlineobservationsofthestarlesscoresinadditiontothe Launhardtetal.1998;Gregersen&Evans2000;Leeetal.1999, densitystructurederivedfromobservationsofthedustcontinuum. 2001, 2004a; Alves et al. 2001; Keto et al. 2004). The cores Sincewemodelonlyindividualcloudsinquasi-equilibriumrather contain a variety of gas motions: for example, contraction, ex- thantheentirelargerscaleturbulentcascade,wecanincludein pansion,orbothwithindifferentregionsofthecore;buttheob- ourmodelsphysicssuchastheradiativeequilibriumofthedust servationthatthegasvelocitiesareallsubsonicimpliesthatthe and gas and the depletion of molecules from the gas phase by inertial forces are small and that there is near balance between freezingontodustgrainsthat,withthepresentcomputingpower, thethermalandgravitationalforces. couldnotbefullyincorporatedintoathree-dimensionalhydro- Astateofnear-equilibriumasindicatedbyboththedustand dynamic simulation. Finally, our models can be run at much spectral line observations would allow the starless cores to be higherspatialresolution.Thelevelofdetailprovidedbythead- long-lived,apparentlyatoddswiththetransiencerequiredofthe ditional physics and resolution improves the predictive power cloudsinthetheoryoftheturbulentinterstellarmedium.How- ofourmodelsandreducestheambiguityofthecomparison,al- ever, there might be no conflict between the two concepts of lowingustoimproveontheresultsofBallesteros-Paredesetal. clouds as either transient entities or as pressure-supported dy- (2003). namicalunitsifthelargercloudsarewithinandthestarlesscores The results of our comparison suggest that the observations are below the inertial range of the supersonic turbulence. The ofthestarlesscoresarewellexplainedbymodelsincloseequi- idea that the starless cores with their narrow line widths are librium. For a given external pressure, the equilibrium may be cloudsatthesubsonicbottomoftheturbulentcascadehasbeen stable or unstable to gravitational collapse, depending on the discussedintheliteraturesinceLarson’sdescriptionofthesize– massofthecore.Itseemsreasonabletosupposethattherewillbe line width relationship (Larson 1981; Padoan 1995; Goodman adistributionintheinitialmassesofthecoresbecausethecores et al. 1998; Va´zquez-Semadeni et al. 2003). What has evolved are formed at the subsonic scale at the bottom of the turbulent since the earliest description of the interstellar medium as a cascadethatitselffollowsapower-lawdistributioninsizescale turbulentcascadeistheconceptofthelargerscalecloudsinthe intheinertialregime.Coresthataremoremassiveanddenseat inertial range of supersonic turbulence as purely transient phe- the time offormation (n >105 cm(cid:2)3 and a few M ) will be H2 (cid:3) nomenaentirelyoutofequilibrium.Thequestionnowiswhether ultimately unstable togravitational collapse. Lessdenseexam- allcloudsintheinterstellarmedium,includingthestarlesscores, ples may be in stable equilibrium, but stability does not imply aretransitory. thatthecoresmustbestatic.Forexample,stablecoresmayos- We propose to test the hypothesis that the starless cores are cillateinsizeanddensityaroundanequilibriummean.Whilethe clouds in quasi-equilibrium by comparing the predicted char- unstablecoresfollowaprogressiontowardgreaterdensitiesand acteristicsofmodelnear-equilibriumcoresagainstobservations. infall velocities, there is no evolutionary sequence linking the Ifthemodeledcoresprovideanadequatedescriptionoftheob- stabletotheunstablecores.Thelessdensestablecoreswillnot servations,thenwewouldconcludethatquasi-equilibriumstruc- ofthemselvesprogresstowardgreaterdensityandultimatecol- turescananddoexistintheinterstellarmedium.Giventhatthe lapse,butmaypersistindefinitelyuntilexternalconditionschange. interstellar medium is dominated on larger scales by the struc- Inthispicturetherearetwoclassesofcores,andsomeofthein- turesofsupersonicturbulence,thenthestarlesscoresmustbethe efficiencyorslowrateofstarformationisduetotheformationof members at the bottom of the hierarchy, with scales below the asignificantfractionofthepopulationofcoresthatarestableand sonicscale. notinclinedtoevolvetoformstars. Asimilarapproachofcomparingmodelcloudsintheturbu- lent hierarchy with observations was discussed in Ballesteros- 2. PHYSICS OF THE STARLESS CORES Paredes et al. (2003). That research examined the density 2.1. Hydrostatic and Radiative Equilibrium structures of a number ofclouds produced in a numerical sim- ulationofinterstellarsupersonicturbulenceandcomparedtheir Given the power-law relationship (cid:1) (cid:1)r1/3 between the tur- v structures to the density profiles of pressure-supported, self- bulentvelocity,(cid:1) ,andthecloudlengthscale,r,thesizescale v gravitatingclouds.Whilenoneofthemodelcloudswereinequi- where (cid:1) isthe sound speed defines the fragmentation scale of v librium, a number of them had density structures that matched theturbulentflow(Larson1981;Padoan1995;Goodmanetal. thoseexpectedofcloudsinequilibrium.Thus,onewouldcon- 1998; Va´zquez-Semadeni et al. 2003). Below this length scale, clude that observations of the density structure of clouds is an theturbulentvelocitiesaresubsonic,andtheturbulentenergyis ambiguous test of their state of equilibrium. While that com- lessthanthethermalenergy.Thefactthatthethermalpressure parisonwasmotivatedbyobservationsofthedustcontinuumin dominates the dynamics immediately leads to a qualitative de- starless cores, an observation that typically provides only the scription of the structure of subsonic cores that matches the densitystructure,therearemanyobservationsofmolecularlines observed properties of the starless cores. Subsonic turbulence instarlesscoresthatprovideinformationonthevelocitystruc- cannot produce substructure within the core, and therefore the ture,thetemperature,andthechemistryofthecores.Withthis density profile must be smooth and monotonic. Moreover, the additional information, the comparison is less ambiguous. For density gradients must be characteristic of thermal pressure example, the clouds in Figure 9 of Ballesteros-Paredes et al. support,becausetheinertialforcesaresmallunlessthecoresare (2003)wouldneverbeconfusedwithequilibriumstructuresbe- infree-fallcollapse.Thus,theremustbeapproximateforcebal- cause ofthesupersonicvelocitieswithinthe model clouds. The ance,withthermalpressureratherthanturbulentpressureasthe dynamicsofcloudswithsupersonicvelocitiesaredominatedby dominantsupportagainstgravity. inertialforcesandnottheirinternalpressure.Therefore,‘‘obser- Ifoneimaginesaboundarytothecore,thisleadstoadescrip- vations’’ofthesemodelcloudsthatincludedspectroscopywould tion of the starless cores as hydrostatically supported spheres indicatethattheycannotbeinequilibrium. confinedbyanexternalpressure.Ifthegasisisothermal,these No. 2, 2005 DARK CLOUD CORES AND GRAVITATIONAL DECOUPLING 1153 spheresaregenerallyreferredtoasBonnor-Ebert(BE)spheres areconventionallycharacterizedbythecentraldensity,butwe describedbythesolutionoftheLane-Emdenequation,truncated usethetemperatureattheboundarybecausetheboundarytem- atsomeradius,withanexternalpressurethatissetequaltothe perature,unlikethecentraltemperature,isnearlyindependent internal pressure, P¼nkT, at the truncation radius (Bonnor ofthemassanddensityofthesphere.Alinearscalingconstant, 1956).Becausethecoresareembeddedinlargerscalemolecular a,relatedtotheratioofthermaltogravitationalenergy,isused clouds,theyarecontinuouswiththesurroundingmoleculargas, tonondimensionalizethelengthandmass: withnosharpboundariesinpressure,temperature,ordensity.In particular,thenotionofthestarlesscoresasBEspheresdoesnot a¼(cid:1) kTR (cid:2)1=2; ð6Þ require or imply a hot, rarefied interstellar medium around the Gm4(cid:3)(cid:2) c cores. Because the velocity dispersion in the molecular clouds increaseswiththelengthscale,thereissomescalearoundacore (cid:5)¼r=a; ð7Þ wherethe turbulence becomes supersonic, thermal pressure no M(r) longerdominates,andthedynamicsaredominatedbytheiner- z¼ : ð8Þ 4(cid:3)a3(cid:2) tialforces.Thisscaledefinestheboundaryofthecore.However, c thisdefinitionismoreconceptualthanprecise,andinpractice, From the equations above, one derives two coupled ordinary theboundariesinourmodelsarechosenmoresimply;forexam- differentialequations,whichwesolvewithasecond-orderRunge- ple,tosetthetotalmassofthecore. Kuttaalgorithm,thatdefinethedensityofasphereinhydrostatic Whether a core in equilibrium can be long-lived depends on equilibriumforthetemperatureprofile,(cid:4),determinedbyradiative itsdynamicalstabilityagainstgravitationalcollapse.Thegravita- equilibrium: tionalstabilityofanisothermalsphereisdescribedbyBonnor’s criterionthatthepressureattheboundaryofthecoreshouldin- dz ¼(cid:5)2(cid:1); ð9Þ creaseasthevolumeofthecoreisreduced.Similartothecaseof d(cid:5) anisothermalsphere,thestaticstabilityofanonisothermalsphere, (cid:1) (cid:2) which might include somenonthermal internal pressure, can be d(cid:1) 1 (cid:1) d(cid:4) ¼(cid:2) z þ(cid:1) : ð10Þ determinedbythesignofthechangeinboundarypressureasthe d(cid:5) (cid:4) (cid:5)2 d(cid:5) volumeofthecoreisreduced.Becausethetemperaturevariation inthestarlesscoresvariesbyonlyseveraldegreesaroundanav- Closely following several previous papers on the radiative eragetemperatureofabout10K,astabilityanalysisofthenon- equilibriumofthedarkcloudcores,wecalculatetheradiative isothermalmodelsshowsaresultthatissimilartotheisothermal equilibriumofthegasassumingthatthegasisheatedbycosmic case,althoughthecriticalvaluesaresomewhatdifferent. rays, cooled by molecular line radiation, and either heated or Inx3,wedescribeourstaticmodelforstarlesscoresasspheres cooled by collisional coupling with the dust, depending on in hydrostatic and radiative equilibrium. This model serves as whetherthedustishotterorcoolerthanthegas(Larson1973, thestartingpointforthecalculationsofthehydrodynamicevolu- 1985;Evansetal.2001;Shirleyetal.2002;Zucconietal.2001; tion, but it also provides a reasonable approximation to the in- Stamatellos&Whitworth2003;Gonc¸alvesetal.2004).Forthe ternalstructureofastarlesscoreatanypointinitsevolution.This dust, followsbecausethecoolingtimeofacoreismuchshorterthan its dynamical time and because the cores are always in near- (cid:1)ISR(cid:2)(cid:2)d ¼0; ð11Þ equilibrium,unlesstheyareingravitationalfreefall.Thiswillbe justifiedlaterwiththeresultsoftheevolutionarycalculations. where (cid:1) is the rate at which dust grains are heated by the ISR external interstellar radiation field and (cid:2) is the rate at which d 3. MODELS OF HYDROSTATIC SPHERES grainscoolbyblackbodyradiationmodifiedbythedustemis- IN RADIATIVE EQUILIBRIUM sivity.Theequilibriumgastemperatureisdefinedsimilarlyas thetemperatureatwhichthenetgascoolingrateLiszero, Thehydrostaticequilibriumisdefinedbytheusualequations fortheforcebalancebetweenpressureandgravity,themassof L¼(cid:1) (cid:2)(cid:2) (cid:2)(cid:2) ; ð12Þ CR line gd thesphere,andtheequationofstate(Chandrasekhar1939): dP GM(r)(cid:2) where(cid:1)CRistherateofheatingbycosmicrays(eq.[13]),(cid:2)line ¼ ; ð1Þ istherateofcoolingbymolecularlineradiation(eq.[14]),and dr r2 (cid:2) istherateofenergytransferbetweenthegasandthedustby gd dM ¼4(cid:3)r2(cid:2); ð2Þ collisions(eq.[15]).Inequation(11),thelackofacorrespond- dr ing term for the collisional coupling is an approximation re- flecting the much higher rate of energy transfer by the dust P¼kT(cid:2)=m; ð3Þ throughabsorptionandemissionofradiation(Goldsmith2001; Gonc¸alvesetal.2004).Thisallowsthedusttemperaturetobe where m is the average mass per molecule, including helium calculatedindependentlyofthegastemperature.Inequilibrium, andheavierelements.Theseequationsarenondimensionalized thetotalradiativegascoolingrateL¼0,butduringthehydro- bydefining dynamicevolution,wheretheradiativegascoolingrateenters (cid:4)¼T=T ; ð4Þ into the equation for the change in internal energy of the gas R (eq.[20]),thisrateisnotgenerallyzero,becausethegastem- (cid:1)¼(cid:2)=(cid:2) ; ð5Þ peratureisusuallydifferentfromitsvalueinradiativeequilib- c riumbecauseofcompressionorexpansionofthegas. where(cid:2) andT areareferencedensityandtemperature.Weuse The dust temperature at each point in the cloud is calcu- c R the densityatthe centerof the sphere because the BEspheres lated by assuming radiative equilibrium between the incoming 1154 KETO & FIELD Vol. 635 Fig. 1.—Curve of volume and boundary pressure of a 5 M sphere in Fig.2.—SameasFig.1,exceptthatthesphereisisothermalat10K.[See (cid:3) hydrostaticequilibriumandradiativeequilibriumparameterizedasafunction theelectroniceditionoftheJournalforacolorversionofthisfigure.] ofthegasdensityinthecenterofthesphere.Thelogarithmofthegasdensity ismarkedatpointsalongthecurve.Thespheresaresupportedagainstgravity bythethermalpressureoftemperaturesrangingfrom7to14K.Thespheres throughtransitionsoflessabundantspeciessuchas13CO.Thus, withcentraldensities,volumes,andboundarypressuresthataretotherightof while the optical depth of one transition itself is a sensitive themaximumpressureareinstableequilibrium.Thosespheresonthecurveto theleftofthepressuremaximumareinunstableequilibrium.[Seetheelec- functionoftheassumedvelocitygradient,thetotalcoolingrate troniceditionoftheJournalforacolorversionofthisfigure.] isalesssensitivefunction,sinceoverawiderangeofdensityand velocity gradient there are always some transitions of optical depthunity. interstellar radiation field that heats the dust and the infrared Energyistransferredbetweenthegasanddustbycollisional emission that cools the dust (Zucconi et al. 2001; Gonc¸alves coupling. If we assume a Maxwellian distribution of random et al. 2004). Our calculation uses the parameterization of the velocitiesinthegas(Burke&Hollenbach1983)andagrainsize interstellar radiation field of Black (1994) and the parameteri- distributionthatweassumefollowsthe(cid:2)3.5powerofthegrain zationofthedustopacitiesofOssenkopf&Henning(1994)that radiusfrom0.03to0.3(cid:8)m(Kru¨gel&Siebenmorgen1994)and arederivedanddescribedinZucconietal.(2001).Theincoming agas-to-dustmassratioof100, interstellar radiation is attenuated by the overlying molecular gas,andthecalculationoftheincomingradiationfieldinvolves theopticaldepthsfromeachpointinthecoretothesurfaceofthe (cid:2)gd ¼10(cid:2)33n2H2T1=2(Tg(cid:2)Td) ergs cm(cid:2)3 s(cid:2)1: ð15Þ coredefinedbythetruncationradiusforthenonisothermalBE sphereandaveragedoverraysatallangles.Becauseofthelow ThisisessentiallythesamerateaswasusedbyZucconietal. temperatures in the cores, the dust radiates primarily in the far (2001), Goldsmith (2001), and Gonc¸alves et al. (2004). infrared,andthecoreisassumedtobetransparenttothislonger Anytwoofthethreeparametersofcentraldensity,totalmass, wavelengthradiation. orexternalpressurealongwithatemperatureprofileissufficient FollowingFalgarone&Puget(1985)orGoldsmith(2001),we to specify the solution of the Lane-Emden equation for hydro- settherateofenergytransferfromcosmicraysintothegasas static equilibrium. The temperature profile may then be deter- mined for a given density profile by solving for the radiative (cid:1) ¼10(cid:2)27n ergs cm(cid:2)3 s(cid:2)1: ð13Þ CR H2 equilibrium of the gas and dust. A few alternating solutions of the hydrostatic and radiative equilibrium equations result in a The molecular line cooling follows Goldsmith (2001) and nonisothermalspherecharacterizedbyacentraldensityandtotal uses the parameterized cooling functions for standard abun- massthatisinequilibriumwithanexternal pressure andinter- dancesthatarederivedinthatstudy: stellarradiationfield. (cid:2) ¼(cid:6)(T =10 K)(cid:7) ergs cm(cid:2)3 s(cid:2)1; ð14Þ line g 3.1. Results of the Static Modeling wheretheparameters(cid:6)and(cid:7)aregiveninTable2ofGoldsmith The stability of the nonisothermal cores is summarized in (2001). Figure1andcomparedtothestabilityofanisothermalcorein The parameterization is based on the large velocity gradient Figure2.Ineachfigure,theequilibriaonthecurvetotheleftof approximation,assumingavelocitygradientof0.5or1.0kms(cid:2)1 themaximumequilibriumpressureareunstabletogravitational pc(cid:2)1.Inthemodelcoresinourstudy,thevelocitygradientsare collapse.Becausethecentraldensitycorrelateswiththeexternal almostneverthishigh.However,thelargenumberofmolecules pressureandinverselywiththevolume,thestabilityofasphere withdifferentabundancesandtransitionsmakestheparameter- canalsobedefinedintermsofitscentraldensity.Thecurvesin izationinsensitivetotheexactvelocitygradient.Molecularline Figures1and2canbethoughtofascurvesofequilibriumpres- radiationescapesthecloud,coolingthegas,throughthosetran- sureandvolumeparameterizedbydensity.Somerepresentative sitions that have optical depths of approximately unity. As the central densities areplottedalong thecurves.Acomparisonof densityincreasesandthecorebecomesopticallythickinalower the curves shows that the critical boundary pressure or central quantumtransitionofamoreabundantspeciessuchas12CO (1 densityatwhichtheequilibriumbecomesunstableisdifferentin 0),theradiationescapesthroughhighertransitionsof12COand thetwocases,butthecharacterofthecurvesisthesame. No. 2, 2005 DARK CLOUD CORES AND GRAVITATIONAL DECOUPLING 1155 Fig.3.—SameasFig.1,exceptthatthegashasadditionalinternalenergyequal Fig.5.—SameasFig.4,exceptthatthecentraldensityofthesphereis106cm(cid:2)3. toone-quarterofthethermalenergy.Thisadditionalenergycouldcomefromsmall- Inthisspherethegastemperatureinitiallyincreasesinwardasthemolecularline scale turbulence or magnetic fields. With this additional internal pressure, the radiationthatcoolsthegasbecomesineffectivebecauseoftheincreasingoptical cloudsareabletosupportahighermaximumcentralgasdensityandboundary depth.Asthegasdensityincreasestothecriticaldensityforgas-dustcoupling,the pressure.[SeetheelectroniceditionoftheJournalforacolorversionofthisfigure.] gastemperatureapproachesthedusttemperature.Atthehighgasdensityofthis sphere,thesphereisunstabletogravitationalcollapse. If the gas has additional internal energy, such as might be providedbysmall-scalesubsonicturbulenceormagneticfields, usuallydefinedastheradiusofthecentralregionoftheobserved thecriticaldensitiesarehigher.ThestabilitydiagraminFigure3 coreinsidewhichthedensityisapproximatelyconstantandout- shows the effect of additional internal energy equal to one- side which the density falls as a power law. For example, the quarterofthethermalenergyofthegas.Theadditionalnonther- densityprofilemaybedescribedasn(cid:1)1/(1þr(cid:6))(Tafallaetal. malenergyimprovesthestabilityofspheresovertheirthermal 2004) or more simply in terms of two zones, an inner zone of counterparts. constantdensitywithinaradiusr andasurroundingpower-law 0 Thegasanddusttemperaturesandgasdensityforequilibrium envelope (Ward-Thompson et al. 1994). For cores with total sphereswithcentraldensitiesof104and106cm(cid:2)3areshownin massesofseveralM ,thewidthoftheconstant-densityregionis (cid:3) Figures 4 and 5. These two densities lie on either side of the about2500AUinthecaseofunstableprestellarcoresandabout criticaldensityforgravitationalinstabilityforacorewithatotal twicethator5000AUinthestablestarlesscores. massof5M(cid:3).Thefiguresillustratethedifferencesinstructure The gastemperatureinastablesphere with lower density is predictedforstableandunstablecores.Themostsignificantdif- approximatelyconstantat10K.Althoughthedusttemperature ferencesinthetwocasesareinthedegreeofcentralcondensa- decreasesatsmallerradiibecausetheoverlyingcloudshieldsthe tionandinthetemperature. dustinthecenterfromexternalstarlight,thegasanddustarenot Thedensityprofileoftheunstablecoreshasasmallerradial collisionallycoupled,andthedusttemperaturehaslittleeffecton widthorhigherdegreeofcentralconcentrationthanthatofthe thegas.Thegascoolsprimarilybymolecularlineradiation,and stable counterparts. In the observational literature, the width is theincreasingopticaldepthtolineradiationcausesaslightin- wardriseintemperature. In the unstable core with high density, the increased optical depthtotheexternalstarlightreducestheheatingofthedust.Be- causethedustiscooledbyopticallythinfar-infraredradiation, thecoolingrateremainsconstant,andthedustbecomescolder toward the center. At central densities >106 cm(cid:2)3, the extinc- tion through the core causes the dust temperature to decrease from17Kattheboundarytobelow8Katthecenter. Theunstablecorehasahighenoughdensitythatthegasbe- comesopticallythicktomolecularlineradiationandinaddition beginstocollisionally coupletothedust.Towardthecenterof thecore,atdensities>105cm(cid:2)3,thegasanddustarecollision- ally wellcoupledand thegasiscooled predominantly through thedust.Inthedensestpartoftheunstablecore,wherethecou- plingismostefficient,thegastemperatureapproachesthedust temperature, around 8 K. Outside of the center, the collisional coupling and hence the gas cooling is reduced as the density decreases,andthegastemperatureclimbstoabout13K.Atstill Fig.4.—Dustandgastemperatureandgasdensityasafunctionofradiusfora larger radii the optical depth tothe surface ofthe corebecomes sphereinradiativeandhydrostaticequilibriumwithacentraldensityof104cm(cid:2)3. lowenoughthatthegascancoolefficientlythroughmolecularline Thelogarithmofthegasdensityisshownbythelowerline.Thetwoupperlines radiation,andthetemperaturefallstojustbelow10K.Thecriti- representthedusttemperature(dashedline)andthegastemperature.Theordinate axismaybereadaseitherthelogarithmofthedensityincm(cid:2)3orthetemperaturein caldensityofthenonisothermalcoresinradiativeequilibriumis unitsofK.Thesphereisinstablegravitationalequilibrium. above that of the 10 K isothermal core even though the central 1156 KETO & FIELD Vol. 635 temperatureislowerinthenonisothermalcore.Thisisbecausethe stablestarlessandunstableprestellar,mayhavecoherentinter- coresinradiativeequilibriumhaveahigheraveragetemperature. nalvelocities. The stable starless cores canexhibit avarietyof Itiscoincidentaltotheconditionofradiativeequilibriumthat oscillatorymotions,expansionandcontraction,thatdonotresult thedensitiesatwhichthecoresdevelopastronglyvaryingtem- inthecollapseordissipationofthecore.Theunstableprestellar peratureprofilearealsothedensitiesatwhichthecoresbecome cores have inward velocities that ultimately evolve to gravita- unstabletogravitationalcollapse.Nonetheless,thiscircumstance tionalcollapseatfree-fallvelocities.Thetwotypesofcorescan resultsinausefuldivisionofthepopulationofthestarlesscores be distinguished by their spectral line profiles and widths. The intotwoclasses.Inthefirstcategoryarecoresthataretrue‘‘star- spectrallinesofunstableprestellarcorestendtoshowstrongly less’’ cores in that they will not of their own contract to form asymmetric profiles split by self-absorption. Also, the spectral protostars.Inthesecondcategoryare‘‘pre-protostellar’’or‘‘pre- linewidthsofvolatilemolecularspeciesarebroader intheun- stellar’’ cores that have not yet formed a protostar, but are un- stableprestellarcoresthantheyareinthestablestarlesscores. stable to collapse of the core and the formation of a protostar 4. HYDRODYNAMIC MODEL withinafree-falltime.Wecombinetheobservationalandtheo- reticaldescriptionsandrefertothefirstcategoryasstablestarless To model the evolution ofthestarless cores,we use a simple coresandthesecondasunstableprestellarcores.Intheabsence one-dimensionalhydrodynamiccodewithafirst-orderLagrangian of changing external conditions, there is no evolutionary path discretization and Richtmyer–von Neumann pseudoviscosity. linking the two categories of cores. Stable cores do not evolve Whilethismethodisnotassophisticatedasthepiecewisepara- tobecomeunstable. bolicmethod(PPM;Colella&Woodward1984)usedinoneof thepreviousdynamicalstudiesofBEspheres(Foster&Chevalier 3.2.Comparison to Observations 1993),theimprovementincomputerspeedallowsourhydrody- Examplesofwell-studiedstablestarlesscoresincludeB68and namiccodetoberunwithafactorof10moregridpointsthanin L1517B. Well-known cores in the unstable prestellar category that previous study, and this allows better spatial resolution de- includeL1544andL1521F.Estimatesofthecentraldensityinthe spitetheinherentsmoothinginthepseudoviscositymethod.Also, stablestarlesscoreL1517Bare2:2;105cm(cid:2)3fromdust(Tafalla inourstudytheresolutionisnotasimportantasintheFoster& et al. 2004) and 105:1(cid:4)0:3 cm(cid:2)3 from the molecular line N H+ Chevalierstudy.First,ourinvestigationconcernsonlythestability 2 (Ketoetal.2004).ThewidthofthedensityprofileinL1517Bis ofstarlesscores.Thus,wefollowtheevolutionofcoresonlytoa 3500(0.025pc)fromdust(Tafallaetal.2004)and0:022þ0:008 pc scale of AU, which is sufficient to determine the stability and (cid:2)0:016 from N H+. In the unstable prestellar core L1521F, the central evolutionarypathofthecore.Forthetypicalconditionsinstarless 2 density is estimated at 106 cm(cid:2)3, with a width of 0.017 pc for cores,mostofthevelocitiesaresubsoniconthisscale.Incontrast, the central region of the core (Crapsi et al. 2004). The density the previous calculations of Foster & Chevalier also sought to structure of L1544 appears similar, with a central density of characterize the asymptotic behavior of the flow at the time of 105:7(cid:4)0:4cm(cid:2)3andawidthof0:004(cid:4)0:002pcfromtheobser- formationofapointsourceattheflowcenter.Nearagravitational vationsofKetoetal.(2004)and106cm(cid:2)3withawidthof2000 pointsource,theflowcanacceleratetoarbitrarilyhighMachnum- (0.015pc)fromtheobservationsofTafallaetal.(1998).Ingen- bers.Incontrast,todeterminethefateofacore,oursimulations eral,thestablestarlesscoreshavelowerdensitieswithbroader neednotfollowevolutionmuchpastthepointwhentheflowhas densityprofilesthantheunstableprestellarcores. accelerated to more than unity Mach number. Supersonic infall The theoretically predicted decrease in dust temperature has velocitiesimplythatthecoreisinfree-fallcollapse,anditsfate been observed in several cores. Infrared observations show a issealed. dust temperature profile that decreases from about 15 K at the Thetypicalcoresizeinourmodelsis0.2pc.Thegridisinitially edge of the core to 8 K in the center (Ward-Thompson et al. linear with approximately 5000 points, yielding a resolution of 2002;Paganietal.2003,2004). about10AU.Thesoundspeedisabout0.2km(cid:2)1,sotheCourant Molecularlineobservationsofcoresthoughttobestableand condition implies a maximum time step of about 250 yr. The not currently evolving toward star formation, such as L1517B simulationsarerunwithatimestepof1/10themaximumindi- and B68, show nearly constant gas temperatures with little catedbytheCourantcondition,initiallyabout25yr.Attheendof variation across the core. Observations of L1517B in NH in- the evolution of an unstable core, the typical maximum spatial 3 dicateagastemperatureof10K(Tafallaetal.2004),whileob- resolutioninthecenterofthecoreislessthan1AU,withatime servations of N H+ indicate an average temperature of 9þ7 K resolutionoflessthan1yr.Aswillbediscussedbelow,thelim- 2 (cid:2)2 (Ketoetal.2004).TemperatureestimatesofB68rangefrom10 iting resolution in these simulations is not that of the hydrody- to16K(Alvesetal.2001;Ladaetal.2003). namics,butoftheradiativetransfer. Observations ofthe core L1544 indicate anaverage temper- ThehydrodynamicalequationsinLagrangianformare atureof8.75K(Tafallaetal.1998)fromNH linesand11(cid:4)4K 3 (Keto et al. 2004) from N2H+, both consistent within the ob- Z t servational uncertainties with the models, but the spectral line r(s; t)¼sþ v(s; t)dt; ð16Þ observationsdonothavetheangularresolutionorthesensitivity 0 todefinethetemperatureprofileofthegaswiththedetailofthe 1 1 (cid:3)r(s; t)(cid:4)2@r models. In general, temperature estimates of the stable starless ¼ ; ð17Þ (cid:2)(r; t) (cid:2)(s; 0) s @s coresareafewdegreeswarmerthanthoseoftheunstablepre- stellar cores, consistent with the higher temperatures predicted P(r; t)¼(cid:2)(r; t)kT=m; ð18Þ bythemodels. Inordertounderstandthevelocitystructureofthecoresandto @v 1 (cid:3)r(s;t)(cid:4)2@(Pþq) GM(r)2 ¼(cid:2) (cid:2) ; ð19Þ interpretspectrallineobservations,itisnecessarytomodelthe @t (cid:2)(s; 0) s @s r hydrodynamicevolutionofthecores.Inxx4and6,respectively, @E Pþq@(cid:2) L we develop the hydrodynamic model and present some exam- ¼ (cid:2) : ð20Þ plesoftheevolutionofcores.Wefindthatbothclassesofcores, @t (cid:2) @t (cid:2) No. 2, 2005 DARK CLOUD CORES AND GRAVITATIONAL DECOUPLING 1157 In these equations, s is the original position of each 5. RADIATIVE TRANSFER AND CHEMISTRY Lagrangian cell, r(s, t) is the corresponding position at time Afterthenumericalhydrodynamicevolutionofthecloudhas t, M(r) is the mass contained within radius r, E is the inter- beencompleted,thetemperature,density,andvelocityasafunc- nal energy of the gas, L is the radiative gas cooling rate de- tionoftimearetransferredtoanon-LTEaccelerated(cid:2)-iteration fined in equation (12), and q is the Richtmyer–von Neumann (ALI) radiative transfer code to determine model spectral line pseudoviscosity profiles for comparison with observations (Keto et al. 2004). ( Themodelcoresareassumedtobeat150pc,thedistancetothe l2(cid:2)½@vðs; tÞ=@s(cid:5)2 when @v=@s<0; q¼ ð21Þ Taurusstar-formingregion,andtobeobservedwithatelescope 0 when @v=@s>0; withabeamwidthof2000.Becausethecoreradiiareontheorder of10beams,theresolutionisnotcriticalexceptinthecasesof wherelisaconstantthatisapproximatelytheshocksmoothing the unstable cores that have rapidly increasing density and ve- widthoverthegridspacing.Theseequationsarediscretizedas locitygradientsintheircenters. inRichtmyer(1957). Tocomputethespectrallineprofiles,wealsoneedtoknowthe In our calculations of the hydrodynamic evolution of the abundancesofthemolecules,inadditiontotheinformationpro- cores,westartwithacoreinhydrostaticequilibriumandinra- vided by the hydrodynamical evolution. The gas-phase abun- diativeequilibrium.Inthesubsequenthydrodynamicevolution, dancesofmoleculesarevariablewithinthecore,becauseinthe thetemperatureofthegasiscalculatedateachtimestep,taking colddenseinteriorsofthedarkcloudcores,moleculesfreezeout intoaccountthePdV workofcompressionorexpansionandthe ofthegasphaseontothesurfacesofdustgrainsatdifferentchar- rateforradiativecooling,L(eq.[12]).Usingtheparameterized acteristicdensitiesaccordingtotheirdifferentvolatilities(Brown approximationsforthegascooling,thechangeininternalenergy et al. 1988; Willacy & Williams 1993; Hasegawa et al. 1992; maybecalculatedforeachgridcellusingonlythelocalvaluesof Hasegawa & Herbst 1993; Caselli et al. 1999, 2002a, 2002b, densityandvelocity(compression)ofthegasandthetempera- 2002c;Berginetal.1995,2002;Tafallaetal.1998;Aikawaetal. turesofthegasanddust.Thedusttemperatureitselfdependson 2001). We follow Bergin et al. (2001) and Tafalla et al. (1998, theglobalstructureofthecore:theangle-averagedopticaldepth 2004)andapproximatethedependenceoftheabundanceonthe tothesurfacefromeachradialpoint.However,becausethelarger densitynasanexponential: scalestructureofthecorechangesrelativelyslowlycomparedto thetimestepofthehydrodynamicevolution,setbytheCourant X(n)¼X0exp((cid:2)n=nd); ð23Þ condition,theangleaveragingtodeterminethedusttemperature neednotbecomputedateverytimestep.Inaddition,becauseof with parameters for CS of abundance X0 ¼10(cid:2)8 and density the approximation that the dust temperature is set only by the nd ¼104 cm(cid:2)3. A more complete treatment of the molecular radiative equilibrium of the dust and is independent of the gas abundancesofthestarlesscoresderivedfromdetailedchemical temperature, the dust temperature must be a smoothly varying modelingisdiscussedinLeeetal.(2004b).Thatstudyconcludes functioninthecore.Thus,thedusttemperaturecanbecomputed that a simple parameterized model of depletion, as adopted in less frequently and on a coarser grid and interpolated onto the oursimulations,isareasonableapproximationtotheirmorede- hydrodynamicgrid. tailedanalysis. Theinitialcorealwayscontainssomeperturbationsthatcause 6.MODEL CORES some initial movement of the gas in the core. These perturba- tions,atafractionofapercentlevel,areprimarilyduetocoarse Weadoptasastandardmodelacorewithatotalmassof5M (cid:3) griddingofthedustequilibriumandareonthescaleofthecoarse andconsideritsevolutionunderavarietyofconditionsthatcould grid,about1/20ofthesizeofthecore.Theperturbationsarise beexpectedinandaroundthedarkcloudcores.Foragivenmass, becausetheinitialdustandgastemperaturesexactlymatchcon- thecentraldensitydeterminesthegravitationalstabilityofanon- ditions of hydrostatic and radiative equilibrium on the coarse isothermal BE sphere. We model the evolution of cores with a grid, but the interpolated dust temperatures and thus the inter- rangeofcentraldensitiesn ¼103 107 cm(cid:2)3centeredaround H2 polatedgas temperatures donot exactly match the gastemper- the critical density for gravitational instability, approximately aturerequiredforhydrostaticequilibriumbetweengridpoints.In n (cid:1)104 cm(cid:2)3foracoreof5M . H2 (cid:3) bothstableandunstableclouds,theperturbationsaresmoothedin Acorecouldbesubjecttoavariationinexternalpressurefrom atimescaleof(cid:9)/c (cid:1)104yrbysmallchangesintemperatureand a nearby supernova, bipolar outflow, or the turbulence of the s density that quickly establish radiative and hydrostatic equilib- interstellarmedium.Achangeinexternalpressurecouldcause rium.Inthegravitationallystableclouds,oncetheperturbations oscillationsinacore,andasufficientincreaseinexternalpres- are smoothed out, no further evolution takes place. In gravita- sure could cause a previously stable core to collapse. Accord- tionallyunstablecores,eventhoughthe initial perturbations are ingly, we model the evolution of some cores in response to quickly smoothed, the coreisunabletoestablishanexactequi- changingexternalpressure. librium,andafteralongtime,severalsoundcrossingtimesortens Thedarkcloudcoresmayhavesomecomponentofmagnetic offree-falltimes,the corewillbegingravitationalcollapse.The or turbulent support in addition to thermal support. In a one- lengthoftimeforthecoretobegincollapseissimplythetimere- dimensionalmodel,thisadditionalsupportcanbeapproximated quiredforverysmallperturbationstoreachanyappreciablemag- by modifying the equation of state to include a nonthermal nitude.Oncetheinwardvelocitiesreachevenafewhundredthsof pressure.Thisassumesthatthenonthermalormagneticenergy thesoundspeed,thecorecollapsesinaboutafree-falltime,tA(cid:1) hasacharacteristicscalemuchsmallerthanthecoresothatthe ðG(cid:2)Þ(cid:2)1/2(cid:1)105 yr. Were it not for these perturbations deriving effectisatleastapproximatelythesameasanisotropicpressure. fromthecoarsegriddingoftheradiativetransfer,itwouldbenec- Thisassumptionfollowsfromestimatesthatshowthatthelarge- essarytointroduceperturbationsintotheinitialstructuresothat scale magnetic fields in cores are too weak to affect their evo- theunstablecoreswouldcollapsebeforepatiencewiththehydro- lution(Nakano1998).Thus,wemayassumethatthenonthermal dynamicevolutionwasexhausted. pressureissmall-scaleandisotropic.Ifthenonthermalpressure 1158 KETO & FIELD Vol. 635 isinitiallyproportionaltodensity,thentheinitialstructureofthe configurationthatisbothgravitationallyandthermallyunstable. core may be determined as before with the Lane-Emden equa- The initial expansion of this core caused by the thermal insta- tion,butwithahighereffectivetemperaturethaninthecaseof bilityresultsinastablecoreundergoingdampedoscillationsof support only through thermal pressure. The subsequent evolu- expansionandcontraction. tion of the core depends on the equation of state of the non- thermalpressure.Forexample,thecoresthatwemodeledwitha 6.1.Hydrodynamic Evolution of an Unstable nonthermaladiabaticindexgreaterthan4/3behaveasexpected Pre-Protostellar Core andnever collapse toapointsource,butformaninnercore of Thetheoreticalevolutionofagravitationallyunstablecoreis approximately constant density supported by nonthermal pres- dynamically as expected from previous simulations: small nu- sure.Asthecoreevolves,thesurroundingenvelopecontinuesto merical perturbations grow for several crossing times (several collapse onto this inner core, creating a steep density gradient Myr)untiltheyaresufficienttotipthecoreoffitsinitialunstable and shock at the boundary of the inner core. Such a boundary equilibrium towardcollapse(Hunter1977;Foster&Chevalier region is never seen in observations of dark cloud cores, sug- 1993).Sincethecoolingtimeisshortcomparedtothedynamical gestingthatthemoleculargasinthedarkcloudcoresmusthavea time, the temperature profile is set almost entirely by radiative lower value of the adiabatic index. In an analysis of the virial equilibrium.Figures6–8showthepropertiesofthecoreasthe theorem,McKee&Zweibel(1995)suggestedthattheadiabatic collapseproceeds.Alsoshownareaccompanyingmolecularline index for magnetic turbulence should be between 3/2 and 1/2, spectraaswouldbeobservedtowardthecenterofthecore. dependingonthetimeandlengthscalesoftheturbulence.Apar- Figures6–8showthattheapproximateforcebalancebetween ticularlyconvenientchoiceisanadiabaticindexofunity.Thisof pressureandgravitythatissetintheinitialconfigurationismain- coursematchestheadiabaticindexofthethermalpressure,and taineduntiltheinfallvelocitiesbegintoapproachthesoundspeed. thedynamicsarethereforesimilartoathermallysupportedcore Thus, the density structure continues to approximate that of a withahighertemperature.However,thenonthermalpressurere- pressure-supported BEsphere as the core evolves toward free- mainsproportional todensity only,whilethethermalpressure, fallcollapse. being proportional to the temperature as well as the density, Ourhydrodynamicsimulation,aswellasanalyticconsidera- changesasthetemperatureischanging. tions(Whitworth&Ward-Thompson2001),showthatgravita- We ran about 30 different numerical simulations to explore tional collapse starting from an equilibrium-configuration BE differentcombinationsandrangesofparameters.Densitiescon- sphereischaracterizedbyinwardlyincreasingvelocities.Ave- sideredinourstudyincludethose locityprofilewithvelocitiesthatincreaseinwardisnotuniqueto 1. expectedtobestable; thedensityprofileofunstableBEspheresbutisstilladiagnos- 2. nearthecriticaldensityofthenonisothermalBEsphere; tic inasmuch as other initial configurations such as the uniform 3. expectedtobeunstable. spheres considered in Jeans instability and the well-studied sin- gularisothermalspheres(Shu1977)andsingularlogotropicspheres Differentequationsofstateconsideredinthisstudyarethose (McLaughlin&Pudritz1997)evolvetocollapsewithverydiffer- with entvelocityprofiles.Inwardlyincreasingvelocitiesareindicated 1. thermalpressureonly; inmolecularlineobservationsofthecoresL1544andL1521Fby 2. thermalpressurewithanonthermalpressureinitiallypro- the velocity gradient inferred from the details of the observed portionaltodensity: spectrallineshapesandfromthewidthsofspectrallinesofvola- tilemolecularspeciesthatincreasetowardthecentersofthecores. a) anadiabaticindexofnonthermalpressureequaltounity; Figures6–8showhowthespectralprofileofN H+developsthe b) anadiabaticindexofnonthermalpressureequalto4/3. 2 characteristic asymmetric split with a stronger blue peak as the Differentexternalconditionsappliedtothecloudwere infallvelocityincreases.Thischaracteristicsplitisseenintheob- servedN H+spectrumfromL1544;forexample,inFigure2of 1. constantexternalpressure; 2 Williamsetal.(1999)andinFigures4and5ofKetoetal.(2004). 2. increasingexternalpressure: An increase in the line width of N D+ is observed toward the 2 a) externalpressureremainingbelowthecriticalpressure centers of the cores L1544 and L1521F (Caselli et al. 2002c; ofthenonisothermalBEsphere; Crapsietal.2004,2005).Althoughtheobservationsoflinewidth b) externalpressuresufficientlyhightocausecollapse. donot indicatethe direction ofthe velocity, the increase inline widthisindicativeofanincreaseinthemagnitudeofthevelocity Hydrodynamicmodelswerecomputedforcombinationsofall towardthecenterofthecore. the cases above. Despite the variety of initial conditions and equationsofstate,thebehaviorandpropertiesofthestablestar- 6.2. Hydrodynamic Evolution of a Stable, lesscoresarequitesimilartoeachother,asarethebehaviorand Oscillating Starless Core propertiesoftheunstableprestellarcores.Inxx6.1and6.2,we discussindetailtwomodelstoillustratethecharacteristicsofthe Hydrodynamic simulations of cores in stable equilibrium twoclassesofcores.Wemodeltheunstableprestellarcoreswith show no evolution unless the core is subjected to a perturba- a hydrodynamic simulation that starts from an initial configu- tion.Whileobservationsofmanycoresdonotshowvelocities rationinunstableequilibriumandevolvestowardfree-fallgrav- abovetheobservationaldetectionlimit,about1/10ofthesound itational collapse. The stable starless cores are modeled with a speed,othercoresindicateexpandingorcontractingmotionsor simulationthatstartsinstableequilibriumandisperturbedinto morecomplexcombinationsindicativeofnonsphericalperturba- oscillatorycontractionandexpansionbyasuddenincreaseinthe tions.Whilesomeofthesecoresmaybeunstableandevolving external pressure. Finally, in order to illustrate the thermal in- towardcollapseasdescribedinx6.1,othersmaybeoscillating stability that is related to the critical density for gas-dust colli- aroundanequilibriummean.Thenonsphericalmorphologiesof sionalcoupling,wediscusstheevolutionofacorewithaninitial many cores, often showing aspect ratios of 2:1, may indicate No. 2, 2005 DARK CLOUD CORES AND GRAVITATIONAL DECOUPLING 1159 Fig.6.—Evolutionofacorestartingfromaninitialconfigurationthatisinequilibriumbutunstabletogravitationalcollapse.Inthissimulation,thecloudremains staticforabout3Myr,about3soundcrossingtimes,whilesmallperturbationsoriginatingfromnumericalnoisebuilduptomovethecloudoffitsunstableequilibrium. Oncethecloudbeginstocontract,thevelocitiesinthecenterofthecloudbecomesupersonicinafew105yrandthecoreistheninunsupportedfreefall.Topleft:Density (logcm(cid:2)3)andgasanddusttemperatures(K),inthesameformatasFigs.4and5,andalsothevelocity(soundspeedtimes(cid:2)10)asafunctionoftheradius(pc).For example,avelocityof10ontheleftaxisindicatesaninwardvelocityequaltothesoundspeed.Bottomleft:Gravitationalforce(solidgreenline),pressureforce(dashed redline),andpressure(solidpurpleline),incgsunits.Thispanel(inthesubsequentfigures)showsthatthecloudremainsinapproximateforcebalanceuntilthecore beginsfree-fallcollapse.Right:SpectrallinesofNH+(1–0)andNH+(3–2),astheywouldbeobservedinthemodelcore.Theradiativetransfersimulationassumes 2 2 thatthecoreisatadistanceof150pcandthatthetelescopebeamis2000.Eachpanelshowsthehyperfinelinesthatarewithin(cid:4)1kms(cid:2)1.Thesearetheinnerthree hyperfinesinthecaseofNH+(1–0). 2 oscillations about an equilibrium mean that may be stable or asymmetricprofilewithastrongerbluepeakthatischaracteristic unstable. of inward motion. In Figure 10, at 1.613 Myr, the wave has Inourexamplemodelofastablestarless core,webeginthe reflectedoffthecoreandisheadedoutward.Atthistime,mostof hydrodynamic simulation in hydrostatic and radiative equilib- the core is still moving inward, responding to the increased rium.Thecorestartswithacentraldensityof2;103cm(cid:2)3,well externalpressure,andthespectrallineprofileofCSstillshows tothestablesideoftheBonnorcriteriafornonisothermalspheres, an asymmetric line split characteristic of inward motion. By a soanincreaseinexternalpressurebyafactorof1.5,heldconstant timeof3.705Myr(Fig.11),whenthecontractionofthecorehas thereafter, pushes the core close to but not past the maximum overshot the equilibrium point, the whole core is expanding pressureforstability.Theincreaseinpressurepropagatesintothe outward. The spectral line profiles of CS now show an asym- core,eventuallyreflectingoffthecenter,whilethecoreasawhole metricsplitlinewithastrongerredpeakthatischaracteristicof adjustsitsdensityprofiletoanewequilibriumwiththeincreased outwardmotion.ObservationsofCSspectrainB68showasym- external pressure. An initial overshoot of the new equilibrium metricsplitspectraofbothsenses,inwardmotionsandoutward resultsindampedoscillationsofcontractionandexpansion.The motions, at different positions in the cloud; see, for example, oscillationsimplythatinertialforcesareimportantinthedynam- Figure6ofLadaetal.(2003). ics,buttheinertialforcesarestillsmallcomparedtothepressure Model spectra of N H+ from the same hydrodynamic simu- 2 andgravitationalforces,sothecoreremainsinapproximateforce lation show only symmetric profiles with no asymmetric split- balancethroughouttheevolution. ting.ThedifferencebetweentheCSspectraandtheN H+spectra 2 Figure9showsthestructureofthecoreandtheaccompanying relates to the differences in the velocity fields in the regions spectra when the head of the velocity and pressure wave has whereeachofthemolecularlinesisgenerated.Inthedensecen- advanced halfway into the cloud at elapsed time 1.003 Myr. ters of thestarless cores, the CS molecule isdepleted from the Becauseofthelowdensity,thegascoolsefficientlythroughout gas phase by freezeout onto dust grains, but the more volatile thevolumeofthecloudbymolecularlineradiation,andthegas N H+ molecule maintains a constant abundance. Because the 2 temperature isnearlyconstant. Thepredictedspectralline pro- linebrightnessforanysubthermallyexcitedmoleculescaleswith files of an oscillating core are particularly interesting in com- thesquareofthedensity,theN H+lineisformedpredominantly 2 parisonwithobservedprofiles.TheCS(1–0)spectrumshowsan inthedensegasinthecenterofthecore,whereastheCSlineis Fig.7.—SameasFig.6,butatanevolutionarytimeof3.22Myr.Asthegasdensityinthecenterincreases,thegasbecomescollisionallycoupledtothedustand thegastemperatureapproachesthedusttemperature. Fig.8.—SameasFig.6,butatanevolutionarytimeof3.37Myr.Asthevelocitygradientsteepens,withtheinwardvelocityapproachingthesoundspeedinthe centerofthecloudandthevelocitiesstillnearzeroattheedge,thelow-velocitygasattheedgeofthecloudabsorbstheemissionfromthecenterofthecloud, creatingasplitspectrum.TheprofileoftheNH+(3–2)lineisdominatedbynumeroushyperfinecomponents. 2 1160

Description:
turbulent velocities become subsonic ( Larson 1981; Leung et al. 1982; Myers narrow with no wings and nearly thermal widths, an indication that any Myr) until they are sufficient to tip the core off its initial unstable equilibrium . ting. The difference between the CS spectra and the N2H+ spectr
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.