ebook img

ERIC ED616639: Modeling Associations of English Proficiency and Working Memory with Mathematics Growth: Implications for RTI PDF

2020·3.1 MB·English
by  ERIC
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview ERIC ED616639: Modeling Associations of English Proficiency and Working Memory with Mathematics Growth: Implications for RTI

Modeling Associations of English Proficiency and Working Memory with Mathematics Growth: Implications for RTI By Garret James Hall A dissertation submitted in partial fulfillment of the requirements of the degree of Doctor of Philosophy (Educational Psychology) at the UNIVERSITY OF WISCONSIN-MADISON 2020 Date of final oral examination: 05/06/2019 This dissertation is approved by the following members of the Final Oral Committee: Craig Alan Albers, Associate Professor, Educational Psychology Stanley A. Garbacz, Associate Professor, Educational Psychology David Kaplan, Professor, Educational Psychology Martha Alibali, Professor, Psychology ã by Garret James Hall 2020 All Rights Reserved i Acknowledgements This dissertation would not have been possible without the support of my faculty mentors, colleagues, friends, and family. I am particularly grateful for the support of my advisor, Dr. Craig Albers, and my committee. Your instruction in class, professional mentorship, constructive criticism, and personal support has been priceless. Thank you for the concerted time and energy you have all put forth to help me build my skills as a researcher and practitioner. Thank you, Carrie, for your companionship in life. Your loving support of my goals and well- being is invaluable. To my family: thank you for your endless support of me in pursuit of my education. Finally, thank you to my friends and classmates at UW for your friendship throughout the last four years. You have provided so much more meaning and value to graduate school than I could have imagined. The research reported here was supported by the Institute of Education Sciences, U.S. Department of Education, through Award #R305B150003 to the University of Wisconsin- Madison. The opinions expressed are those of the author and do not represent views of the U.S. Department of Education. ii Table of Contents ACKNOWLEDGEMENTS .......................................................................................................... I ABSTRACT ................................................................................................................................. IV LIST OF TABLES ...................................................................................................................... VI LIST OF FIGURES .................................................................................................................. VII CHAPTER I: INTRODUCTION ................................................................................................ 1 BACKGROUND ................................................................................................................................. 1 THE PRESENT WORK ..................................................................................................................... 8 CHAPTER II: LITERATURE REVIEW ................................................................................ 12 CHARACTERISTICS OF ENGLISH LANGUAGE LEARNERS AND THEIR EDUCATION .................... 12 PROPERTIES OF MATHEMATICS DEVELOPMENT ........................................................................ 21 MATHEMATICS COGNITION AND LANGUAGE .............................................................................. 22 CONFOUNDERS OF MATHEMATICS AND LANGUAGE DEVELOPMENT: SOCIOECONOMIC STATUS AND SOCIAL CONTEXT ................................................................................................................. 28 DOMAIN-GENERAL PREDICTORS OF MATHEMATICS PERFORMANCE AND RELATIONSHIPS WITH LANGUAGE .......................................................................................................................... 31 ATYPICAL MATHEMATICS DEVELOPMENT ................................................................................. 34 TYPES OF MATHEMATICAL KNOWLEDGE ................................................................................... 40 INSTRUCTIONAL FACTORS ........................................................................................................... 42 THE PRESENT STUDIES ................................................................................................................. 46 CHAPTER III: STUDY 1 .......................................................................................................... 52 RESEARCH QUESTIONS AND HYPOTHESES .................................................................................. 52 RESEARCH QUESTION 1 ............................................................................................................... 52 RESEARCH QUESTION 2 ............................................................................................................... 53 STUDY 1 METHOD ......................................................................................................................... 54 PARTICIPANTS .............................................................................................................................. 54 MEASURES .................................................................................................................................... 55 PROCEDURE .................................................................................................................................. 68 STUDY 1 RESULTS ......................................................................................................................... 84 DESCRIPTIVE STATISTICS ............................................................................................................ 84 UNCONDITIONAL MG-LCSM ...................................................................................................... 94 CONDITIONAL MG-LCSMS ......................................................................................................... 97 iii STUDY 1 DISCUSSION .................................................................................................................. 107 WORKING MEMORY FINDINGS .................................................................................................. 111 LIMITATIONS .............................................................................................................................. 115 CHAPTER IV: STUDY 2 ......................................................................................................... 120 RESEARCH QUESTIONS AND HYPOTHESES ................................................................................ 120 RESEARCH QUESTION 1 ............................................................................................................. 120 RESEARCH QUESTION 2 ............................................................................................................. 120 RESEARCH QUESTION 3 ............................................................................................................. 122 STUDY 2 METHOD ....................................................................................................................... 123 PARTICIPANTS ............................................................................................................................ 123 MEASURES .................................................................................................................................. 123 ANALYSIS .................................................................................................................................... 124 STUDY 2 RESULTS ....................................................................................................................... 131 STUDY 2 DISCUSSION .................................................................................................................. 147 CHAPTER V: GENERAL DISCUSSION .............................................................................. 157 SUMMARY ................................................................................................................................... 157 SUPPORT FOR HYPOTHESES AND RESEARCH QUESTIONS ........................................................ 158 IMPLICATIONS AND FUTURE DIRECTIONS ................................................................................. 160 IMPLICATIONS FOR THEORY ...................................................................................................... 163 IMPLICATIONS FOR RESEARCH .................................................................................................. 169 IMPLICATIONS FOR PRACTICE ................................................................................................... 176 FUTURE DIRECTIONS .................................................................................................................. 184 CONCLUSIONS ............................................................................................................................. 188 iv Abstract Although mathematics development research has become more prominent in the school psychology literature in recent years, a large research gap in this area exists regarding English language learners (ELLs). Significant research in education, cognitive science, and psychology has been devoted to understanding the links between language and mathematics, but the developmental factors that predict stability and change in mathematics skill development among ELLs are less clear. In one study, I investigated growth and change among ELLs compared to English-proficient student (EPS) peers using latent change score modeling to detect differences in interindividual and intraindividual change across language proficiency groups. I also examined the extent to which working memory differentially predicts mathematics change trends and patterns across language groups. In a second study, I closer examined the processes of mathematics development among ELLs by investigating the presence of heterogeneous, unobserved growth trajectories; whether development of English language proficiency (ELP) predicts mathematics growth patterns; and the interaction between working memory and language proficiency gains in predicting later mathematics growth. Results from Study 1 suggested that ELLs and their English-proficient peers change similarly across time though at different levels of performance. Additionally, kindergarten working memory operated similarly in predicting growth parameters among both ELL and EPS subpopulations. Findings from Study 2 are suggestive of a single highly variable growth trajectory among ELLs. Although working memory uniquely predicted mathematics developmental patterns, interactions between working memory and English proficiency gains were not predictive of later mathematics level or change pattern. However, gains in English early reading skills (arguably one domain of ELP) uniquely and positively predicted later mathematics performance level, although that advantage was v partially offset by a prediction of decelerating mathematics growth through fourth grade. Theoretical and practical applications for research involving ELLs in the context of RTI, future directions, and limitations are discussed. Keywords: English language learners, mathematics, English language proficiency, Response-to-Intervention, working memory vi List of Tables Table 1 ELL instructional programs and language goals from Faulkner-Bond et al. (2012) .................................................................................................................. 18 Table 2 Percentages of Students in Language Proficiency Categories............................. 61 Table 3 Variables Used in Multiple Imputation Model of Missing Data......................... 73 Table 4 Mean and Standard Deviation (SD) Estimates of CBQ Scale Scores Across Item- and Scale-Level Imputation........................................................................ 79 Table 5 Overall Sample Descriptive Statistics.................................................................. 85 Table 6 EPS Sample Descriptive Statistics....................................................................... 86 Table 7 ELL Sample Descriptive Statistics....................................................................... 87 Table 8 Study One Weighted Demographic Proportions and c2 Difference Tests........... 88 Table 9 T-Tests of Baseline Mean Differences................................................................. 89 Table 10 Unconditional MG-LCSM BIC Values................................................................ 95 Table 11 Multiple Group Conditional Latent Change Score Results - Regressions Freed Across Groups...................................................................................................... 100 Table 12 Multiple Group Conditional Latent Change Score Results with Regressions Constrained Across Groups................................................................................. 104 Table 13 Study 2 ELL Sample Descriptive Statistics......................................................... 132 Table 14 Study 2 Demographic Characteristics (Proportions)........................................... 133 Table 15 Relative Fit Indices of Growth Mixture Models................................................. 137 Table 16 Unconditional Latent-Basis Growth Parameters................................................. 140 Table 17 Covariate Effects in Latent-Basis Growth Curve Model.................................... 144 Table 18 Conditional Latent-Basis Growth Curve Parameters.......................................... 145 vii List of Figures Figure 1 Hypothesized logic model of mathematics growth and change over time for ELLs................................................................................................................. 49 Figure 2 Unweighted boxplots and raw data points of Fall 2010 kindergarten sample preLAS scores by primary home language...................................................... 64 Figure 3 Weighted boxplots of Fall 2010 kindergarten sample preLAS scores by primary home language.................................................................................... 65 Figure 4 Density plots of 20 distributions of PMM-imputed values (red) and the observed sample distribution (blue) for the CBQ Attentional Focus (top) and Inhibitory Control (bottom) scale scores in the fall of kindergarten......... 74 Figure 5 Profile plot of mathematics achievement between Spring of kindergarten and Spring of fourth grade for 30 randomly sampled EPSs and 30 randomly-sampled ELLs.................................................................................. 91 Figure 6 Weighted boxplot of EPS students’ mathematics IRT scores by assessment wave................................................................................................................ 92 Figure 7 Weighted boxplots of ELL students’ mathematics IRT scores by assessment wave................................................................................................................. 93 Figure 8 Multiple-group unconditional latent dual-change model of mathematics....... 96 Figure 9 Conditional MG-LCSM with covariate regressions unconstrained across groups. ............................................................................................................. 99 Figure 10 MG-LCSM estimates with regression parameters constrained to equality across groups.................................................................................................... 103 Figure 11 Estimated latent trajectories for each MG-LCSM by ELL status.................... 105 viii Figure 12 Profile plots of mathematics IRT scores in first through fourth grade for 30 randomly sampled ELL students...................................................................... 128 Figure 13 Profile plots of preLAS and EBRS data in Fall and Spring of kindergarten from 30 randomly sampled ELLs.................................................................... 129 Figure 14 preLAS and EBRS change score diagrams...................................................... 142

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.