ebook img

ERIC ED608843: An Application of a Random Mixture Nominal Item Response Model for Investigating Instruction Effects PDF

2016·0.2 MB·English
by  ERIC
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview ERIC ED608843: An Application of a Random Mixture Nominal Item Response Model for Investigating Instruction Effects

An Application of a Random Mixture Nominal Item Response Model for Investigating Instruction Effects Hye-JeongChoi,AllanS.Cohen,andBrianA.Bottge Abstract Thepurposeofthisstudywastoapplyarandomitemmixturenominal itemresponsemodel(RIM-MixNRM)forinvestigatinginstructioneffects.Thehost study design was a pre-test-and-post-test, school-based cluster randomized trial. A RIM-MixNRMwasusedtoidentifystudents’errorpatternsinmathematicsatthe pre-testandthepost-test.Instructioneffectswereinvestigatedintermsofstudents’ transitioninginerrorpatterns.Thatis,we comparedstudents’errorpatternsinthe EnhancedAnchoredInstruction (EAI) condition with students’ error patterns in a business-as-usual(BAU)instructionalconditionfollowingeachinstruction.Wealso comparederrorpatternsofstudentswithmathdisabilitiesandstudentswithoutmath disabilitiesfollowingthetwotypesofinstruction. Keywords Randomitemmodel • MixtureIRTmodel • Nominalresponsesmodel 1 Introduction Mixture item response theory (MixIRT) models have been used for modeling populationheterogeneity(e.g.,Mislevy&Verhelst1990;Rost1990).Mostmixture models consider only persons random but items fixed. Random item IRT models (De Boeck 2008),however,consider bothitem and personparametersas random. This is more appealing as (1) both items and personsare typically assumed to be randomsamples fromsome populationand (2)treating bothitems and personsas randompermitsinclusionofcovariatesonbothitemandpersonparameterstohelp explaindifferencesinbothitemandexamineeparameters(VandenNoortgate,De Boeck,&Meulders,2003;Wang2011). Also, to date, most MixIRT models have primarily focused on dichotomously orpolytomouslyscoreditems. MixIRTmodelscanbeusefullyappliedtonominal H.-J.Choi((cid:2))•A.S.Cohen UniversityofGeorgia,AderholdHall125,Athens,GA30601,USA e-mail:[email protected] B.A.Bottge UniversityofKentucky,222TaylorEducationBuilding,Lexington,KY,USA ©SpringerInternationalPublishingSwitzerland2016 39 L.A.vanderArketal.(eds.),QuantitativePsychologyResearch,Springer ProceedingsinMathematics&Statistics167,DOI10.1007/978-3-319-38759-8_4 40 H.-J.Choietal. responses items. For example, MixIRT models can effectively model to capture information about specific error patterns which individual distractors for multiple choiceitemsmaycontain. Thepurposeofthisstudywastoapplyarandomitemmixturenominalresponse modeltoanempiricaldatasetforinvestigatinginstructionaleffects.Animportant benefitofsuchamodelisthatitispossibletoexplicitlymodelrandomnessofitem and ability parameters as well as specific aspects of students’ response patterns. We providea brief descriptionof the randomitem mixture nominalmodel(RIM- MixNRM)andasimulationstudytoevaluatethequalityoftheestimationmethod. Then, we provide an empirical example in which a RIM-MixNRM is applied to mathematic test data to investigate effects of an experimental instruction on students’errorpatternsonfractionscomputation. 2 ARandomItem Mixture NominalResponseModel The probability of selecting individual categories in an item with two or more nominalcategoriescanbewrittenasalinearfunctionofitemcategoryandperson parameters. Bock (1972), for instance, introduces a nominal model in which the probability of selecting category k of item i, P .(cid:2)/, is defined as a multinomial ik j logisticfunction: exp.(cid:9) (cid:2) C(cid:12) / P .(cid:2)/D P ik j ik ; (1) ik j K exp.(cid:9) (cid:2) C(cid:12) / kD1 ik j ik where iD1;:::;nitems, k D1;:::;K responsecategories, jD1;:::;N examinees, (cid:12) denotestheinterceptforcategorykofitemi, ik (cid:9) denotestheslopeforcategorykofitemi,and ik (cid:2) denotesthepersonparameterofpersonj. j Bolt, Cohen, and Wollack (2001) extended this model to a mixture nominal IRT model as a way of detecting heterogeneityin a population.In doing so, Bolt et al. (2001) included a class-specific category intercept parameter to specify the propensityofselectingagivencategoryofitemiformembersoflatentclassg.The class-specificprobabilityofaresponseisgivenby exp.(cid:9) (cid:2) C(cid:12) / P .(cid:2)/D P ik j gik ; (2) gik j K exp.(cid:9) (cid:2) C(cid:12) / kD1 ik j gik withmarginalprobability XG P .(cid:2)/D (cid:11) P .(cid:2)/; (3) ik j g gik j g AnApplicationofaRandomMixtureNominalItemResponseModel 41 where(cid:12) denotestheclass-specificcategoryintercept,g D 1:::;Glatentclasses, gik P and(cid:11) mixingproportion( G(cid:11) D1).Forresolvinganindeterminacyfortheitem g g g P P categoryparameters,constraintsof K(cid:9) D 0 and K(cid:12) D 0 were set for all k ik k gik itemsandallclasses. Bolt et al. (2001) applied Markov chain Monte Carlo (MCMC) algorithm to estimate the model in a general hierarchical framework and a fully Bayesian approachasimplementedinthecomputersoftwarecomputersoftwareWinBUGS. Theyusedfollowingconjugatepriors: cj (cid:3)Multinomial.1j(cid:11)1;:::;(cid:11)G/ (cid:11) D.(cid:11)1;:::;(cid:11)G/(cid:3)Dirichlet.˛1;:::;˛G/ (cid:2)jjcj Dg(cid:3)N.(cid:10)(cid:2)g;(cid:5)(cid:2)2g/ (cid:9)ik (cid:3)N.(cid:10)(cid:9);(cid:5)(cid:9)2/ (cid:12)gik (cid:3)N.(cid:10)(cid:12)g;(cid:5)(cid:12)2g/: In their model, however, item parameters were treated as fixed as in the conventionalmixtureitemresponsemodels.Inthecurrentstudy,weextendedtheir modeltoamodelwherebothitemandpersonparametersaretreatedasrandom. 3 SimulationStudy Thesimulationstudydescribedbelowwasdesignedtoexaminethebehaviorofthe RIM-MixNRMunderpracticaltestingconditions. 3.1 SimulationDesign Hundred sets of 20 four-choice item responses were simulated from a standard normaldistributions,N.0;1/. Six hundredexamineesfor three latent classes were simulated and mixing proportionswere 0.33 and ability was generated as N.0;1/ foreachclass.ItemparameterestimatesadoptedfromBoltetal.(2001)wereused to select item generating parameters. Generating values for model parameters are giveninTable1.AscanbeseeninEq.(2),inthisparticularRIM-MixNRM,(cid:12) is gik theparametertodistinguishlatentclasses. Theparametersforhyperpriorswereused:˛1 D:::D˛G D0:5;(cid:10)(cid:2)g (cid:3)N.0;1/; 1=(cid:5)(cid:2)2g (cid:3) Gamma.2;4/; (cid:10)(cid:9) (cid:3) N.0;1/; 1=(cid:5)(cid:9)2 (cid:3) Gamma.2;4/, (cid:10)(cid:12)g (cid:3) N.0;1/; 1=(cid:5)2 (cid:3)Gamma.2;4/.TheseparametersweresimilarwithonesusedbyBoltetal. (cid:12) g (2001)andonlyprovidedminimuminformationforeachparameter.Inadditionto 42 H.-J.Choietal. 8 0 0 7 0 7 8 4 7 4 1 3 7 4 0 2 3 4 2 2 9 1 1 8 4 6 7 1 5 2 5 7 6 8 1 7 2 5 6 5 0. 0. 0. 0. 1. 0. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. (cid:12)4 (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 4 4 3 1 3 1 9 1 4 5 2 2 8 2 9 2 9 2 8 3 0 8 3 3 9 5 1 9 8 1 9 7 3 2 6 1 0 4 4 2 0. 0. 0. 0. 0. 2. 5. 3. 3. 2. 1. 2. 2. 3. 2. 0. 1. 1. 0. 1. (cid:12)3 (cid:2) (cid:2) 0 0 4 8 0 2 0 9 2 6 6 5 4 4 4 4 4 1 2 2 2 3 3 7 5 0 2 6 0 3 1 3 8 6 5 5 1 2 3 1 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. (cid:12)2 (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 3 4 4 7 2 7 6 1 2 5 7 5 6 3 0 5 6 0 7 8 3 Class(cid:12)1 0.7 0.4 (cid:2)0.5 (cid:2)0.2 (cid:2)0.9 (cid:2)1.8 (cid:2)1.1 0.4 1.2 (cid:2)0.7 1.2 0.1 1.6 (cid:2)2.2 0.4 0.0 0.0 (cid:2)0.6 (cid:2)0.7 (cid:2)0.8 8 0 0 7 0 7 8 4 7 4 1 3 7 4 0 2 3 4 2 2 9 1 1 8 4 6 7 1 5 2 5 7 6 8 1 7 2 5 6 5 0. 0. 0. 0. 1. 0. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. (cid:12)4 (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 4 4 3 1 3 1 9 1 4 5 8 2 2 2 9 2 9 2 8 3 0 8 3 3 9 5 6 4 3 3 5 2 1 7 1 1 0 4 4 2 0. 0. 0. 0. 0. 2. 2. 1. 1. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0. 1. (cid:12)3 (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 0 0 4 8 0 2 0 9 2 6 6 5 4 4 4 4 4 1 2 2 7 8 8 2 0 5 2 6 0 3 1 3 8 6 5 5 1 2 3 1 2. 2. 2. 3. 3. 2. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. (cid:12)2 (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 2 4 4 7 2 7 6 1 2 5 7 5 6 3 0 5 6 0 7 8 3 Class(cid:12)1 0.7 0.4 (cid:2)0.5 (cid:2)0.2 (cid:2)0.9 (cid:2)1.8 (cid:2)1.1 0.4 1.2 (cid:2)0.7 1.2 0.1 1.6 (cid:2)2.2 0.4 0.0 0.0 (cid:2)0.6 (cid:2)0.7 (cid:2)0.8 8 0 0 7 0 7 8 4 7 4 1 3 7 4 0 2 3 4 2 2 9 1 1 8 4 6 7 1 5 2 5 7 6 8 1 7 2 5 6 5 0. 0. 0. 0. 1. 0. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. dy (cid:12)4 (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) u st 4 4 3 1 3 1 9 1 4 5 8 2 2 2 9 2 9 2 8 3 on 0.0 0.8 0.3 0.3 0.9 2.5 2.6 1.4 1.3 0.3 0.5 0.2 0.1 0.7 0.1 0.1 1.0 1.4 0.4 1.2 ati (cid:12)3 (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) ul m 0 0 4 8 0 2 0 9 2 6 6 5 4 4 4 4 4 1 2 2 datasetsforsi Threshold Class1(cid:12)(cid:12)12 0.740.2 0.440.3 (cid:2)0.570.3 (cid:2)0.220.7 (cid:2)0.970.5 (cid:2)1.860.0 (cid:2)1.110.2 (cid:2)0.420.6 (cid:2)1.251.0 (cid:2)0.771.3 (cid:2)1.250.1 0.160.3 (cid:2)1.630.8 (cid:2)2.200.6 (cid:2)0.450.5 0.060.5 0.000.1 (cid:2)(cid:2)0.670.2 (cid:2)(cid:2)0.780.3 (cid:2)0.830.1 g neratin (cid:9)4 (cid:2)1.17 (cid:2)1.07 (cid:2)0.89 (cid:2)0.80 (cid:2)0.62 (cid:2)0.55 (cid:2)1.62 (cid:2)0.95 (cid:2)1.08 (cid:2)1.81 (cid:2)0.94 (cid:2)1.79 (cid:2)0.54 (cid:2)1.31 (cid:2)0.96 (cid:2)0.73 (cid:2)0.94 (cid:2)1.01 (cid:2)0.80 (cid:2)0.42 e g or 14 39 51 13 31 54 38 50 27 78 43 34 32 36 40 32 11 84 62 35 erf (cid:9)3 (cid:2)0. 0. (cid:2)0. 0. 0. (cid:2)0. 0. 0. 0. 0. (cid:2)0. 0. (cid:2)0. 0. (cid:2)0. 0. (cid:2)0. (cid:2)0. (cid:2)0. (cid:2)0. et m mpara (cid:9)2 0.30 (cid:2)0.21 (cid:2)0.29 (cid:2)0.32 (cid:2)0.42 (cid:2)0.53 0.29 (cid:2)0.61 (cid:2)0.39 0.12 0.46 0.03 (cid:2)0.23 (cid:2)0.24 0.46 (cid:2)0.52 (cid:2)0.29 0.21 0.12 (cid:2)0.29 Ite pe 1 9 9 9 3 2 5 6 0 1 1 2 9 9 0 3 4 4 0 6 1 Slo (cid:9)1 1.0 0.8 1.6 0.9 0.7 1.6 0.9 1.0 1.2 0.9 0.9 1.4 1.0 1.1 0.9 0.9 1.3 1.6 1.3 1.0 e Tabl 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 AnApplicationofaRandomMixtureNominalItemResponseModel 43 P P P Kk (cid:9)ik D 0, Kk (cid:12)gik D 0, and Gg (cid:11)g D 1, for identification, (cid:10)(cid:2) and (cid:5)(cid:2) set to zeroandoneforthefirstclass.Thesepriors,hyperpriors,andconstraintswerealso usedforanalyzingtheempiricaldatasetinthelatersection.Thecomputersoftware computer software WinBUGS (Spiegelhalter, Thomas, Best, & Lunn, 2007) was usedforbothsimulationandempiricalstudies. Convergence of the MCMC algorithm was examined using the Geweke test (1992)with a single chain as implementedin the computerprogramConvergence Diagnosis and Output Analysis for MCMC (CODA: Plummer, Best, Cowles, & Vines, 2006). Based on the Geweke test (1992) with a single chain and plots of autocorrelations, kernel density estimates of the marginal posterior distributions, andhistoryplotsofdrawsfromposteriors,aburn-inof3000iterationswassufficient to achieve stationarity for all parameter estimates. Following this burn-in, an additional5000iterationsweredrawntoobtainestimatesforeachoftheposterior distributionsofmodelparameterestimates. 3.2 SimulationStudyResults 3.2.0.1 ModelSelection To investigatewhethermodelfit indicescouldidentify thecorrectnumberoflatentclasses, one-tofour-classRIM-MixNRMswerefitto thedatasets.TheBayesianinformationcriterion(BIC:Schwarz1978)andAkaike’s informationcriterion(AIC:Akaike1974)werechosenasmodelfitindicesbecause oftheirpopularityamongresearchers.Bothindiceswereabletoidentifythecorrect model,thatis,bothindicatedthethree-classmodelwasthebestfitmodelfor93of 100replications.Fortheremainingreplications,BIC suggesteda two-classmodel andAICafour-classmodel. Label Switching Label switching is a well-known problem in finite mixture modeling. Two types of label switching can occur with mixture modeling (Cho, Cohen,&Kim,2013).ThefirstoccursoverasingleMCMCchain:thelabelsofthe latentclassesswitchduringestimation.Thesecondtypeoflabelswitchingmaybe observedwhenlabelsswitchbetweenmultipledatasetsormultipleanalysesinboth Bayesianandmaximumlikelihoodestimation.Inthecontextofasimulationstudy, oneneedstobeawareofthepossibilityoflabelswitching,aswhenlabelsswitchon differentreplicatedatasets,thismaycauseconfusionwheninterpretingresults.In thecurrentstudy,thepossibilityofoccurrenceoflabelswitchingwasinvestigated byinspectingprofilesofitemestimatesacrosslatentclasses.Whenlabelswitching was detected, latent classes were renamed by matching the profiles of parameter estimates across replications before calculating bias, mean squared error (MSE), andclassificationaccuracyrates. Recovery of Parameters A recovery analysis was done to determine whether the MCMC algorithm accurately recovered the model parameters of the RIM-MixNRM. In addition to inspection of label switching, parameter estimates hadbeenplacedonthemetricofthegeneratingparametersandthenbiasandMSEs 44 H.-J.Choietal. ofparameterestimateswerecalculated.Correlationsbetweengenerationvaluesand estimatesalsousedfortherecoveryanalysis. ResultsshowedthatmostoftheparametersoftheRIM-MixNRMwererecovered well: bias of item slopes, personability and mixing proportionwere aboutor less than0.05;MSEwereaboutorlessthan0.16;andcorrelationswereaboutorhigher than 0.93. Correlations between item threshold parameters and estimates, (cid:12), was 0.94,butbiasandMSEwere(cid:2)0:16and0.16,respectively,andappearedtodepart slightlyfromgeneratedvaluesthanotherparameters.TheRIM-MixNRMcorrectly classifiedexamineesintotheirtrue(i.e.,simulated)classes87.85%ofthetime. 4 Empirical Study:Instruction Effects on Students’ Fractions Computation In thissection, we illustrate howa RIM-MixNRMcan be used to help investigate effects of instruction on students’ learning process. In this example, students’ error patterns were examined on a test of fractions computation in a multi-year clusterrandomizedinstructionalintervention.Themainpurposeofthestudywasto investigateanexperimentalinstructionalconditioneffectsonstudents’errorpatterns incomputingfractions. 4.1 Data Description Study Design The host study designwas a school-basedcluster randomizedtrial. Participantsincluded446middleschoolstudentsinGrades6–8in25generaleduca- tionmathclassroomsin12middleschoolsinandaroundalargemetropolitanarea intheSoutheast.Studentswererandomlyassignedtoanexperimentalinstructional condition (N D 214) or to a business-as-usual (BAU) condition (N D 232). Therewere123studentswithlearningdisabilitiesand323studentswithoutlearning disabilitiesinthestudy. The experimental condition implemented Enhanced Anchored Instruction (EAI; Bottge, Ma, Toland, Gassaway, & Butler, 2012). EAI was designed for use in helping to improvecomputationand problemsolving skills of adolescents, includinglow-performingstudentswithlearningdisabilitiesbyincludingpractical, hands-on applications to help students visualize the abstract concepts present in the problem. Teachers ask probing questions and offer instructional guidance to studentsastheyviewthevideoandhelpthemidentifyrelevantinformationtosolve theproblem.Thiseliminatestheneedforreading,askillmanylow-achievingmath studentsalsolack. FractionsComputationTestAFractionsComputationTest(FCT)consistingof20 partial credit items (14-additionand 6-subtraction items) was designed by Bottge AnApplicationofaRandomMixtureNominalItemResponseModel 45 et al. (2012)to measure students’ ability to add and subtract simple fractions and mixed numbers with like and unlike denominators. The FCT was administered for the pre-test and the post-test. Math education experts identified 11 types of errors from students’ incorrect responses to these items. The most common were Combining (C) and Selecting Denominator (SD). The remaining nine other types of errors occurred less frequently and were combined into a single Other (O) for thisstudy.Inthecurrentstudy,thefocuswasonthesethreetypesoferrorsasthey reflect students’ misunderstandingsabout computingwith fractions as well as the correctresponse(i.e.,No errors).CombiningandSelectingDenominatorerrorsare describedbelow: • Combining (C): Student combines numerators and combines denominators, consistentlyapplyingthesameoperationtonumeratoranddenominator. • SelectDenominator(SD):Studentselects oneofthe denominatorslisted in the problemandmakesnoattempttomakeequivalentfraction.Denominatorgiven intheanswermustbepresentintheproblem. 4.2 Model Estimation To investigate EAI effects on students’ error patterns in fractions computation, we applied RIM-MixNRMs to take into account randomness in students and itemsparameters.Theinstructionalmethod(i.e.,EAIvsBAU)andstudents’math learningdisabilitystatus(MD)wereincludedinthemodelascovariatestopredict the latent class membership as this could reflect of EAI effects on students’ error patterns.Thiswasdonebysubstituting(cid:11) inEq.(3)with(cid:11) asgivenby g gjX (cid:11) D Pexp.ˇg0Cˇ0gX/ (4) gjX GgD1exp.ˇg0Cˇ0gX/ whereˇg0 denotesaninterceptforclassg,andˇg D .ˇg1;ˇg2;:::;ˇgp/isavector of logistic regression coefficients of covariates in the model. For this study, those covariatesweretheinstructionalmethodandstudents’mathlearningdisability. Forthoseˇ0s,normaldistributionswithmeanofzeroandstandarddeviationof 10wereusedasconjugatepriorsandforrestparameters,thesamepriorswereused asinthesimulationstudy.Foridentification,thefirstclasswasusedasareference group. The Geweke test, for convergence diagnosis, indicated that a burn-in of 4000 iterations was sufficient to achieve stationarity for all parameters. A subsequent 6000 iterations were used for estimating the model parameters. An exploratory analysiswasappliedtodeterminethenumberoflatentclassesinthedata.Thatis, RIM-MixNRMswithfromone-tofive-classwerefittothepre-andpost-testdata. BasedonBICresults,afour-classandathree-classRIM-MixNRMsforpre-testand post-testdata,respectivelywerechosenforthisstudy. 46 H.-J.Choietal. Combining Error Select Denominator Error Other Error Mixed Error 0.81.0 1 4 0.81.0 1 2 4 0.81.0 3 4 0.81.0 1 3 4 Probability0.6 Probability0.6 Probability0.6 1 Probability0.6 0.4 0.4 0.4 0.4 3 0.2 0.2 3 0.2 0.2 2 0.0 2 0.0 0.0 2 0.0 −3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2 3 Theta Theta Theta Theta Combining Error Select Denominator Error Other Error 1.0 1 4 1.0 4 1.0 4 2 3 0.8 0.8 0.8 Error Type Probability0.40.6 Probability0.40.6 Probability0.40.6 1234====CSONeoothlm eEecbrrtri onDrinegnominator 0.2 23 0.2 1 3 0.2 12 0.0 0.0 0.0 −3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2 3 Theta Theta Theta Fig.1 Itemcategorycharacteristiccurvesforitem16showinglatentclassdifferencesinstudents’ errorpatternsonfractionscomputation 4.3 Results 4.3.1 CharacteristicsofLatentClasses Itemcategorycharacteristiccurves(ICCC’s)forItem16areshowninFig.1foreach latent class. These plots illustrate differences in types of errors made by students of the individual latent classes. The plots in the upper panel are for the pre-test and the plots in the lower panel are for the post-test. Students in all classes had a greaterprobabilityof notmakinganyerrorsastheypossessedmoreability(i.e., Category4).However,thereweredistincterrorpatternswhichstudentsinmiddleor lowerabilityinindividuallatentclassestendedtomake.Somestudentsinmiddleor lowerabilitytendedtomistakenlycombineeachnumeratorandeachdenominator (i.e., Category 1), some had a greater probability of making an error of selecting denominator(i.e.,Category2),somehadagreaterprobabilityofmakingothererrors (i.e.,Category3),andothershadagreaterprobabilityofmakingeithercombining or selecting denominators (i.e., Category 1 or 2). Based on these patterns, each classislabeledasCombining,SD,Other,orMixed showninFig.1.Thesedistinct differencescanbeinterpretedasreflectingstudents’errorpatternontheFCT. 4.3.2 InstructionEffects Table2presentsacross-tabulationofthefrequenciesofstudentsineachlatentclass onthepre-andthepost-test.Thisshowsageneralpatternofstudents’transitioning in class membership from the pre-test to the post-test. To investigate effects of students’ learning disability status and instructional type on such transitioning, those were included as covariates. On the pre-test, neither types of instruc- AnApplicationofaRandomMixtureNominalItemResponseModel 47 Table2 Transitioning Post-test pre-testtopost-testlatent Pre-test Combine SD Other Total classes Combine 57 27 82 166 SD 3 25 33 61 Other 12 1 96 109 Mixed 19 16 75 110 Total 91 69 286 446 tion nor students’ learning disability status did significantly impact on students membership in latent classes except that students with learning disability had significantlyloweroddsofbelongingtoOthererrorclassthanCombiningerrorclass (i.e.,ˇ20 D(cid:2)1:11,0.33times).Aftertheintervention,however,EAIhadsignificant impact on students’ error patterns on fraction computation. Students in EAI had significantlyhigheroddsofbelongingtoOtherorSDerrorclassesthanCombining errorclass(i.e.,ˇ22 D 1:06;2:89timesandˇ32 D 0:85,2.34times,respectively). After the instruction, students might better understand about denominators and could distinguish them from numeratorsbut still not fully understand the concept ofcommondenominatorinfractions. 5 ConclusionandDiscussions Itisnotuncommonthatresearchersorpractitionersdesignaninstrumenttorequire nominalresponseswithaspecificpurposeineducationalandpsychologicalresearch area.Forinstance,increatingmultiplechoiceitems,itemwriterstypicallyconstruct distractorsin orderto representspecific errorsstudentsmightmake.NominalIRT modelscanbeusedtoobtaininformationregardingtheseerrors.Further,amixture nominal IRT model can be used to take into account population heterogeneity; however, it does not consider randomness in items. In this study, we used a RIM-MixNRM in which both items and person parameters were considered a randomsamplefromapopulationandtakenintoaccounttheirrandomness.Results froma simulationstudy suggestedthatthe modelparameterswere well recovered and both AIC and BIC provided useful information for model selection. Results fromthe middleschoolfractionscomputationdata revealedtherewere fourlatent classesandthreelatentclassesonthepre-testandthepost-test,respectively,which could reflect students’ error pattern on fractions computation. The results also show that instructionaltype had an significant impact on transitioning these error patterns subsequent to an instructional intervention. It is also possible to include item covariates. Inclusion of a Q-matrix (e.g., Tatsuoka 1983), for instance, as a covariate for individual categories of an item could be implemented to describe componentsofknowledgerequiredforcorrectlyansweringagivenquestion. 48 H.-J.Choietal. Acknowledgements Thedatausedinthearticlewerecollectedwiththefollowingsupport:the U.S.DepartmentofEducation,InstituteofEducationSciences,PRNumberH324A090179. References Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on AutomaticControl,19,716–723. Bock,R.D.(1972). Estimatingitemparameters andlatentabilitywhenresponses arescored in twoormorenominalcategories.Psychometrika,37,29–51. Bolt,D.M.,Cohen, A.S.,&Wollack,J.A.(2001). Amixturemodelformultiplechoicedata. JournalofEducationalandBehavioralStatistics,26,381–409. Bottge,B.,Ma,X.,Toland,M.,Gassaway,L.,&Butler,M.(2012).EffectsofEnhancedAnchored Instructiononmiddleschoolstudentswithdisabilitiesinmath,DepartmentofEarlyChildhood, SpecialEducation,andRehabilitationCounseling,UniversityofKentucky,Lexington,KY. Cho,S.-J.,Cohen,A.S.,&Kim,S.-H.(2013).MarkovChainMonteCarloestimationofamixture itemresponsetheorymodel.JournalofStatisticalComputationandSimulation,83,278–306. DeBoeck,P.(2008).RandomitemIRTmodels.Psychometrika,73,533–559. Geweke,J.(1992).Evaluatingtheaccuracyofsampling-basedapproachestocalculatingposterior moments. InJ.M.Bernardo, J. O.Berger, A.P.Dawid,&A.F.M.Smith(Eds.), Bayesian Statistics4:ProceedingsoftheFourthValenciaInternationalMeeting(pp.169–194).Oxford: OxfordUniversityPress. Mislevy,R.J.,&Verhelst,N.(1990). Modelingitemresponses whendifferent subjects employ differentsolutionstrategies.Psychometrika,55,195–215. Plummer,M.,Best,N.,Cowles,K.,&Vines,K.(2006).CODA:Convergencediagnosisandoutput analysisforMCMC.RNews,6(1),7–11. Rost,J.(1990).Raschmodelsinlatentclasses:Anintegrationoftwoapproachestoitemanalysis. AppliedPsychologicalMeasurement,14,271–282. Schwarz,G.(1978).Estimatingthedimensionofamodel.TheAnnalsofStatistics,6,461–464. Spiegelhalter,D.,Thomas,A.,Best,N.,&Lunn,D.(2007).WinBUGS,1.4[Computerprogram]. Tatsuoka,K.K.(1983).Rulespace:Anapproachfordealingwithmisconceptionsbasedonitem responsetheory.JournalofEducationalMeasurement,20(4),345–354. Van den Noortgate, W., De Boeck, P., & Meulders, M. (2003). Cross-classification multilevel logistic models in psychometrics. Journal of Educational and Behavioral Statistics, 28(4), 369–386. Wang, A. (2011). A mixture cross-classification IRT model for test speededness. Unpublished doctoraldissertation,UniversityofGeorgia.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.