education sciences Article Investigating the Effectiveness of Group Work in Mathematics AnastasiaSofroniou*andKonstantinosPoutos SchoolofComputingandEngineering,UniversityofWestLondon,St.Mary’sRoad,LondonW55RF,UK; [email protected] * Correspondence:[email protected];Tel.:+44-208-231-2068 AcademicEditor:EilaJeronen Received:23June2016;Accepted:12August2016;Published:1September2016 Abstract: Group work permits students to develop a range of critical thinking, analytical and communication skills; effective team work; appreciation and respect for other views, techniques andproblem-solvingmethods,allofwhichpromoteactivelearningandenhancestudentlearning. This paper presents an evaluation of employing the didactic and pedagogical customs of group workinmathematicswiththeaimofimprovingstudentperformanceaswellasexploringstudents’ perceptionsofworkingingroups. Theevaluationofgroupworkwascarriedoutduringtutorial timewithfirstyearcivilengineeringstudentsundertakingamathematicsmoduleintheirsecond semester. Theaimwastoinvestigatewhethergroupworklearningcanhelpstudentsgainadeeper understandingofthemodulecontent,developimprovedcriticalandanalyticalthinkingskillsand seeifthismethodofpedagogycanproducehigherperformancelevels. Thegroupworksessions wereconductedoverfourweekswhilststudyingthetopicofintegration. Evaluationsurveyswere collected at the end of the intervention along with an investigation into the examination results from the end of semester examinations. In order to derive plausible and reasonable conclusions, theseexaminationresultswerecomparedwithananalogouscohortoffirstyearmathematicsstudents, alsostudyingintegrationintheirengineering-baseddegree. Theinvestigationintotheeffectiveness ofgroupworkshowedinterestingandencouragingpositiveoutcomes,supportedbyacombination ofqualitativeandquantitativeanalysis. Keywords: groupwork;enhancingmathematicallearning;collaborativeandcooperativelearning 1. Introduction Thispaperevaluatestheeffectivenessofimplementinggroupworkinmathematics,intermsof studentperformanceandstudents’perceptionsofthisdidacticformoflearningduringtutorialsessions. Mathematicseducatorsarealwaysstrivingtoimprovelearnerperformanceandachievementsinthe fieldofmathematics. Theissuesoflearningproblemsinmathematicsandthelackofmetacognitive awarenessofmathematicalthinkingandproblem-solvingskills[1]stillseemtopersist,anddespite differencesamongsteducatorsonaneffectivelearningmethodology,itcanbesuggestedthatthere is at least a concurrence with respect to the reduced level of accomplishment amongst learners in mathematics[2]. In the mid-1980s there was a reform movement in mathematics education as a reaction to dissatisfaction with conventional teaching approaches [3]. Specific reports recommending the restructuringofmathematicaldelivery[4]markedtheneedformodificationsinteachingmethodology. TheNationalCouncilofTeachersofMathematics[5]endorsestheuseofincreasinglyintensiveand effectiveinstructionalinterventionsforstudentslearningmathematics,suggestingthatthesecanbe usedduringtutorialsessionsaswell. Employingmultiplemodelsandwaysofstructuringtopicscan presentrichadaptionsofmathematicscontenttoeffectivelysupportstudent’sneeds[5]. Educators Educ.Sci.2016,6,30;doi:10.3390/educsci6030030 www.mdpi.com/journal/education Educ.Sci.2016,6,30 2of15 must therefore be encouraged to present active learning activities so that students can construct knowledge,andonewaytoaccomplishthisistofamiliarisestudentswithgroupwork[4,6]. The current delivery of lectures often finds university students learning mathematics through conservativebehaviouristicmethods[1],leavingthemtobepassiveanddependentontheirlecturers[7]. Modern,enhancedtaughtmathematicsfocusesonaconstructivistapproach,askingstudentstoface newchallengeswithpriorknowledgeandtoabsorbandadoptnewinformation,thusallowingthem toformtheirownsignificantinterpretationandmeaningfulunderstandingofthetaughtmaterial[8]. Withoutdenyingtheimportanceoftraditionalmathematicallecturing,andacknowledgingthat,in acompetitiveacademicenvironment,studentsaremoreoftenrewardedforindividualeffort,thisstudy aimstoreinforceandaddtothecurrentresearchliteratureongroupwork,thoughwithaparticular emphasisonthefieldofmathematicsatahighereducationallevel. Thiswouldallowonce-skeptical educators who have perceived group work as ineffective and problematic in this subject area to recogniseandappreciatethevalueandbenefitsofalsoassigninggroupworktotheirstudents[9]. Moreexplicitly,theresearchquestionposedisthefollowing:cangroupworkbeconsideredaneffective methodoflearningforthesubjectofmathematics,andcanitenhancethestudentlearningexperienceat ahighereducationallevel? Thisstudyinvestigatestheeffectivenessofgroupworkinuniversity-level mathematics,ahigher-levelapplicationperhapsslightlylackinginresearchoutput,byexaminingany improvedstudentperformanceuponadoptionofgroupworkinteractionaswellasexaminingstudent perceptionsofworkingingroups. Inaddition,thestudyconsiderswhethergroupworklearningcan deepenstudentunderstandingofthemodulecontentandaidthemindevelopinghighercriticaland thinkingskills. This paper begins with a brief literature review documenting the adoption of group work in education,particularlythoserelatingdirectlytomathematics. Collaborativeandcooperativegroup work are highlighted, including a description of the main shortcomings and benefits experienced by the practitioner. The paper continues with the methodology used to carry out the evaluation oftheeffectivenessofgroupworkinmathematicsduringtutorialsessions. Thefindingsfromthe investigation are then discussed and analysed using both qualitative and quantitative techniques. Finally,someconcludingremarksandpossiblefutureassessmentsarepresented. 2. LiteratureReview Groupworkiscenteredupontheconstructivismmodeloflearning[10–13]. Accordingtothe report from the National Council of Teachers of Mathematics [4,5], it is said that group work in mathematical education plays an essential role in students’ question acquisition and in criticising constructively[14],allleadingtoproductiveandbeneficialoutcomesinstudentlearning. The number of research studies carried out over recent years has increased noticeably in the field of mathematics at the primary and secondary school levels [15]. Substantial research within themathematicseducationsectorindicatesthatemployingsmallgroupsforvariousactivitiesand exercisesdoesleadtoconstructiveandbeneficialoutcomesforstudentlearning. FromareviewbyWebb[16,17]concerningstudiesinvestigatingpeerinteractionandachievement in small scale groups, various compatible outcomes were achieved. Conveying a clarification or simplification of an idea, solution or method to another group member was positively related to achievement, whereas experiencing non-responsive feedback from a group member, specifically no feedback or feedback that was irrelevant to what one has said or done, was characterised by anegativerelationtoachievement[16,17]. Webb’sreviewalsointerestinglyrevealedthatgroupwork was most useful when students were taught how to work in groups and how to present, provide andacceptassistance. Thisreceivedaidwasmostfruitfulandfunctionalwhenitwasintheform ofdetailedexplanationsandthenappliedbythestudenttotheexistingtaskortoadifferenttask. Slavin’sresearchshowedpositiveeffectsfromgroupworkoncross-ethnicrelationsandenhancing studentachievement[18]. Yackel,CobbandWoodfoundthatsmall-scalegroupworkproblem-solving followedbywholeclassdialoguegeneratedmanylearningopportunitiesthatdonotusuallyoccurin Educ.Sci.2016,6,30 3of15 aconservativetutorialorclass,comprisingopportunitiesforcollaborativediscussionandresolutionof contrastingviewpoints[19]. Over the past years, many studies have been conducted in order to investigate how effective competitive, individualistic, and cooperative group work methodologies are in endorsing and encouraging productivity and achievement [20,21]. Acknowledging these studies and using meta-analysis to study achievement in cooperative learning, the results showed that the average studentlearningthroughcooperativeapproachesperformedatabouttwo-thirdsastandarddeviation above the average student learning within a competitive (an effect size of 0.67) or individualistic (effectsizeequalto0.64)structuredlesson[22],promptinghigherachievementlevelswhenconsidering cooperativegroupworklearningcomparedtocompetitiveorindividualisticlearningstrategies. Groupworkplaysafundamentalrolebothincooperativeandincollaborativelearningmethods, andhasattractedsignificantresearchinterest[21–29]. Studiesdemonstratethatthesepedagogical customs of group work do produce higher achievement and more positive relationships amongst students,comparedtocompetitiveorindividualisticexperiences. Researchsuggeststhatcollaborativelearninghasquicklyturnedintoastrongpromoterofgroup workineducationalinstitutionsatalllevels[24]. Incollaborativelearning,participantsbrainstorm, share information and work, tackle the same problem together continuously within their groups andlearnfromeachothersotheircombinedcollaborativeachievementsurpassesthesimplesumof individualcontributions[29]. AsDamonandPhelpsclearlystate,thisisstructurallydifferentfrom cooperativelearning,whichreferstodiscretepracticesandconceptssuchasspecificroleassignments inagroupandgoalrelatedliabilityofbothmembersandthegroup,sothateachstudentisresponsible fortheentireconcludingresult[23]. Curtisdiscussesthatcooperativelearningmostlydealswithtasks thataredivisibleintomoreorlessindependentsubtasks,wherecooperatingpartiesworkinparallel toprocessindividualsubtasksinanautonomous,independentway[28]asopposedtocollaborative learningwhereasharedsolutiontoaproblemisbuiltsimultaneously,collectivelyandinliaisonwith allmembersofthegroup. Group collaboration can take a variety of forms and has been investigated in a broad range of contexts, including classroom-based learning [30], computer-based learning [31], web-based and e-learning[32].Whatthesecollaborations,however,haveincommonisthattwoormorelearnersinteract inasynchronousformtonegotiatesharedmeaningandjointlyandcontinuouslysolveproblems[26]. Sincelearningmathematicscanoftenbeviewedasalonely,individualisticorcompetitivematter, withstudentsdevelopingmathematicalanxietyoravoidance,collaborativeandcooperativelearning throughgroupworkcanaddresstheseproblemsandenhancestudents’progressandachievements[33]. Groupworkinteractionhelpsallmemberslearnconceptsandproblemsolvingstrategies,improve self-confidenceandovercomethefearofmistakes[6,14,34]. Mathematicsdoesofferopportunities forcreativethinking,exploringopenendedquestions,andposingintriguingproblems,andgroup workcanhelptofacethesetrialsanddifficulttasksthatarewellbeyondthecapacitiesofindividual work at that developmental phase. Group work can also be a convenient and helpful tool to help developasupportiveattitudetowardslearning. InastudybyBernero,thestudentswhostruggled withmathematicscontinuedtostressandstrainaboutitandbecamediscouragedwithindividual work,butimprovedbothacademicallyandsociallywhenitcametogroupwork,duetoanincreasein self-assurance[34]. Groupwork,however,canalsosometimesleadtounsuccessfuloperation,mainlyduetoalack of understanding of the important elements that arbitrate its effectiveness. Group efforts can be unproductiveinmanyaspects. Forinstance,lesscapablemembersofthegroupcansometimesleave it to others to accomplish and conclude the group’s exercises [35], whereas more capable student membersmightputinlessefforttoavoiddoingallthework[35]. Theamountoftimespentexplaining conceptscanbepositivelycorrelatedwiththeamountoftimelearning,somorecapablemembers mightlearnagreatdealbyprovidingdetailedexplanationsofthetaughtmaterialtolessablestudents strugglingtocomprehendasacaptiveaudience[35]. Educ.Sci.2016,6,30 4of15 The educator plays a vital role in the effective running of group work. During group work, the educator should act ‘both as an academic expert and as a classroom manager’ [20], be able to specify the academic objectives and aims of the lesson, make instructional decisions, and explain the task clearly defining the assignment goals [25]. There are different grading models available forassessinggroupwork. Someassesstheendproductonly, whileothersassessboththeprocess andthefinaloutcome. Thegradingcanbeconductedentirelybytheeducatorsorbythestudents usingaformofpeerassessment. Thebenefitsofpeerassessmentforstudentlearninghavebeenwell documented[36,37]. Anotheroptionisfortheeducatortoawardanoverallmarkfortheendproduct whereeachindividualgroupmemberhasascaledgradeaccordingtotheirlevelofcontributionas determinedbytheirpeersorlecturer,ensuringthatallgradingmustalignwiththelearningoutcomes forthemodule[38]. 3. Methodology ThisinvestigationwascarriedoutduringtutorialtimetofirstyearCivilEngineeringstudents, undertakingaMathematicsmoduleintheirsecondsemester.Thegroupworksessionswereconducted overfourweekstothewholeclass,whilststudyingthespecifictopicofIntegration. Theremaining tutorialsessionsofthesecondsemesterinvolvedpracticalexercisesintheoutstandingchaptersof thesyllabus,withstudentsattemptingtheseinanindividualisticmanner. Previousexperiencehas led to the opinion that students find Integration the most challenging and difficult to understand topicwithinthewholesyllabus. Asaresult,selectingthischapterseemedtobesuitableinorderto demonstratethepotentialeffectivenessofgroupworkinenhancingthestudentslearningexperience. Thetutorialsessionshadasteadyattendanceof23students,ofwhich4werefemale. Noneofthe studentssurveyedhadbeeninagroupworkenvironmentinMathematicsbefore,buthavehadthis formoflearningexperienceintheirothermodules.Allthestudentswhoattendedagreedtoparticipate inthisresearch. 3.1. GroupWorkSetup Group work was conducted whilst studying the Integration chapter, over four weeks during onehourtutorialsessionswhichrantwiceperweek,andthefollowingmaterialrelatingtoIntegration wascovered: • Week1: IntegrationbySubstitution; • Week2: IntegrationbyParts; • Week3: IntegrationusingPartialFractiondecomposition; • Week4: ApplicationsofIntegrationintheCivilEngineeringfield. Forthisinvestigation,theeducatorprovidedavitalroleintheeffectiverunningofgroupwork in mathematics. The lecturer was able to specify the academic objectives and aims of the session, make instructional decisions (such as size group, how long groups should stay together, student assignmentroles)andclarifythetaskclearlydefiningtheassignmentgoals. Studentswerepairedupingroups,makingsurethateachgroupconsistedofamixtureofcalibers ofstudents,inotherwords,weakerandstrongerstudentswerearrangedtoworktogether,butnever agroupconsistingsolelyofweakstudents. Theproblemsthatthestudentshadtotackleintheirgroup workwerebasedonthetheorytaughtinlecture,andwereeitherprovidedbythelecturerorsetbythe actualgroupmembers.Thelatterwasamorecomplexchallengeforthestudents,astheyhadtothink andproduce,withintheirgroups,suitableandworkableproblemsthatwerethengiventootherfellow groupsforthemtotackle.Thegroupworkinteractionwasattimescollaborativebutalsocooperativein nature,withstudentstacklingandworkingtogetheronthesameproblemoronspecificroleassignments. Forinstance,studentswereaskedintheirrespectivegroupstoconsideracurveoftheirchoice, whichhadtoconsistofaproductoffunctions,beabletoplotitonaCartesianplaneeithermanually oremployinggraphicalsoftwaretools,andthen,byapplyingtheintegrationtechniqueslearntduring Educ.Sci.2016,6,30 5of15 thelectures,theremainingtaskwastodeterminetheareaoftheregionboundedbythecurveand theaxisorbythecurveandstraightlinesoftheirchoice. Inthisproblem,eachgroupmemberwas assignedaroletofulfill,workingcooperatively,butsimultaneouslyeachstudentwasresponsiblefor theconcludingsolution. Duringtheintervention,theroleofeachgroupmemberwasobservedbythelecturer,makingsure thattherewassufficientcollaborationandcooperationandthateachstudentcontributedequallytothe finaloutcome. Theeducatorprovidedguidanceandsupportduringgroupworkactivities,observed thegroupinteractionandstudentengagement,gavehintsorclarifications,providedencouragement, drewmembersintothediscussion,behavedinafriendlyandconstructivemanner,managedtobalance toomuchortoolittleassistanceandintervenedwhennecessaryinafacilitativewayinordertoenable successfulcompletionofthetaskbythegroup. Uponcompletionoftheproblems,theresultswerehandedbacktotheteamwhichhadposedthe taskinitially,orsimplytoanotherfellowgroup,inordertomarkandprovideappropriatefeedbackto theirpeers. Inthisway,notonlywerestudentsdeepeningtheirunderstandingofthetheorywiththe helpoftheirclassmates,buttheywerealsolearningtocommunicate,todeliberate,toassessandto improvetheirmistakesaccordingly. In order to investigate the effectiveness of group work in mathematics, a more detailed and substantialquantitativeapproachwasemployedusingtwosetsoflevel4classes,whereallstudents hadengineering-basedbackgrounds. Forclarificationpurposes,thecohortwhichwasengagedin group work shall be referred to as the Experimental class and the other class which had no group work involvement during the semester shall be considered as the Control class. To benefit from accurate and feasible conclusions on the effectiveness of group work, an indirect approach was accomplishedbycomparingthesetwoclasses. Morespecifically,intheExperimentalclass,onlythe teachingandlearningonIntegrationwasdeliveredintheformofgroupworkduringtutorialtime, whereastheremainingsyllabuswascoveredundernormallearningarrangements. Thecontrolclass, whichconsistedof16students,hadtheirteachingandlearningexperiencedeliveredundernormal traditionalarrangementsthroughoutthewholesemester. 3.2. DataCollection Aquestionnaire(seeAppendixA)wasadministeredontheexperienceofgroupworkduring thesessions,aswellasaninvestigationintotheexamresultsfromtheendofsemesterexaminations. Studentswereinvitedtoparticipateinthestudy,whichwasvoluntaryduetoethicalconsiderations andinvolvedcompletionofquestionnaires,observationsofcollaborativeactivitywithhandwritten observationsmadebytheeducator.ThesurveywasadministeredonlytotheExperimentalclass,withall 23studentscompletingthequestionnaires. Somequestionsrequiredopinionatedhandwrittenreplies andtherestoftheresponsesweresoughton3-pointLikertscalesrangingfrom“Disagree”to“Agree”. Attheendofthesemester,withtheaidoftheoutputsofthefinalexams,theperformanceofthe studentsintheIntegrationquestionswascomparedwiththeanalogousperformanceofthestudents intherestoftheassessedquestions(Integrationvs. Restofexaminablequestions). Thisdifferencein performancebetweenthequestionsintheExperimentalclasswasadditionallylaterthencompared withthecorrespondingdifferenceinperformanceofthestudentsintheControlClass. TheIntegrationquestionswithintheendofyearexaminationsforeachcohort,theExperimental and the Control Class, had a different percentage weighting, specifically 60% of the exam from the Experimental Class had Integration questions assigned to it, whereas the examination for the Control Class had 50% of Integration examinable material. When regarding the performance of studentsinIntegrationquestionscomparedtotheirperformanceoftherestoftheassessedquestions, thisweightingwastakenintoconsideration. Thus,notonlywasthestudent’sperformanceonthe integrationtopicassessedrelativetotherestofthesyllabusfortheclasswithgroupworklearning, butalsoacomparisonwasmadewiththeanalogousperformanceofstudentsnotexperiencinggroup work from another cohort, the control class. Hence, any difference in the level of difficulty of the Educ.Sci.2016,6,30 6of15 Integrationquestionswithrespecttotherestofthequestionsintheexamandanydissimilaritiesin theaEcdaucd. Secmi. 2i0c1c6,a 6p, 3a0b ilitiesandstrengthsofthestudentsofthetwocohortsweretakenintoac6c oof u15n tin theanalysis. the academic capabilities and strengths of the students of the two cohorts were taken into account in In this context the authors employed, as a tool to measure the effectiveness of group work, the analysis. the ratio of student performance on integration questions relative to their performance in the In this context the authors employed, as a tool to measure the effectiveness of group work, the remainingquestions,andfromhereonafterthisratioshallbeconsideredastheperformanceratio. ratio of student performance on integration questions relative to their performance in the remaining Thisperformanceratioshallbeusedasanindicatortoevaluatetheeffectivenessofgroupworking. questions, and from here on after this ratio shall be considered as the performance ratio. This Theauthorssuggestthatthisratiobecalculatedbyexaminingthequotientofstudent’sperformance performance ratio shall be used as an indicator to evaluate the effectiveness of group working. The inindividualintegrationquestionsovertheremainingexamquestionsrespectively. authors suggest that this ratio be calculated by examining the quotient of student’s performance in individual integration questions over the remaining exam questions respectively. Total%marks from Integrationquestions Performanceratio = Performanceratio= TotalT%otmala%rksmfarrokms tfhroemReIsnttoegfrtahteioqnueqsutieosntsioinnstheexam Total %marks fromthe Restof thequestionsintheexam Forexample,intheExperimentalClass,arandomlyselectedstudentmanagedtoaccumulate 44outofthe60marksthatrelatetotheIntegrationtopic,henceapproximately73.3%((44/60)×100) For example, in the Experimental Class, a randomly selected student managed to accumulate 44 wasotuhte otfo tthael 6p0e mrcaernktsa tgheato rfelaaltleo tcoa tthede Imntaegrkrastiforno mtoptihce, hIenntceeg araptpioronxiqmuaetsetliyo 7n3s..3%16 ((o4u4/t6o0)f ×t h1e004) 0wmasa rks werethree tcoetiavle pderfcoernttahgeer oefm aallionciantegdq muearsktiso fnros,mh tehnec eIn4te0g%rat(i(o1n6 /q4u0e)st×ion1s0. 01)6 wouats otfh teheto 4t0a lmpaerrkcse wntearge e of succreescsefiuveldm faorr kthsef rroemmaitnhiengre qsuteosftitohnes, qhuenesceti o40n%s i(n(16th/4e0)e ×x a1m00.) wAapsp tlhyei ntogtatlh peerscuegngtaegsete odf spuecrcfeosrsmfual nce indimcaatorkr,s tfhroemp ethrfeo rremsta onfc teher aqtuioesftoiorntsh iins sthpee ceixfiacms. tAupdpelnytinwga tshe1 .s8u3g(g7e3s.t3e%d /p4er0f%or)m. ance indicator, the pIetrmfourmstabnecen roatteido ffoorr tehlius csipdeactiifoicn sptuudrepnots wesatsh 1a.8t3a (p7e3r.3fo%r/m40a%n)c.e ratiovaluegreaterthan1.0indicates that a stuItd menutstp ebref onromteedd fbore tetelurciindatthioeni nptuergproasteios nthsaetc tai opnerofofrtmheanecxea mraticoo mvapluaer egdretaotetrh ethraens t1o.0f the indicates that a student performed better in the integration section of the exam compared to the rest questionsintheexampaper,duetothevalueofthenumeratoroftheperformanceratioquotientbeing of the questions in the exam paper, due to the value of the numerator of the performance ratio greaterthanthedenominatorvalue. quotient being greater than the denominator value. 4. ResultsandDiscussion 4. Results and Discussion 4.1. QualitativeAnalysis: DiscussionoftheFindingsfromtheQuestionnaireSurvey 4.1. Qualitative Analysis: Discussion of the Findings from the Questionnaire Survey TheevaluationsurveyfilledinbyallstudentsoftheExperimentalclassisthemainsourceof The evaluation survey filled in by all students of the Experimental class is the main source of feedback examined as the qualitative analysis section of this project. The results of the first three feedback examined as the qualitative analysis section of this project. The results of the first three questionsofthesurvey,whichrequiredindividualcommentsofopinion,havebeensummarisedand questions of the survey, which required individual comments of opinion, have been summarised and grougproeudpienda inth ae tmheamticatwic awyabyy bcyo cnosnisdidereirninggt hthee rreessppoonnssee ffrreeqquueennccyy, ,aanndd ddepeipcitcetde dasa FsigFuigreu 1re. 1. Figure 1. Student responses to Q1–3 of the Questionnaire (see Appendix A). Figure1.StudentresponsestoQ1–3oftheQuestionnaire(seeAppendixA). Educ.Sci.2016,6,30 7of15 Educ. Sci. 2016, 6, 30 7 of 15 From these responses, it is deduced that in general students perceive mathematics as a difficult, Fromtheseresponses,itisdeducedthatingeneralstudentsperceivemathematicsasadifficult, challenging and yet rewarding subject, with all students agreeing that their group work experience challengingandyetrewardingsubject,withallstudentsagreeingthattheirgroupworkexperience in this hard module has been helpful and enjoyable. More detailed individual comments are that in this hard module has been helpful and enjoyable. More detailed individual comments are that group work was found to be constructive, deepening the student’s understanding of Integration. The group work was found to be constructive, deepening the student’s understanding of Integration. majority of the participants believe that working in groups positively affected the way they learn Themajorityoftheparticipantsbelievethatworkingingroupspositivelyaffectedthewaytheylearn mathematics and allowed them to develop their critical thinking and analytical skills. mathematicsandallowedthemtodeveloptheircriticalthinkingandanalyticalskills. Acknowledging Acknowledging that group work allows for collaboration between classmates, it strengthened their thatgroupworkallowsforcollaborationbetweenclassmates,itstrengthenedtheirconfidenceinthe confidence in the subject, and it served as another learning approach to reinforce their mathematical subject,anditservedasanotherlearningapproachtoreinforcetheirmathematicalknowledge. knowledge. Aspartoftheopinionedresponses,acoupleofstudentsdidmentionafewpossibleforeseeable As part of the opinioned responses, a couple of students did mention a few possible foreseeable drawbacks of working in groups, namely that it can slow down the lesson and that this form of drawbacks of working in groups, namely that it can slow down the lesson and that this form of lealrenairnngincga cnabne bne onnopnrpordoudcutcivtieveif ifo onnlylyo onneem meemmbbeerr ooff tthhee ggrroouupp ddooeess aallll tthhee wwoorrkk.. FigFuigruer2e 2is isa ab baarrc chhaarrtt sshhoowwiinngg ssttuuddeennttss rreessppoonnsesse sabaobuotu tthtehire ipreprceerpcteipotni oonf wofhwat hcaotntcroibnutrtiebsu tote s totthhee eeffffeeccttiivveenneessss ooff tteeaacchhiningg mmaaththeemmaatitcisc.s .MMoroer eththana n868%6% oof fththe esstutuddenentst sbbeleileiveevde dthtahta ttetaecahcihnign g mamthaethmemataictsiciss ims moroeree feffefcetcitviveew whheenni titb buuilidldss oonn pprreevviioouuss kknnoowwlleeddggee,, wwhheenn iti tccrreeaatetes scoconnnnecetciotinosn s bebtweteweenento tpoipcsicas nadndm mosotsti mimppoortratanntltylyw whheenn iitt uusseess ggrroouupp wwoorrkk aass aa ddiiddaaccttiicc aapppprrooaacchh. .MMoroer ethtahna n thrtehereqeu qauratertresrso foft htheer reessppoonnsseess aallssoo rreeffeerrrreedd toto enencocuoruargaignign rgearesoansoinngin rgathraetrh tehranth saimnpsilmy gpelyttignegt tainn g anaannsswweer raas saannooththere refeffefcetcivtiev etetaecahcihnign sgtrsattreagteyg fyorf omramthaetmheamticast.i c s. FigFuigreur2e. D2.i agDriaamgrashmo wshinogwtihneg ntuhme bneurmofbsetur doefn tssturedsepnotns driensgptoontdhiengd iftfoe rethnet odpitfifoenresnfot roepffteioctnisv efnoers s ofeQffueecstitvioenne4ssin oft hQeuqeusteisotnio 4n inna tihree. questionnaire. An unexpected outcome of this specific question is that only a few students (4 out of the 23 An unexpected outcome of this specific question is that only a few students (4 out of the students) consider teaching mathematics to be more effective when it uses technology. In this era, 23students)considerteachingmathematicstobemoreeffectivewhenitusestechnology.Inthisera, with the current advancements in technology, it can only be assumed that students would perhaps withthecurrentadvancementsintechnology,itcanonlybeassumedthatstudentswouldperhapsexpect expect or demand the teaching delivery to be more updated and in compliance with the changing ordemandtheteachingdeliverytobemoreupdatedandincompliancewiththechangingtechnological technological improvements. However, based upon these responses, it seems that students do not improvements.However,basedupontheseresponses,itseemsthatstudentsdonotconsideritnecessary consider it necessary for mathematics to conform to a more technological method of delivering formathematicstoconformtoamoretechnologicalmethodofdeliveringeffectiveteaching. effective teaching. Educ.Sci.2016,6,30 8of15 Educ. Sci. 2016, 6, 30 8 of 15 FFigiguurree 33 ddeeppiiccttss uussiinngg aa bbaar rchcahratr, ta,na nanaanlyasliyss oisf tohfet LhiekeLritk secratles cdaaletad oaft taheo fqtuheestqiounensatiioren. nTahiree . Tshigensiifgincaifinct acnotnccolunscilounssi ohnesreh aerree tahraett thhaet mthaejomriatyjo orift ystuofdsetnutds eangtrseea gthreaet tthheayt tlheaerynl efraormn fwroomrkwinogr aksi nag agsraougpro, ubepl,iebveel itehvaet tghraotupgr wouoprkw iso ar kgoisoda igdoeoad, eindjeoay,eedn tjaokyiendg tpaakritn ign pgarortupin wgororku panwd othrkinakn tdhatth ainllk thgarotuapll mgreomupbemrse wmebreer sgiwveenre agni veeqnuaaln oepqpuoarltuonpiptyo rttou cnoitnytrtiobuctoen ttori bthuet efitnoatl hoeufitcnoamleo uotfc othme egorofuthpe garoctuivpitayc.t ivity. Figure 3. Bar chart showing the number of students responding to the Likert scale questions in Figure 3. Bar chart showing the number of students responding to the Likert scale questions in the questionnaire. thequestionnaire. Most students also seem to be indifferent to the issue that group work allows some students to Most students also seem to be indifferent to the issue that group work allows some students be free riders, or that they learn more by being in a group as opposed to working individually. to be free riders, or that they learn more by being in a group as opposed to working individually. Additionally, taking into account the educators’ views of group work for this intervention, it can be Additionally,takingintoaccounttheeducators’viewsofgroupworkforthisintervention,itcanbe assumed that group work becomes useful for social reasons as well as the positive effects on learning amssautmheemdathtiacts.g Irto wuapsw noortekdb tehcaotm leeasrnuisnegfu wlfitohrinso gcriaolurpesa shoenlpseads two eimllpasrotvhee sptousditeinvtes’e affteticttusdoen tolewaranrdinsg mmaaththeemmaatitcicss. Iatnwda sanllootwededt htahtel esatrrnuignggliwngit hsitnudgeronutsp stoh eglpete dovtoeri mthperiorv eansxtuiedteyn tasb’oauttti ttuhdee stouwbjeacrdt. s mMatohreemovaetric, sthainsd waallyo wofe ldeathrneinstgr usgegemlinegd sttou dbeen mtsotroe gfeutno avnedr tehnejioryaanbxliee tfyora bleoaurntethrse asussbijsetcint.gM thoermeo vtoe r, thleisarwn atyhroofulgeahr dniisncgussesieomne idnsttoeabde omf omreemfuonriasnadtioenn jdouyaribnlge fmoratlheaermnaetriscsa slessisstoinngs. themtolearnthrough discussioninsteadofmemorisationduringmathematicslessons. 4.2. Quantitative Analysis: Findings from the Data Retrieved from the End-of-Year Examinations 4.2. QuantitativeAnalysis: FindingsfromtheDataRetrievedfromtheEnd-of-YearExaminations The end-of-year mathematics examination results for the respective semesters were retrieved and Tohuetpenudts- owf-eyreea rgmatahtehreemd aitnic soredxearm tion aetxiotrnapreoslualttes ifnotretrheestrinesgp eacntdiv evasleumaebslete rcsonwceluresiroentrsi efvoerd thanisd oruetspeuartschw setruedgya. tThoe rdeedteirnmoirndee wrthoetehxetrr agprooluapte winotrekr ewstaisn egffaencdtivvea liun atbhlee lceoanrncilnugsi oofn msfaotrhtehmisatriecsse, athrceh stmuadiyn. oTbojedcteivteer mofi nthee winhveetshteigragtiroonu, pit wwoarsk nwecaessseafrfye cttoiv bee ianbtlhe etol eparrondinugceo afnm eamthpeirmicaatli cinsd, itchaetomr atoin oabijde citni vtheios fatnhaelyisnivs.e Estxiagmatiinoinn,gi tewacahs sntuedceesnsta’sr ypetorfobremaabnlecet oraptiroo d(ruecfeera tno seemctpioirnic 3a.l2 itnod rieccaatlol rhtoowa itdhiisn thraistiaon walayss iisn.dEivxaidmuianlilny gcaelaccuhlastteudd)e innt ’bsoptehr ftohrem Eaxnpceerirmateiont(arle faenrdt othsee cCtioonntr3o.2l tcolarsesceasl,l thhoew fotlhloiswriantgio waavserinagdeiv piderufaolrlmyacanlcceu rlaattieods) winerbeo dthertihveedE,x appeprirmoxeinmtaalteadn dtot htherCeeo dnetrcoimlcalla spsleasc,etsh: e followingaverage performanceratioswerederived,approximatedtothreedecimalplaces: Average Performance Ratio for the Experimental Class (with group work) = 1.807 AveragePerformanceRatiofortheExperimentalClass(withgroupwork) = 1.807 Average Performance Ratio for the Control Class (no group work) = 0.863 Educ.Sci.2016,6,30 9of15 Educ. Sci. 2016, 6, 30 9 of 15 These average performance ratios show that students working in groups performed better in the AveragePerformanceRatiofortheControlClass(nogroupwork) = 0.863 integration-related questions compared to the class which did not have any group work arrTanhgeesemeanvtesr. aTghee pdeartfao arnmaalynscies irnadtiicoastessh tohwat twhhaetns tsutuddeennttss wwoorrkkeindg ini ngrgoruopusp tshepire rpfeorrfmoremdanbceett er (1.807−0.863) initnh tehein itnetgergartaitoionn-r reelalatteedd qquueessttiioonnss icmopmropvaerde dbyto artohuencdl a1s0s9%w h(ich did not hav×e1a0n0y=g1r0o9u.p4%w)o rk arrangements. Thedataanalysisindicatesthatwhenstudentsworked0in.8g6r3oupstheirperformancein thecoinmtepgarraetdio tno trhelea pteedrfqorumesatniocne soifm thper ostvueddenbtys athroaut natdte1n0d9e%d (a( 1n.8o0r7m−a0.l8 6c3la)s×s e1n0v0ir=on1m09e.n4t%. )comparedto 0.863 theperFfoigrmuraen 4c ebeolfowth eillsutustdraetnetss tthhea pteartftoernmdeadncae nraotrimo oafl cthlaes sstuendvenirtosn tmhaetn att.tended the experimental class (blue) against this of the students that attended the control class (red). The ratios present the Figure4belowillustratestheperformanceratioofthestudentsthatattendedtheexperimental individual students’ performances and are displayed in increasing performance value. It must be class(blue)againstthisofthestudentsthatattendedthecontrolclass(red). Theratiospresentthe noted that as the cohort numbers of these classes were different, specifically 23 students for the individualstudents’performancesandaredisplayedinincreasingperformancevalue.Itmustbenoted experimental class and 16 for the control class, the upper and lower end values of the performance thatasthecohortnumbersoftheseclassesweredifferent,specifically23studentsfortheexperimental ratios have been truncated in order to provide a more realizable, feasible and longitudinal classand16forthecontrolclass,theupperandlowerendvaluesoftheperformanceratioshavebeen comparison. truncatedinordertoprovideamorerealizable,feasibleandlongitudinalcomparison. Performance Ratio: IntegrationVs Rest of the examquestions 2.5 2.0 o Rati1.5 e c n a m r o1.0 f r e P Experimental Class Performance Ratio Integration Vs Rest of Questions 0.5 Control Class Performance Ratio Integration Vs Rest of Questions 0.0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Students FigFuigruer4e. 4E. xEpxepreirmimenentatlala annddC Coonnttrrooll ccllaassss ppeerrffoorrmmaannccee rraattiiooss oof fInIntetgegrartaitoino nquqeusetisotinosn csocmopmapreadre tdo tthoet he resrteostf othf teheex eaxmaminianbalbeleq uquesetsitoionnssa aggaaininsstt tthhee rreessppeeccttiivvee nnuummbbeerr ooff ssttuuddeenntst.s . The analysis of these results indicate that, throughout the spectrum, the performance ratio Theanalysisoftheseresultsindicatethat,throughoutthespectrum,theperformanceratiovalues values of students learning integration in the experimental class were always higher than those of the ofstudentslearningintegrationintheexperimentalclasswerealwayshigherthanthoseofthestudents students of the control class, as can be seen by the blue line always having an upward trend above ofthecontrolclass,ascanbeseenbythebluelinealwayshavinganupwardtrendabovetheredline. the red line. Hence, this figure clearly portrays and supports the benefits of group work on the topic Heonfc ien,tethgirsatfiiognu.r e clearlyportraysandsupportsthebenefitsofgroupworkonthetopicofintegration. Figure5belowpresentsthepercentageofstudentsthatperformedbetterintheIntegrationtopic Figure 5 below presents the percentage of students that performed better in the Integration topic comcopmapraerdedto tot hthee rreesstt ooff ththee quqeusetsiotinosn isn tinhet ehxeamex faomr efaocrh eclaacshs. cRleacsasl.l tRheact aal pletrhfaotrmaapnecref orartmioa gnrceeatrear tio grethaatenr 1t.h0 ainnd1i.c0atiensd ai cbaettetsera pbeerftotermr panercfeo irnm thane cinetiengrtahteioinn steegctriaotnio onf tsheec teixoanmo. fTthhee reexsuamlts. sThohwe rtehsaut lts showwhetnh asttuwdhenetns swtuodrkeendt sinw gorrokuepds i4n7.g8r%o uopf sth4e7 .c8l%asso afcthhieevcelads sbeatctehri emvaerdkbs eintt eInrtmegarraktisoinn (I1n1t eogurt aotfi on (11thoeu 2t3o pfethrfeor2m3apnecref orarmtioasn wceerrea tgiroesawtere rtheagnr ethaete vratlhuaen 1)t hwehvilasltu oen1ly) 3w7h.5i%ls toof nthlye s3t7u.5d%entosf ptherefosrtmudeedn ts pebrfeotrtemr eidn binettetegrraitnioinn tweghreanti ownowrkhinegn iwn onrokrimngali nclnaossr mararlacnlgaesmsaernrtasn (g6e omuet notfs t(h6eo 1u6t sotfutdheen1ts6).s tTuhdeesne ts). Thpeesrecpenertacgenest aaglseos hailgsohlhigighht tlihgeh etftfhiceieenfcfiyc ioefn gcryouopf gwroourkp iwn toerakchinintge amchatihnegmmaatitchse. m atics. Educ. Sci. 2016, 6, 30 10 of 15 EdEudc.uSc.c Si.c2i.0 21061,66, ,63, 030 10 1o0f 1o5f 15 Figure5. PercentageofstudentsperformingbetterinIntegrationquestionsvs. therestoftheexam FFiigguurree 55.. PPeerrcceennttaaggee ooff ssttuuddeennttss ppeerrffoorrmmiinngg bbeetttteerr iinn IInntteeggrraatitoionn q quueesstitoionns sv vs.s .t hthe er ersets to fo ft hteh ee xeaxmam questionsforboththeExperimentalandControlclass. qquueessttiioonnss ffoorr bbootthh tthhee EExxppeerriimmeennttaall aanndd CCoonnttrrooll ccllaassss. . Figure6presentstheaverageresultachievedbystudentsinintegrationquestionswithrespect FFiigguurree 66 pprreesseennttss tthhee aavveerraaggee rreessuulltt aacchhiieevveedd bbyy ssttuuddeennttss i nin i ninteteggraratitoionn q quuesetsitoionns sw witiht hr ersepsepcetc t tottoot h ttehhede didfififefffreeerrneentntrt arrnaanngggeeeo oofffo oovvveeerarraallllllp ppeeerrrffofoorrrmmmaaannnccceee iiinnn ttthhheee eeexxxaaammm.. . SSStttuuudddeeennntsttss w wweeererree c cclulluustssettreeerrdeed di niin np pepreefrroffroomrrmmanaacnnecc ee cacctaaettgeegogoroirreiiesesso ovovevererr2 2020%0%%i niinntetteerrrvvvaaalsllss... SSStttuuudddeeennntttsss wwweeerrreee aaarrrrrraaannngggeeeddd iininn ttthhheeessseee c ccaaatettegeggooorirreiiese ssi niin no orodrrdedree rtr otto oa saasssessseesss sgs rggorruoopuu pp wwowrookrrkek f eeffefffceetccitvtiievvneenenseesssssf o ffororrt htthheeed ddifiifffeffeererreennnttta aacccaaadddeeemmmiicicc s ssttrtrreeennngggtththh l leleevvveeelllsss oo offf tt hthheee s ssttutuudddeeennnttsts.s .. FiFgiugruere6 .6T. Thheea vaveeraraggeer reessuulltt ((%%)) aacchhiieevveedd bbyy ssttuuddeennttss iinn iinntteeggrraatitoionn qquuesetsitoinosn swwithit hrersepsepcet ctto ttohteh e Figure 6. The average result (%) achieved by students in integration questions with respect to the didffieffreernetnrta rnagnegeo foof voverearlalllp peerfroforrmmaanncceei inn tthhee eexxaamm ffoorr bbootthh tthhee EExxppeerriimmeenntatal laanndd CCoonntrtorol cllcalsass.s . different range of overall performance in the exam for both the Experimental and Control class. The results illustrate the beneficial effect of group work for almost all student categories. For TThheer reessuultltss iilllluussttrraattee tthhee bbeenneefificciaial lefeffefcetc tofo gfrgoruopu wpowrko rfkor faolrmaolsmt oasllt satulldsetnutd ceantetgcoartieegs.o Frioers . example, students achieving a final result between 60% and 80% in their exam presented an average Foexraemxapmlep, lset,usdtuednetsn atschaciehvieinvgin ag fainfianl arlerseuslut lbtebtewtweeene n606%0% anadn d808%0% inin ththeieri reexxaamm ppreresseenntetedd aann aavveerraaggee mark of 70.2% in the integration section when working in groups. In the Control class this percentage mmarakrko fof7 07.02.2%%i nint htheei ninteteggrraatitoionns seeccttiioonnw whheenn wwoorrkkiinngg iinn ggrroouuppss.. IInn tthhee CCoonnttrrooll ccllaassss tthhiiss ppeerrcceennttaaggee corresponded to 64%. This trend was similar throughout the performance categories and emphasises cocrorrersepspononddededt oto6 644%%..T Thhisist trreennddw waass ssiimmiillaarr tthhrroouugghhoouutt tthhee ppeerrffoorrmmaannccee ccaatteeggoorriieess aanndd eemmpphhaassiisseess the effectiveness of group work in mathematics for this study. thtehee feffefcetcitvivenenesessso offg grorouuppw woorkrki ninm maaththeemmaatticicssf foorrt thhiiss ssttuuddyy..