Student Practice Sessions Modeled as ICAP Activity Silos Adam M. Gaweda, Collin F. Lynch NorthCarolinaStateUniversity Raleigh,NC,USA agaweda,cfl[email protected] ABSTRACT ofcontentorcreationofnovelexternalizedoutputslikesummaries. There are a number of novel exercise types that students can Finally,Interactivelearning involvesdirectlyengagingwithapeer, utilizewhilelearningComputerScience,eachwithitsownlevel agent,orinstructortoexploreinformationandreceivefeedback ofcomplexityandinteractionasoutlinedbytheICAPFrame- whichcanbeexpandedupon. work [10]. Some are Interactive, like solving coding problems; Constructive, like explaining code; Active, like retyping source Whiletheseexercisetypeshavemadetheirwayintoclassrooms code;andPassive,likereviewingslides. Todate,therehasbeen thereislittleevidenceofhowthesetypesofengagementinteract littleresearchonhowstudentsvarytheirstudyandengagement withone-another. Traditionalinterventionstudieshavefocusedon habitsbyexercisetypeandwhentheydoso. Inthispaper,we theoverallimpactofoneormoreexercisetypes[20,19,14,8],or presentourfindingsonstudentactivitysequencesfromanonline ontheautomatedselection/recommendationoffutureexcercises professionaldevelopmentcourse. Weisolatedstudentactivities baseduponastudentmodel[27],butnotonhowstudentswork intosessionsandthenproducedactivitytransitionvisualizations withoracrossthemintheabsenceofguidance. Norhasthisrecom- to compare the behavior of students who complete the course mendationworkbeenextendedtonontraditionallearningcontexts. tothosewhodonot. Wethenusedmultiplefactoranalysesto Absentanunderstandingofhowstudentsorchestratemultiplein- examinehowstudentstransitionfromonetypeofactivitytothe teractionmodeswefacechallengesinscaffoldingeffectivelearning next. Fromthisanalysisweidentifiedplatformsilos instudent’s opportunitiesandinevaluatingtheimpactofnovellearningenvi- work. Wefurtherexpandthisconcepttothepresenceofactivity ronments. Providingstudentswithineffective,oroverlycomplex silos grouping by type. We find that this siloing behavior is learningopportunitiesriskstrappingtheminafail/skippractice consistentinbothcompletersandnon-completersbutisweaker cyclethatwouldinhibitanyfunctionallearninggains[17]. for the latter group. Finally, we discuss our findings and how instructorsandresearchersmayusethisinformationtoensure Inthispaperwereportourinvestigationofhowstudentsdi- thatstudentsshowpersistencethroughpractice. recttheirpracticeofCSconceptswhenpresentedwithasetof options. Ourstudywasconductedinthecontextofanonline Keywords professionaldevelopmentcourseforPythonprogramming. This courseispartofaresearchstudyfundedbytheDepartmentof novel exercises, ICAP framework, study sessions, activity se- Labor to create novel learning pathways for existing technical quences,platformsilos,activitysilos,studentmodeling professionals to move into AI and Data-Science areas. We ex- tractedstudents’practice/studysessionsandanalyzedtheactivity 1. INTRODUCTION transitionswithineachsession. Wethenanalyzedtheseactivity CSEducationhaveintroducedanumberofnovelexercisetypes sequencestoanswerthefollowingresearchquestions(RQs): tobetterscaffoldstudents’experiences. Theseincluderetyping sourcecode[14],arrangingscrambledcodefragments(Parsons RQ1 Canwereplicatetheexistenceofplatformsilos introduced Puzzles)[21],debuggingprovidedcode[8],predictingoutput[26], in[1]withanewdataset? fillintheblanks[4],self-explanation[4],andsmallscalecoding RQ2 Aretherecommonactivitytransitionsbetweenstudents? exercises[2,12]. Eachoftheseexercisetypescanalsobemapped RQ3 HowdoactivitysequencesconnectwiththeICAPFrame- onto the ICAP framework [10]. This framework defines four work? categoriesofinstructionalactivitiesbaseduponstudents’levelof RQ4 How do the practice sessions of completers of the course engagement: Interactive,Constructive,Active,andPassive.Pas- differfromnon-completers? sive learning includesreadingstaticcoursematerialsorwatching lecturevideos.Activelearning isdescribedasrehearsingorcopy- ingsolutionsteps.Constructivelearning includesself-explanation To answer these questions, we first produced and analyzed asetofactivitytransitiondiagramsforstudentsinthecourse comparingthosewhocompletedthecoursetothosewhodidnot. Throughthisanalysis,weconfirmedthepresenceofplatformsilos whichweextendthisnotiontoincludeactivitysilos,wherestu- Adam Gaweda and Collin Lynch “Student Practice Sessions dentsprimarilyfocusonasinglemodeofengagement(consistent Modeled as ICAP Activity Silos”. 2021. In: Proceedings of withICAP)duringagivenpracticesession. Whenstudentsdid The 14th International Conference on Educational Data Mining transitionbetweenmodes,itwasonlytomoveuptheICAPchain (EDM21). International Educational Data Mining Society, 595-601. and never to ‘downgrade’ to a lower level of engagement. We https://educationaldatamining.org/edm2021/ supportourfindingsthroughtwodifferentfactoranalyses,which EDM’21June29-July022021,Paris,France helpexplainthe42-62%ofvariancebetweenthesessions. From Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 595 our results, we found ICAP categories isolated into individual need to have an understanding of the snippet as a whole to sessions,aswellasLMScontentconsumptionandquiztaking. deducewhatneedstobeincludedataparticularblanklocation. Reviewingincompleteworkedexamplesreducesineffectiveself- 2. BACKGROUND explanationsandenhancesthetransferoflearnedmaterials[4, 5]. Based on the results from Atkinson et. al., we consider 2.1 ICAPFramework FitB-styleexercisestorequirelowerlevelsofengagementthan The ICAP Framework seeks to classify the modes of student self-explanation,andthusclassifythemasanactive ICAPmode. engagement while engaging in learning activities [10]. These categories,Interactive,Constructive,Active andPassive respec- tivel. Passive engagementincludesactivitiessuchasreadinga 2.2.3 ParsonsPuzzles textorobservingavideo.Active engagementincludesrehearsing ParsonsPuzzles(PP)presentsnippetsofcodethathavebeen steps or copying solutions. Constructive engagement includes separatedintosegmentsandthenshuffledinorder[21]. Students self-explanationorcomparingandcontrastingmaterials. Finally, arethentaskedwithplacingthesegmentsbackintothecorrect Interactive engagementincludesrespondingandinteractingwith order. While Parsons Puzzles are helpful for learning how to anagent,system,oranotherperson. Ttheframeworkishierar- structure code, performance on Parsons Puzzles has not been chical,suggestingI>C>A>P,orthatactivitieswithhigher showntocorrelatewithstudents’abilitytoreadortracecode levelsofengagementpromotethegreatestlevelsoflearning. [11,20]and‘distractor’variantsarenotbeneficialtoyounglearn- ers[13, 16]. Thesefindingsfurthersupportourresearchgoals, ChiandWyliepresentaliteraturereviewofseveralempirical asnoteveryexercisetypemaybebeneficialforlearningallthe studiessupportingtheirICAPhypothesis[10]. Thefirststudy technicalskillsnecessaryforComputerScience. consistedofallfourmodesofengagementinmaterials science and showed learning improved significantly at a rate of 8-10% ChiandWylie’sdefinitionofconstructivemodesofengagement per mode. They then present two studies which used active, include“learnersgenerateorproduceadditionalexternalizedout- passive,andconstructivemodesinevolutionarybiologyandplate puts... beyondwhatisprovided”. Asmentionedintheprevious tectonics. Finally, Chi and Wylie present comparisons of two section,ParsonsPuzzlesaresimilartoourtoypeanutbutterand modesacrossnotetaking,conceptmapping,andself-explanation. jellyexercise. WhileParsonsPuzzlescouldbeconstruedasactive, In each of these studies, the results again showed that higher studentsmaynotfullycomprehendtheappropriateorderofcode modesofengagementhadhigherlearninggains. syntaxandmustfigureouttherightsequenceaspartoftheexer- cise. InourcommunicationswithChiaboutParsonsPuzzles,Chi ChiandWylie’swork,aswellasourownpersonalcommunica- statesthatdeterminingtheparticularICAPmodeforanactivity tionswithChi[9],notethatidentifyingthemodeofaparticular canbenon-trivial[9]. ‘Ifastudentalready[knows]therecipe,then activitycanbeanon-trivialtask. Forexample,atoyexample re-orderingitisjustpickingoutthesequencing,guidedbythese- taskcouldbepresentingstepstowardmakingapeanutbutterand quenceinformation[they]alreadyknow’thenitisactive. However, jellysandwichgivenrandomlyshuffledsegmentsofinstructions. ‘ifthestudent[has]notlearnedtheorderfromsomeothersource, Thistaskcouldbeconstructedasanactive exerciseifthestudent andyouareaskinghertofigureouttherightsequence’,itisacon- alreadyknowstherecipeandthetaskissimplypickingtheappro- structive exercise. Sincenovicesmaynothaveproficiencyatthe priatesequencefromthelistofsteps. However,ifthestudenthad timeoftheexercise,weelecttousetheupperboundICAPmode notlearnedtheappropriateorder,thenthetaskoffiguringout andconsiderParsonsPuzzlesasaconstructive learningactivity. therightsequencewouldbeconstruedasaconstructive exercise. ComputerSciencehasasimilartask,knownasParsonsPuzzles, 2.2.4 OutputPrediction that mirrors this toy example, discussed in more detail in the OutputPrediction(OP),alsoknownasvariabletracing,exercises followingsection. askstudentstoanalyzecodeandthenstatetheexpectedoutputs ofcodeexecutionortheexpectedvalueofavariableasthecode 2.2 NovelExerciseTypes progresses. Often,variabletracingisdoneduringconditionaland Inthissection,wedescribeeightdifferentexercisetypestudiedin loopinstructiontodemonstratehowthevaluesofthevariables ComputerScienceeducation,providesomeresearchbackground changeaftereachiteration. LikeParsonsPuzzles,OP-styleex- ontheexercisetype,andjustificationsforwhichICAPmodewe ercisesrequirestudentstoprocesscodesnippetsandexternalize willclassifythemasforofourstudy. theirexpectedoutputs. Thus,weconsideroutputpredictionas anotherconstructive learningactivity. 2.2.1 TypingExercises Typing Exercises (TE) require students to retype source code 2.2.5 Self-Explanation thathasbeenpresentedtothem[14]. TypingExercisescanbe Self-explanation(SE)exercisespresentstudentswithsourcecode used as active learning activities under the ICAP Framework andaskthestudenttoexplainhowthecodeoperates,describe astheyrequirestudentstoretypeverbatimthecodepresented theoverallefficiencyofthecode,orcreateadocumentationstring to them. Previously, we presented images of source code and to appear as a comment for the program or function. These showedthatself-selectedstudentsthatcompletedoptionaltyping areopen-endedexercisesthataresubjectiveinnatureandare exercises earned higher course grades and submitted less code consideredtobeconstructive [10]. However,ChiandWyliedo withbuildfailures. Leinonenet. al. alsopresentedoptionaltyping note that students’ may treat the self-explanation activity as exercisestostudentsbeforeprogrammingtasks[19],butwerenot active if“thestudent’sself-explanationisverbatimtowhatwas abletofindthesameresultsasours. Howevertheirstudyonly read”. However,novicesmaystrugglewithreadingandevaluating lastedtwoweeksandmanyoftheirselectedparticipantsdidnot programming code in a linear fashion, focusing more on what attempttheexercisesatall. eachlineofcodedid,ratherthanhoweachlineinteractedwith eachother,oringeneralproducepoorexplanations[25,5]. While 2.2.2 FillintheBlank constructive SEactivitiesmayproducehigherlearninggainsthan FillintheBlank(FitB)exercisesremoveasmallportionofcode lower-level modes, they may alsonotbe the most appropriate fromasnippetandasksstudentsto‘fillin’theblank. Students activity for students who are struggling, Thus, similar to our 596 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) decisionsforParsonsPuzzles,weusetheupperboundtoclassify 3. STUDY self-explanationasaconstructive learningactivity. 3.1 Design Westudiedproblemsolvinginthecontextofanonlineprofessional 2.2.6 FindandFixtheBug developmentcourseinPythonprogramming. Thisisapreparatory Resolvingerrors,ordebugging,isoneofthefirsthurdlesstudents courseforaseriesinAIthatisaimedatnon-traditionalstudents encounter when learning to program [3]. Once they find that makingacareertransition. ThecourseusedtheMoodleLearning an error has occurred, it will be necessary for them to resolve ManagementSystemandTYPOS,aCSexerciseplatform[14],and it before addressing any remaining subgoals for their solution. isorganizedinto10modulesEachmoduleincludesasetofstatic Forthepurposesofourstudy,weseparateddebuggingintotwo readingmaterial,lectureslides,prerecordedvideos,optionalprac- separateactivities-FindtheBug(FnB)andFixtheBug(FxB). ticeexercises,andamoduleassessment. Therewere24optional FindtheBugexercisespresentstudentswithcodethatcontainsa exercisespermodule,3exercisesforeachofthe8typespreviously commonmisconceptionfornovices. Insteadofresolvingtheerror, described. Studentswerefreetoworkonthepracticeexercisesor studentsareaskedtohighlighttheareaofcodewherethiserror assessmentsasmuchastheyliked. Theonlyrequirementforpro- exists. ThoughtheICAPframeworkconsidershighlightingtext gressingtothenextmodulewastoearnapassinggrade(80%or asanactive learningactivity,ChiandWyliedefineconstructive higher)onthepriormodule’sassessment. Inordertocompletethe behaviors as requiring some level of“inference”, or adding in course,studentsneededtoearnpassinggradesonallassessments. additionaldetailorqualification. Sincestudentsmustassessif alineofcodeis‘correct’ornot,theyareproducingqualifications Wehad69studentsconsenttothestudy. Ofthosestudents,37 andtherefore,weelecttolabelFnBexercisesasconstructive. successfullycompletedthecourse. Studentinteractionsonboth platforms were logged. We omitted some Moodle interactions FixtheBugexercisesfollowthenaturalprogressionofdebug- suchaslike“filedownloading”and“viewingthecourse”whichdid gingtasksbyrequiringstudentstoresolvebrokencode[8]. FxB notpertaintotheexplicitlearningactionswewerefoucusedon. activitiescouldbeconsideredconstructive or interactive depend- ing on the context. Similar to FnB exercises, Chi and Wylie Theresultingdatasetcontainedatotalof29,190interactions include‘repairing’asaconstructive behavior. However,FxB-style from all the students. We then used a similar strategy as [1] exercisescanalsobeinteractive becausestudentsoftenrelyonthe toextractusersessionsfromtheseinteractionsbaseduponan codeinterpreter’sfeedbackduringthedebuggingprocess. Fixing exploratoryanalysisofthegapsbetweeninteractions. Thetime one error may produce new errors with new feedback, or the deltas between course interactions were measured. If a delta repairmadebythestudentcouldbeincorrect. Thus,weagain betweeninteractionsexceededapredefinedcutoffthreshold,that chooseusetheupperboundtolabelFxBexercisesasinteractive. sessionwasconsideredover,andanewsessionwascreated. This was repeated for all interactions a student had for the course. 2.2.7 CodingExercises WhileSeshadriet. al. useda40minutecutofftoestablishtheend andstartofanewsession,wechosea60minutesasitwasourmost The final exercise type we used in our study is the de facto frequentlyobserveddeltabetweeninteractions. Weextracted1,313 standardofintroductoryCScourses-theCodingExercise(CE). sessionsintotal. Studentsthatcompletedthecourseaccounted WhileComputerScienceismorethanprogramming,codingex- for71%,or20,748,ofthecourseinteractions,with1,041sessions ercisesareoftenusedbyinstructorsasgradedcoursematerialfor total,atanaverageof28.1(±17.9)sessionspercompleter. studentstodemonstratetheirunderstandingofthecurrentcourse topic. Therehasbeenworkontheuseof‘many-smallprograms’ and‘simplesyntaxexercises’,whichsimplyrequirestudentsto 3.2 ActivitySessionTransitionProbabilities completesmall-scalecodingexercisestobecomefamiliarwiththea The route that students take through online materials can be particularimplementationbeforeutilizingitaspartoflarger-scale modeledasdiscreteMarkovprocesses,inwhicheachstaterep- problems[2,12]. Inbothcases,completingthesesmaller-scale resents an activity within the session. For example, a student programmingexercisesimprovedstudentperformanceandyielded maytransitionfromreviewinglectureslidestoviewinglecture happierstudents. Studentsoftenrelyonfeedbackfromtheinter- videos on Moodle, or MS→MV. Jeffries et. al. [17] used a preterastheyconstructtheirsolutionsandmorethanlikelyneed similarprocesstoanalyzesuccessandhelpseekingbehaviorswith todebugtheirownworkduringthisprocess. Thus,weconsider studentsinanintroductoryCScourse. CodingExercisesasaninteractive learningactivity. Figure1visualizesthetransitionprobabilitiesforcompleters: 2.3 StudentModelingandActivityMining transitionswithinTYPOSappearasdashedbluelines,transitions withinMoodlearesolidredlines,andtransitionsbetweenTYPOS Seshadriet. al. analyzedhowstudentstudysessionsoperated andMoodlearesolidblacklines. Forvisibility,onlytransitions across multiple platforms for three separate courses [1]. Their involving the start/end of a session or those with a frequency resultsfoundthatgivenmultipleeducationplatforms,students above 5% are presented. Module assessment(MA)accounted willoftenoperatewithinplatformsilos,oronlyutilizeoneeduca- for39%ofstartingsessionbehavior,TYPOSpracticeaccounted tionalplatformduringanindividualstudysession. Ofthestudent for36%,andlectureslidesandvideos(ContentConsumption) sessions,morethan90%ofthemincludedonlyoneplatform. Ina accounted for 26%. This figure shows students’ practice was follow-upstudy,theycomparedtheactivitiesofhigherperforming largelysiloedbyplatformwitheachsessiontakingplacewithina studentstothelowerperforminggroupandshowedthatboth singlemodeofinteraction. WiththeexceptionoftheMS→TE groupsweremostlikelytostickwithinplatformsilos[15]. Their transition, students either interacted with TYPOS or Moodle, workservesas themotivationfor our RQ1. Our hypothesisis butrarelytogether. SinceMAshowedthehigheststartingses- thatthepresenceofthese‘platformsilos’willcontinuetohold sionprobability,oneassumptionisthatstudentsenrolledinthe acrossothereducationalplatformsnotstudiedintheirresearch. coursewithpriorcodingexperiencemayhavereviewedthecourse materialtobecomefamiliarwithPythonsyntaxbeforegoingon tocompletethemoduleassessment. Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 597 Figure1: Completeractivitytransitionprobabilitiesduringsessions. One interesting observation from Figure 1 is that TYPOS numberoffactors. Table1showstheeigenvaluesforeachfactor practicesessionsinvolvedonlyoneorasmallsubsetoftheex- andtheircumulativevariance. Basedontheseresults,weutilized ercisetypesavailabletothestudents. Forexample,theTE,PP, twoseparatefactoranalyses. Thefirstanalysisuses3-factorsto andFitB exercisesweretypicallycompletedalone. Amongtwo correspondtothe3eigenvaluesgreaterthan1,assuggestedby exercisepairs,SE→CE,OP→FnB,andFnB→FxBshowed Kaiser[18]. Thesecondanalysisincreasesto5-factorsbasedon higherprobabilitiesthanendingthesession. thevarianceextractionrule,whichspecifiesa0.7thresholdfor eigenvalues[6,24,23]. WecanfurtherclassifytheactivitiesbytheirrespectiveICAP modes. Forexample,theSE→CE transitioncanalsobeviewed Table1: EigenvaluesforFactorAnalysisofCompleters as a Constructive→ Interactive transition, MS→TE can be Factor Eigenvalue CumulativeVariance viewed as Passive→ Active, and so on. From this perspective, 1 3.860695 30.51% transitionsbetweenactivitiesrarely‘downgraded’toalowermode. 2 1.390921 37.21% WiththeexceptionofMS→MAandMV→MA,modechanges 3 1.170659 41.79% primarilyshiftedbyonelevelofengagement. 4 0.916401 52.26% 5 0.810977 62.27% 3.3 ActivitySessionFactorAnalysis 6 0.665925 60.91% TheprobabilitiesshowninFigure1raisenewquestionsabout 7 0.649612 69.59% students’practicebehaviors. Notonlywereweabletoconfirm 8 0.486275 70.05% theexistenceofplatformsilos fromourRQ1,butbasedonthe 9 0.446064 55.23% observedtransitionprobabilities,wefoundthatstudentsmayalso 10 0.391094 55.42% operatewithinwhatwetermanactivitysilo,focusingprimarily 11 0.211376 55.42% ononeICAPmodepersession. Inthissectionwereportontwo factoranalyseswhichweusetoidentifythelatentvariablesfor Our next task was to identify load factor thresholds for our eachpracticesessioninordertostrengthenourclaim. latentvariables. Whilethereisnouniversalstandardforloading thresholds,thegoalistoonlyobservevariablesthatshareastrong FactorAnalysisisadimensionreductionmethodtodescribe associationwitheachotherandisanon-trivialprocess[22]. For thevariabilityofobservedvariablesinto,potentially,lowerlatent ourpaper,wewillfocusourattentiontovariablesabovea0.50 variables,orfactors. Toprepareourdatasetforfactoranalysis, (or25%ofthevariable’svariance)threshold,highlightingthem eachactivitywasconvertedintoabinaryvalue,representingthe inourtablesasgreen. Sincethedifferencebetweena0.50and presenceorabsenceoftheactivityinthesession. Forexample,if 0.49loadingisminimal,wewillalsohighlightvaluesgreaterthan asessiononlyinvolvespassivecontentconsumption,theresulting 0.4(or16%variance)inyellowforadditionalreference. vector for the session would be [1,1,0,0,0,0,0,0,0,0,0], where the1srepresentthepresenceoflectureslidesandvideosand0 Table2showsthefactorloadvaluesforour3-factoranalysis. representstheabsenceofallotheractivities. F1 has high loadings for OP, FnB, FxB, SE, and CE. If we consider the ICAP modes for this factor, this indicates a In order toevaluate the appropriateness of our data for fac- transitionof Constructive → Interactive TYPOSPractice. F2 toranalysis,weusetheBartlett’sandKaiser-Meyer-Olkintests. has high loadings for FitB and PP, or Active→ Constructive Bartlett’stestcomparesourcorrelationmatrixagainstaniden- TYPOSPractice. Finally,F3hashighloadforMS,orPassive tify matrix to test whether our samples are from populations MoodleInteraction. FromTable2,weonceagaincanconfirmthe with equal variance. Our samples were statistically significant presenceofplatformsilos,howeverweexpandourfactoranalysis (χ2=3360.05,p=0.0)andthuswecancontinuewithourfactor inordertoseethepresenceofactivitysilos. Moreover,3-factors analysis. Kaiser-Meyer-Olkincheckstheadequacyforourvari- onlyaccountsfor41.79%ofthecumulativevarianceandsousing ablestodeterminethesuitabilityoffactoranalysis. OurKMO the0.7eigenvaluethresholdwillallowustoaccountfor62.27%. scorewas0.83,whichagainshowsourdatasetisadequate. And finally, Table 3 shows the factor load values for our 5- Thenextstepforouranalysiswastodeterminetheappropriate factoranalysis. SimilartoTable2,weseeaseparationbetween 598 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) Table2: Loadingsfor3FactorAnalysisforCompleters. Values differences(χ2=997.8,p>0.0001)andourKMOscorewasalso greaterthan0.4areinyellowandgreaterthan0.5areingreen. adequateforanalysis(0.77). SimilartoTable1,wefoundsupport Activity F1 F2 F3 for 3- and 5-factor analysis, seen in Table 4. We note that a MS 0.0306 -0.0294 0.5073 6-factoranalysisisalsopossible,buttomirrorthefactoranalysis MV -0.1006 -0.0999 0.3891 forcompleters,weelectednottopursueit. MA -0.0269 -0.2862 0.2177 TE 0.0193 0.4336 -0.1345 Table4: EigenvaluesforFactorAnalysisofNon-completers FitB 0.4703 0.5471 -0.0286 Factor Eigenvalue CumulativeVariance PP 0.3300 0.6726 0.0392 1 3.480694 26.26% OP 0.6257 0.3885 0.0216 2 1.503161 34.57% FnB 0.8215 0.2149 0.0307 3 1.286916 41.39% FxB 0.8399 0.1546 0.0059 4 0.888718 47.44% SE 0.6802 0.1020 -0.0933 5 0.821608 54.51% CE 0.5019 0.0135 -0.1306 6 0.719444 62.12% 7 0.657629 66.31% 8 0.520019 63.79% TYPOSactivityandMoodleactivity. Further,theactivitiesfor 9 0.499220 57.46% eachfactorareconfinedtoasingleICAPmode,orwithinone 10 0.375677 57.69% mode. F1 contains mostly Constructive activities (as well as 11 0.246915 57.69% FxB),F2containsActive→Constructive activities,F3contains Passive activities,andF4andF5containInteractive activities. In addition,F3andF4showaseparationbetweenPassive Moodle Table5showsour3-factoranalysisfornon-completers. The contentconsumptionandInteractive assessmenttaking. Thus, sameactivitieshavinghighloadingsasF1andF2asthe3-factor fromtheresultsofour5-factoranalysis,weconfirmthepresence analysisforcompleters(Table2)andalsoshowsimilarplatform ofactivitysilos withinourstudents. silos. Likewise, the ICAP mode considerations are similar for eachfactor. F1showsConstructive→Interactive behaviors,F2 Table3: Loadingsfor5FactorAnalysisforCompleters. Values shows Active→ Constructive behaviors,andF3shows Passive greaterthan0.4areinyellowandgreaterthan0.5areingreen. Moodleinteraction. Activity F1 F2 F3 F4 F5 MS 0.0224 -0.0065 0.2411 0.1061 -0.0150 Table5: Loadingsfor3FactorAnalysisforNon-completers. MV -0.0836 -0.1009 0.9838 -0.0982 -0.0264 Activity F1 F2 F3 MA -0.0438 -0.1664 0.1175 0.9759 -0.0124 MS 0.0362 0.0014 0.4167 TE 0.0364 0.3448 -0.0843 -0.2002 -0.0106 MV -0.0334 0.0106 0.6616 FitB 0.4344 0.5629 -0.0451 -0.0445 0.0772 MA -0.0136 -0.2524 0.2999 PP 0.2740 0.7467 0.0004 -0.0193 0.0369 TE 0.0756 0.4637 -0.0719 OP 0.5520 0.4568 -0.0008 0.0282 0.1792 FitB 0.3176 0.6024 -0.0202 FnB 0.8419 0.2321 0.0035 -0.0110 0.0829 PP 0.1082 0.7404 0.0221 FxB 0.8759 0.1568 0.0058 -0.0255 0.0980 OP 0.5310 0.3499 0.1105 SE 0.5963 0.1562 -0.0318 -0.0450 0.2602 FnB 0.5573 0.4837 -0.0910 CE 0.3227 0.0549 -0.0631 -0.0088 0.8891 FxB 0.6636 0.3369 -0.1218 SE 0.8012 0.0568 0.0573 CE 0.5900 0.0201 0.0056 3.4 ComparingCompleterstoNon-Completers Havingshownthebasicactivitystructuresandidentifiedrelevant factorswethenchosetoexplorewasthedifferencebetweencom- Table6showsour5-factoranalysisfornon-completers. Non- pleterandnon-completerstudents. Weusedthesamemethodsfor completersmaintainedthe Constructive→Interactive connection thenon-completergroupforcomparison. Therewere32students forF1andF2alsomaintainstheActive→Constructiveconnection. thatfailedtocompleteourcourse. Non-completersmade8,442 Theremainingfactorsdodiffer,F3separatedtheFnB→FxB courseinteractionsacross341sessions,withanaverage10.7(±7.8) exercises from F1 and F4 focuses primarily on TE. The ab- sessionspernon-completer. sence of MA was expected since course progression requires passingmoduleassessments. Fromouranalysis,weconcludethat non-completersstilloperatedwithinactivitysilos. Wefirstproducedthesametransitionprobabilitiesdiagram fornon-completeractivitysessions,seeninFigure2. Similarto Table6: Loadingsfor5FactorAnalysisforNon-completers. completers, module assessment accounted for 31% of starting Activity F1 F2 F3 F4 F5 sessionbehavior,TYPOSpracticeaccountedfor49%,andlecture MS 0.0271 0.0234 0.0080 -0.0129 0.4040 slidesandvideos(ContentConsumption)accountedfor22%. Non- MV -0.0191 0.0204 -0.0417 0.0373 0.7123 completersprimarilyoperatedwithinasingleplatform,though MA 0.0049 -0.1705 -0.0558 -0.1637 0.2922 therewasmoreinteractionsbetweenMoodleandTYPOS.Forex- TE 0.0541 0.2612 0.0605 0.9570 -0.0716 ample,12%ofMV’stransitionsmigratedtoTYPOSexercisesand FitB 0.2259 0.6333 0.1698 0.1275 -0.0557 5%ofSEtransitionsmigratedtoMA. Whilecompleterstudents PP 0.0224 0.6734 0.1463 0.1925 -0.0155 separatedSE→CE andOP→FnB→FxB transitions,these OP 0.4707 0.4584 0.1711 0.0080 0.0735 twosequenceswerecombinedfornon-completers. However,this FnB 0.2516 0.4546 0.6255 0.0378 -0.0543 couldpotentiallybeduetothesizedifferences. Bothpopulations FxB 0.3618 0.2049 0.8444 0.0752 -0.0706 hadsimilarpopulationsizes,butnon-completersdidnotcomplete SE 0.8072 0.0883 0.2525 0.0740 0.0496 eachmoduleassessmentandwouldnotproduceasmanysessions. CE 0.6201 0.1006 0.1092 -0.0054 -0.0206 Wethencarriedoutthesamefactoranalysesfornon-completers. The results of a Bartlett’s test showed statistically significant Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 599 Figure2: Non-completeractivitytransitionprobabilitiesduringsessions. 4. DISCUSSION Second,theexercisetypeswerepresentedinaconsistentman- Theresultsfromourprobabilitytransitiondiagramsconfirmthe nerforeachmodule. Thustheywereimplicitlysequencedwith presenceofbothplatformsilos andactivitysilos instudentwork. lower-levelICAPmodesappearingonthetop. Aswementionedin Theyalsoservetohighlightareaswhereeducatorsandresearchers ourintroduction,discerningtheappropriateorderfor11different cantailormoreappropriatelearningpathsforstudentsandinpar- activitiesisanon-trivialmatterandmeasuringtheappropriate ticularthosestudentsthatmaybestrugglingwithcoursematerial. order of exercise types was not a part of our study. Thus, we presentedexercisesinanorderthatprogressivelyincreasedthe Ourstudyallowedstudentstoself-selectwhichactivitiesthey level of engagement. This may have influenced next practice wantedtofocustheirattentionson. Whilethisstyleofcourse selectionsbystudents. designcouldbeadopted,itdoesstillpresentlimitations. However, studentsthatprimarilyfocusonlower-levelICAPmodeactivities Finally,weacknowledgethattheICAPmodesassociatedwith maybereluctanttomoveintohigh-levelmodes. Instructorsorsys- eachexercisetypearesomewhatsubjectiveandopenfordiscussion. temsthatcanidentifythisstagnatepracticebehaviorcouldencour- MoreovertheexactevaluationofexerciseslikeParsonsPuzzles agestudentstomoveintohigh-levelICAPmodes. Thereisgrow- orself-explanationmayrequireadditionalresearchandcontext. inginterestintheconceptofnudgetheory to“alterbehaviorwith- Forthepurposesofthisstudy,whenfacedwithuncertaintywe outincentivesorbanningalternatives”[7]toencourageprogression. classifiedexercisesaccordingtoahigherlevelmodeofinteraction. Similarly, we presented students with a number of different 6. CONCLUSIONS activities,atdifferentcomplexities,fortheirlearningexperience. Inthiswork,weextractedthepracticeandstudysessionbehaviors Basedonourresults,studentsweremorethanwillingtocomplete fromnon-traditionalstudentslearningPython. Amongcompleters eachtypeofexercise. Somestudentsevenaskedformoreactiv- andnon-completersofthecourse,theyprimarilyfocusedonasin- itiesinourpost-coursesurvey. Whileincreasingtheworkloadfor gleplatform. Theactivitieswithintheseplatformsweremapped studentsandlearningmaterialcreators,manyoftheactivities to the ICAP framework. Further, we used factor analyses to weusedarenotoverlycomplexandrequiredaminimalamount identify the presence of activity silos within practice sessions. of time to create, or from the students’ perspectives complete. Completersandnon-completerssharedsimilarbehaviorsduring ActivitiesliketypingexercisesorParsonspuzzlescanbecreated thesepracticesessions,primarilyfocusingononeortwomodes fromexistingcoursematerialsandofferlittleincentiveforstudents ofengagementandrarely‘downgraded’tolowerlevelmodes. tocheat. Theysimplyallowstudentsanopportunitytopractice theconceptstheylearnedratherpassivelygiventothem,refining Wecanutilizetheseactivitysequencestohelpshapeouroverall theirunderstanding,beforeneedingtoapplyittoproblemsolving coursedesignsforensuringstudentlearning. Lower-levelactivities activitieslikecodingexercises. canprovidestudentswiththefoundationalknowledgenecessary asapartofthetechnicalskillsforthecontent,whilehigher-level activitiescanrefineandencourageadditionallearninggains. As theresearchinthisareaexpands,wehopetheinformationpre- 5. LIMITATIONS sentedinthisstudyencourageseducatorsandresearchersalike Weacknowledgesomelimitationswithourstudy. First,ourcourse to provide practice in both levels and can serve as a guide for ran during the COVID-19 pandemic, which has altered many recommendationsonhowtobestbuildlong-termproficiencies. individuals’habits. Ourpopulationalsocontainednon-traditional studentswhowerebalancingtheirstudieswithworkingfromhome Acknowledgements andsupportingotherfamilymembers. Thus,non-completionmay havebeendrivenbyexternalconstraintsthatarenotreflected ThisworkwassupportedinpartbytheNationalScienceFounda- inourdataset,andtheobservedhabitsmaychangesomewhat tionunderGrantDRL1721160. KristyBoyer,EricWiebe,and duringnon-COVIDtimes. CollinF.Lynch(co-PIs). 600 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 7. REFERENCES [15] NikiGitinabard,TiffanyBarnes,Sarah [1] SheshadriAdithya,NikiGitinabard,CollinFLynch,Tiffany Heckman,andCollinF.Lynch.Whatwillyoudonext? Barnes,andSarahHeckman.Predictingstudentperformance Asequenceanalysisonthestudenttransitionsbetween basedononlinestudyhabits: Astudyofblendedcourses. onlineplatformsinblendedcourses.InProceedingsofthe InternationalEducationalDataMiningSociety,2018. 12thInternationalConferenceonEducationalDataMining, [2] JoeMichaelAllen,FrankVahid,AlexEdgcomb,Kelly EDM2019,Montr´eal,Canada,July2-5,2019,2019. Downey,andKrisMiller.Ananalysisofusingmanysmallpro- [16] KyleJamesHarms,JasonChen,and gramsincs1.InProceedingsofthe50thACMTechnicalSym- CaitlinLKelleher.Distractorsinparsonsproblemsdecrease posiumonComputerScienceEducation,pages585–591,2019. learningefficiencyforyoungnoviceprogrammers.In [3] A.AltadmriandN.Brown.37millioncompilations: Proceedingsofthe2016ACMConferenceonInternational Investigatingnoviceprogrammingmistakesinlarge-scale ComputingEducationResearch,pages241–250,2016. studentdata.InProceedingsofthe46thACMTechnical [17] BrynJeffries,TimothyBaldwin,MarionZalk, SymposiumonComputerScienceEducation,SIGCSE andBenTaylor.Onlinetutoringtosupportprogramming ’15,pages522–527,NewYork,NY,USA,2015.ACM. exercises.InProceedingsoftheTwenty-SecondAustralasian [4] RobertKAtkinson,SharonJDerry,Alexander ComputingEducationConference,pages56–65,2020. Renkl,andDonaldWortham.Learningfromexamples: [18] HenryFKaiser.Theapplication Instructionalprinciplesfromtheworkedexamplesresearch. ofelectroniccomputerstofactoranalysis.Educational Reviewofeducationalresearch,70(2):181–214,2000. andpsychologicalmeasurement,20(1):141–151,1960. [5] RobertKAtkinsonandAlexanderRenkl.Interactive [19] AnttiLeinonen,HenrikNygren,NeaPirttinen, example-basedlearningenvironments: Usinginteractive ArtoHellas,andJuhoLeinonen.Exploringtheapplicability elementstoencourageeffectiveprocessingofworkedexamples. ofsimplesyntaxwritingpracticeforlearningprogramming. EducationalPsychologyReview,19(3):375–386,2007. InProceedingsofthe50thACMTechnicalSymposium [6] DeborahLBandalosandSaraJ onComputerScienceEducation,pages84–90.ACM,2019. Finney.Exploratoryandconfirmatory.Thereviewer’s [20] MikeLopez,JacquelineWhalley,PhilRobbins, guidetoquantitativemethodsinthesocialsciences,93,2010. andRaymondLister.Relationshipsbetweenreading, [7] ChrisBrown.Digitalnudgesforencouraging tracingandwritingskillsinintroductoryprogramming. developeractions.In2019IEEE/ACM41stInternational InProceedingsofthefourthinternationalworkshopon ConferenceonSoftwareEngineering: Companion computingeducationresearch,pages101–112.ACM,2008. Proceedings(ICSE-Companion),pages202–205.IEEE,2019. [21] DaleParsonsandPatriciaHaden. [8] NickChengandBrianHarrington.TheCodeMangler: Parson’sprogrammingpuzzles: Afunandeffectivelearning Evaluatingcodingabilitywithoutwritinganycode.In toolforfirstprogrammingcourses.InProceedingsof Proceedingsofthe2017ACMSIGCSETechnicalSymposium the8thAustralasianConferenceonComputingEducation- onComputerScienceEducation,pages123–128,2017. Volume52,ACE’06,pages157–163,Darlinghurst,Australia, Australia,2006.AustralianComputerSociety,Inc. [9] MicheleneTHChi.PrivateCommunication,August2020. [22] RobertAPeterson.Ameta-analysis [10] MicheleneTHChiandRuthWylie.TheICAP ofvarianceaccountedforandfactorloadingsinexploratory framework: Linkingcognitiveengagementtoactivelearning factoranalysis.Marketingletters,11(3):261–275,2000. outcomes.Educationalpsychologist,49(4):219–243,2014. [23] KeenanAPituchandJamesPStevens. [11] PaulDenny,AndrewLuxton-Reilly,andBeth Appliedmultivariatestatisticsforthesocialsciences: Simon.Evaluatinganewexamquestion: Parsonsproblems. AnalyseswithSASandIBM’sSPSS.Routledge,2015. InProceedingsofthefourthinternationalworkshopon computingeducationresearch,pages113–124.ACM,2008. [24] JohnRuscioandBrendanRoche.Determining thenumberoffactorstoretaininanexploratory [12] JohnEdwards,JosephDitton,DraganTrninic,HillarySwan- factoranalysisusingcomparisondataofknownfactorial son,ShelseySullivan,andChadMano.Syntaxexercisesin structure.Psychologicalassessment,24(2):282,2012. CS1.InProceedingsofthe2020ACMConferenceonInterna- tionalComputingEducationResearch,pages216–226,2020. [25] SusanWiedenbeck,VikkiFix,andJeanScholtz. Characteristicsofthementalrepresentationsofnovice [13] BarbaraJEricson,LaurenEMargulieux,andJochenRick. andexpertprogrammers: anempiricalstudy.International Solvingparsonsproblemsversusfixingandwritingcode.In JournalofMan-MachineStudies,39(5):793–812,1993. Proceedingsofthe17thKoliCallingInternationalConference onComputingEducationResearch,pages20–29,2017. [26] GregWilson.Teaching TechTogether: HowtoMakeYourLessonsWorkandBuild [14] AdamMGaweda,CollinFLynch,NathanSeamon, aTeachingCommunityaroundThem.CRCPress,2019. GabrielSilvadeOliveira,andAlayDeliwa.Typingexercises asinteractiveworkedexamplesfordeliberatepracticeinCS [27] GuojingZhou,JianxunWang,CollinF courses.InProceedingsoftheTwenty-SecondAustralasian Lynch,andMinChi.Towardsclosingtheloop: Bridging ComputingEducationConference,pages105–113,2020. machine-inducedpedagogicalpoliciestolearningtheories. InternationalEducationalDataMiningSociety,2017. Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 601