ebook img

ERIC ED592726: Semi-Markov Model for Simulating MOOC Students PDF

2016·0.58 MB·English
by  ERIC
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview ERIC ED592726: Semi-Markov Model for Simulating MOOC Students

Semi-Markov model for simulating MOOC students Louis Faucon, Łukasz Kidzin´ski, Pierre Dillenbourg ComputerHumanInteractioninLearningandInstruction ÉcolePolytechniqueFédéraledeLausanne {louis.faucon,lukasz.kidzninski,pierre.dillenbourg}@epfl.ch ABSTRACT Weproposeaprobabilisticmodel, basedonextendedversionof Large-scaleexperimentsareoftenexpensiveandtimeconsuming. MarkovChains,calledsemi-MarkovChains.Inthemodel,wecan AlthoughMassiveOnlineOpenCourses(MOOCs)provideasolid balancethecomplexityofthestructureandthenumberofparame- andconsistentframeworkforlearninganalytics,MOOCpractition- terstoestimatebycross-validatingitsparameters. Wepresentan ersarestillreluctanttoriskresourcesinexperiments.Inthisstudy, algorithmforfittingthemodelaswellasillustrativeexamplesof wesuggestamethodologyforsimulatingMOOCstudents,which thefitonasetofMOOCs. allowestimationofdistributions,beforeimplementingalarge-scale experiment. Thecontributionsofthispaperarethreefold.First,weinvestigate towhatextentSemi-Markovchainscanbeusedtodescribebe- Tothisend,weemploygenerativemodelstodrawindependentsam- haviouralpatternsofstudents(RQ1). Second,sinceourmodel plesofartificialstudentsinMonteCarlosimulations.WeuseSemi- implicitlydividesusersintoclusters,weanalyseiftheseclusters MarkovChainsformodelingstudent’sactivitiesandExpectation- are interpretable (RQ2). Third, we analyse how these models Maximizationalgorithmforfittingthemodel.Fromthefittedmodel, canbeusedtoinferdistributionsofevents(RQ3). wegeneratesimulatedstudentswhoseprocessesofweeklyactivities aresimilartotheseoftherealstudents. 2. RELATEDWORK Modelingstudentsisakeyconceptinlearninganalyticsandedu- Keywords cationalresearchingeneral. Researchersbuildmodelspredicting MOOCs;simulationofstudents;generativemodels;Expectation- motivationandcognition,basedonstudent’sgoals[19]ortheypre- Maximization;Semi-Markovchains;Bayesianstatistics dictgoalsbymotivationaltraits[7].Largedatasetsallowresearchers tofindpredictivepowerofseeminglyslightlyrelatedsignalslike 1. INTRODUCTION thelengthofpausesinavideo[12]orpotentiallynoisysignalslike headmovementintheclassroom[16]. Vastamountsofdatawhichwegatherandanalyseinmodernlearn- ingenvironmentsallowustobuildmodelsofunprecedentedscale andaccuracy.Thisphenomenon,inparallelwithdevelopmentsin 2.1 GenerativemodelsinMOOCs computerscience,gaverisetonewpossibilitiesofinferencefrom Alltheaforementionedmodelsarefocusedonpredictionandbelong educationalenvironments.Inparticular,thegrowingfieldofSimu- totheclassofso-calleddiscriminativemodels. Inthisstudy,we latedLearners[8,11,14]providesuswithtoolsforinferencefrom suggestagenerativemodel,whichallowusnotonlytopredict,but educationalsimulations. alsotogenerateobservationsfromtheestimateddistribution.These modelscapturetheprobabilitystructureofinputvariablesandthe Inferencefromanysimulationsisboundedbythepredefinedlevel flowoftheprocesses.SeveralgenerativemodelsinMOOCshave of abstraction of the analysis. In the context of Massive Online beenapplied,e.g.toforums[3]. OpenCourses(MOOCs),ononehandasaneducationalinstitution wehaveaccesstoonlyahandfulofMOOCs,onanotherhand,we Amongmanygenerativemodelsthatcanbeencounteredineduca- havedataasgranularasstudent’sclickstreaminavideoplayer.We tionalresearch,Markovmodelswereemployedforvisualization[5], arethereforeobligedtomodelgranularityrobustly,dependingon for modeling engagement [17] and for modeling students reten- theavailabilityofthedata.Wearguethatunderstandingtheproper- tion[1]. tiesofthestatisticalmethodologyathandiscrucialforsuccessful inference. 2.2 Simulatedlearner Theareaofsimulatingstudents’behaviourlaysontheintersection ofcognitivescienceandartificialintelligence.Examplesofapplica- tionsofsimulationofstudentscanbefoundevenoutsidecomputer science,wheretheteachersimulatesstudent’sresponseinorderto self-improveinstructionalskills[18]. Anacknowledgedexample of the usage of simulating humans [9] for education deals with simulationsofpatientsbehaviourfortrainingmedicinestudents. EmergenceofInternetandnewdatastoragetechniquesallowre- Proceedings of the 9th International Conference on Educational Data Mining 358 searcherstocollectandanalysemassiveamountsofinformation ForumPost}.Weaddtothissetonespecialtypeofevent,EndOfDay. abouttheusers.Researchersemploysimulationsforclusteringstu- ThiseventcorrespondstotheendofinteractionswithMOOCsona dents[13]. Forareviewofearliertechniqueswereferto[2]. We givenday.Weusethesymbola Atodesignateanytypeofactivity. ∈ motivateourmethodologybytheadvancementsofusermodelingin Onecanextendthesetofactivitiestoothereventsifneededfor webcontext[4],aswefindthisenvironmentconceptuallycloseto certainapplication. theenvironmentofaMOOC. Note that we do not specify the regular ’end of a course’ event, 3. GENERALFRAMEWORK sinceweonlymodelthebehaviourwithinthelimitedtime-frame ofacourseandwetreatthelastdayofthecourseasthelastdayof 3.1 Dataset theprocess.Therefore,eachstudentwhowentthroughthewhole FromourinternalMOOCdatabase,aggregatingdatafromCours- coursewithoutdroppingouthasjustaEndOfDayeventonthelast eraandedX,weextractedeventsfor61EPFLcourses. Theraw dayofthecourse.NumberofEndOfDayeventsisthereforeequal datacontainedapproximately23millioneventsfor500,000stu- tothenumberofdaysofthecourse. dents,arrangedintuples: <StudentID,CourseID,EventType, Timestamp>.TheEventTypedescribesthetypeofanactivityand (s) (s) (s) takesoneoffourpossiblevaluespresentedinTable1.Wechoose TherandomsequentialvariableX1 ,X2 ,...,Xn representsthe (s) theseeventsasthemostdiscriminativeactionsfromthekeyareas: sequence of activities of one student s. Each Xi ∈A and the learning, validation and community engagement. Note that our sequencestopsafteranEndOfDaywhenthestudentreachestheend modellingtechniquecanbeeasilyextendedtocoverothertypesof ofthecourse.Wedenotethelengthofthesequenceforastudents events. asn(s).TheobservationofonestudentactivityalongoneMOOCis thusarealizationoftherandomsequenceX. Abbreviation Description Proportion VideoPlay watchingavideo 51% TheprobabilitydistributionP:Ingeneral,foreachstudents S Submission submittinganassignment 33% (s) ∈ wecanmodelthei-theventX withaprobabilitydistribution ForumView visitingtheforum 15% i ForumPost postingontheforum 1% P(s)(X(is)=a|X(is)1,,X(is)2,...,X(1s),Cs), − − Table1:Distributionofeventsinthedataset. wherea A,X(s),...,X(s) arethepreviouseventsofthatstudent ∈ 1 i 1 andCsarepersonalchar−acteristicsofthestudent. FortheanalysiswedevelopedourownPythonimplementationofthe algorithmfittingthemodel1.InSection5weexplainthealgorithm Thisdistributionrepresentsthestudent’sbehaviourprofileandal- indetail.Since23millioneventscanstillfitinmemoryofasingle lowstogeneratetypicalsequencesofactivities.Ourmainobjective computer,wedidnotrequireaspecificcomputingarchitectureto is to model this distribution as accurately as possible, given the performtheanalysis.However,giventheconsiderablesizeofthe limitedinformation. Theaccuratedistributionwouldallowusto dataset,thealgorithmtakesseveralminutestorun. drawsamplesofstudents. 3.2 Definitions 3.3 Assumptions Westartwithageneralframework,inwhichstudent’sactivityinany Asdiscussedintheprevioussection,assessingP(s) isunfeasible MOOCcanbeverypreciselydescribed.Next,weelevateabstraction duetodependenceontoomanyeventsinthepastandduetothe ofthemodelbyaddingassumptionssimplifyingtheanalysis.Our lack of information on personal student features. In order to fit goalistointroduceamodelwhosecomplexitycanbeadaptedto a probabilistic model we need to relax these dependencies. We thestructureofacourseandtheamountofavailabledata. introducefollowingassumptions: Weconsideramodelinwhichstudentsbehaviourisdescribedin A1 Students’behavioursfitintoasmallnumberofnaturalcate- asequentialmannerbythetypeofactivitytheyperformandthe goriesofbehaviour. timetheywaitbetweentwosessions.Furthermore,asmostofthe A2 Thetypeofactivitydependsonlyonhispreviousactivityand studentsperformatmost1MOOCsessionperday,wechoosea notonoldpastactivities. dailygranularityofactions. AssumptionA1mapsthespaceofallpossiblestudents’character- Asequenceofstudent’sdailyactivityisdescribedasalistof’active isticsintoalimitednumberofcategories,whicharemucheasier events’ (VideoPlay, Submission, ForumView and ForumPost) toattribute. ManystudiesonMOOCsexplicitlyclassifystudents followedbya’endofthedayevent’(EndOfDay)oronlyaEndOfDay intoasmallnumberofcategories[10],studentsaredividedbetween inthecasethestudentdidnotperformanyactivitythegivenday. ’Viewers’whoonlywatchvideos,’ForumActives’whosharewith Theformaldefinitionofthemodelisfollowing: theirpeersintheMOOCdiscussionforumand’Completers’who succeedintheassignments.Aswepresentinthenextsection,our ThesetofallstudentsS:Weusethesymbols S todesignate ∈ methodisbasedonunsupervisedclustering,wheregroupsemerge anindividualstudent. inthewayoptimalintermsofmaximumlikelihoodofthemodel. ThesetAofalltypesofactivities: Forthisstudywechoseaset AssumptionA2weimposethatonlythelastactivityhasanimpact offourtypesofevents: {VideoPlay,Submission,ForumView, onthecurrentactivity. Thisassumptionismoreconstraining,but 1Our implementation is available under https://github.com/ sincethecomplexityofhistorygrowsexponentiallywiththenumber lfaucon/edm2016-mooc-simulator ofstepsand,inordertobeabletoestimateparameters,wehaveto Proceedings of the 9th International Conference on Educational Data Mining 359 reducethesearchspace. Thissimplificationisusuallycalledthe whereristhenumberofrepetitionsandλkistheaveragenumber a ’Markovassumption’. ofrepetitionandneedstobeestimatedfromthedataforeachkand a. ApartfromtechnicalassumptionsrequiredforMarkovModels,we imposeotherassumptionsforconvenience.First,wedonotconsider ToillustratethatthePoissondistributionimprovesthemodel,let lengthofevents,sotheVideoPlayeventisonlythemomentwhen usconsideranexample. Supposeweexpectthatsomegroupof astudentstartswatchingavideo. Second,iftheseriesofevents studentsconnectstoaMOOCtwiceaweek,withapproximately happensduringmidnight,stillaneventEndOfDayisaddedtothe threedaysintervalbetweenconnections.Inthatcase,theaverage sequence. numberofrepetitionsoftheEndOfDayeventis3.SimpleMarkov Model,accuratelymodelstheaveragetobe3butimplicitlyassumes thatthemajorityofstudentsgetsonly1repetition. Semi-Markov 4. PROBABILISTICMODELING modelwithPoissondistributionalsogivestheaverageequalto3 4.1 Softclustering andthedistributionisconcentratedaround3. In Section 3 we proposed a simplified framework, in which we assumethatthereareonlyafewdifferentpossibleclassesofstu- 5. FITTINGTHEMODEL dents (A1). We enumerate clusters 1,2,...,K. For each student 5.1 Algorithm (s) s S weintroduceaprobabilitydistributionµ whichdescribes ∈ k TheExpectation-Maximisation(EM)algorithmhasbeenintroduced probabilitythatthestudentbelongstothebehaviourclassesk,for in1977in[6]. Thegoalofthisiterativetechniqueistocompute k 1,2,...,K . ∈{ } theparametersthatmaximizethelikelihoodofagivenprobabilistic model.TheEMalgorithmhasbeenproventoconvergeatleasttoa Thistechniqueisoftenreferredtoassoftclustering,weightedclus- localminimum.Thisminimumdependsontheinitializationpoint, teringorfuzzyclustering[15].Insteadofdiscretclusterassignment, thusmultiplerunswithdifferentrandominitialisationsareoften as for example in K-means, we obtain for each student a proba- usedinpracticeinordertoincreasethechancesoffindingtheglobal bilitydistributionamongtheclusters. Theseprobabilitiescanbe minimum. intuitivelyseenasourcertaintythatthestudentbelongstoagiven cluster. InthisstudyweusetheEMalgorithmforunsupervisedlearning. Neithertheparametersofthelatentclassesnortherepartitionof 4.2 Semi-MarkovChain thestudentsareknownatthebeginningandthealgorithmhasto Assumption(A2),i.e.dependenceonlyonthelaststate,allowsus estimatebothquantitiesatonce.Inoursettings,wedefineforeach tomodeltheprocessMarkovChains.Formally,inthedefinitionof k 1,2,...,K andstatesaandb: ∈{ } distributionofthenexteventwecandropdependenceoftheevents whichoccurredbeforethecurrentone,i.e.weidentify (k) - p ,theprobabilitythatastudentwiththebehaviourpro- b >a P(s)(X(s) X(s),...,X(s) )=P(s)(X(s) X(s) ) file−kperformstheactivityaaftertheactivityb: i | 1 i 1 i | i 1 − − AclapsrseicliMmianrakroyvaMnaoldyeslissirnevoeuarlceodnatenxti.mApotrratadnittiowneaalkMnaersksoovfmuosidnegl p(bk−)>a=P(Xi=a|Xi−1=b) considersthatastudentisequallylikelytostopwatchingvideos (k) whentheyhavewatchedone,aswhentheyhavealreadywatchedten - λa ,theaveragenumberofrepetitionsofaneventafroma studentofprofilek. videos.Inpractice,studentswatchvideossequentiallyandMarkov Modeldoesnotcaptureappropriatelythenumberofeventsinthe (s) - µ ,theprobabilitythatastudentsbelongstotheprofilek. sequence. k ToremedythisissueweemployedSemi-MarkovModels(alsocalled Wecanthuscomputethelikelihoodoftheobservedsequence,asa MarkovRenewalProcesses).Thekeyfeatureofthismodelisthat functionofclusterrepartitionandparametersofMarkovChainsby itallowstoreplacetheself-loops(transitionsfromoneeventtype toitself)intheMarkovChain,byaprobabilitydistributionofthe K numberofrepetitionofagivenstate. likelihood=s∏∈S[k∑=1µk(s)(a,b∏,r)∈Tsp(bk−)>aPλa(k)(r)], (1) InSemi-MarkovModels,westillneedtochooseaparametricdistri- whereTsisthesetoftuples(a,b,r) A A Ncorrespondingto bution,butwehavemorefreedomthanintraditionalMarkovChain. ∈ × × transitionsfromactivitybtoactivityawithrrepetitionsofactivity MarkovChainimplicitlyassumesthatprobabilityofstayinginthe a.Thegoalofthealgorithmistofindtheparametersthatmaximize samestateisthelargestfor1stepanddecreaseswithnumberof thelikelihood. steps. However,wewouldexpectthat1isnotthemostprobable numberofrepetitionatleastforaparticulargroupofstudents.This Inthefirststage,thealgorithminitializerandomlyKprofiles.Next, phenomenoncanbecapturedby,forexample,Poissondistribution, ititerativelyimprovesthe likelihood,byalternatingtwostepsas whichprovedtobemoreaccurateinourpreliminaryanalysis.Thus, described below. In each step it modifies the repartition or the foraneventa Aandaclasskwemodelthenumberofrepeated eventsRk by ∈ Markovchainparameters. a P(Rka=r)= e−λakr!λak r Ienitihteiarlitzhaetipob(nk):>aThaendinλiat(ika)liozrattihoenµck(osn).siIsntsoiunrcahlgooorsiitnhgmr,awndeosmtalryt (cid:0) (cid:1) − Proceedings of the 9th International Conference on Educational Data Mining 360 (s) withtheµk .Thiscanbedonebygeneratingarandomnumberk∗ from1toKforeachstudentsandbysetting µ(s)= 1 ifk=k∗ k 0 otherwise. (cid:26) Iterations: Theiterationphasehastwosteps. First,wecompute (k) (k) (s) the optimal values for pb >a and λa given that µk are fixed (equations(2)and(3)). − ∑ ∑ µ(s) k p(k) = s∈S(a,b,_)∈Ts (2) b−>a ∑ ∑ µ(s) k s∈S(_,b,_)∈Ts ∑ ∑ rµ(s) k λa(k)= s∈∑S(a,_,∑r)∈Ts µ(s) (3) k s∈S(a,_,_)∈Ts (s) Next, we compute the new values of µ according to the new k (k) (k) pb >aandλa (equations(4)). − ∏ p(k) P (r) µ(s)= (a,b,r)∈Ts b−>a λa(k) (4) k K ∑ ∏ p(c) P (r) c=1(a,b,r)∈Ts b−>a λa(c) Intuitively,theinthefirststepwecomputetheparametersofthe latentclassesgiventherepartitionofthestudentsandinthesecond stepwerecomputetherepartitionfromthenewclassesparameters. 5.2 Example: Interpretationclusters(K=3) Beforewepresenttheresultsforthechoiceofthenumberofclusters, inthissection,weillustratethebehaviourofthealgorithmandthe model when the number of clusters is small (K=3). Although in this case we may lose important variability among groups of students,smallnumberofclustersallowsustovisualisetheSemi- Markovmodelsandinterpreteachoftheclusters. The visualizations of the Semi-Markov models on Figure 1 can revealgeneralcharacteristicsofstudents’behaviours. Forexam- ple,Profiles1and3areingenerallessactiveastheyhavemore EndOfDayevents.Onthecontrary,Profile3hasaveryhighaverage numberofrepetitiononVideoPlayandconsiderableprobability togobacktoEndOfDayevents. Thismeansthatstudentsofthis Figure1:Threegraphicalrepresentationsofbehaviourprofiles clusterarenotfullyengagedinallMOOCactivities. extractedbytheEMalgorithm. Fromtoptobottom: profiles 1, 2 and 3 (thickness: transition probability; color: average Amoreinsightfulwaytoanalyseandinterpretthedifferencesisto numberofrepetitions) generatesequencesofeventsandcomparetheoutcomes. Wecan computetheexpectednumberofvideoswatchedortheexpected numberofpostontheforumdirectlyfromsimulatedsequences. Table2showstheaveragenumberofseveraltypesofeventsfor example, we can see that students of Profile 1 participate in the 100simulatedstudents(averagefrom10000simulations)overfour collaborativeactivitiesoftheMOOCmorerarely,butengageinthe weeksgeneratedwiththethreeMarkovmodelsfromFigure1.For assignmentsmorethaninwatchingthevideos.Thismightindicate Proceedings of the 9th International Conference on Educational Data Mining 361 thattheyalreadyhaveagoodunderstandingofthecontentofthe 6. SIMULATIONS courseanddonotneedtospendmoretimeonstudying. Tofully WithamodelfittedwiththeEMalgorithmathand,thealgorithm investigatethishypothesis,furtheranalysisshouldbeconducted. repartitioned students and chose parameters of a Semi-Markov Chainforeachoftheclusters. Sinceboththerepartitionandthe Profiles 1 2 3 Semi-MarkovChainsaregenerative,wecandrawsamplesfromthe WatchedVideos 1060 3133 2363 fitteddistribution,i.e. wecansimulatethestudents. Werunthe Submissions 1535 2423 442 simulationsandshowapossiblewaytomeasurethevalidityofthe ForumVisits 68 1711 255 results. Forumposts 3 96 15 Tovalidatepotentialvalueofsimulations,wefirstproposeasimple Table 2: Average number of events for 100 students over the accuracy measure. In equation (6), P (a >n) represents the real | | firstfourweeksoftheMOOC probabilitythatastudentperformsmorethanneventsoftypea duringthetimeoftheMOOC. a isthecountofeventsoftypea. | | 5.3 ChoiceoftheparameterK Psim(a >n)representsthesameprobabilitybutforasimulated | | Acommonchallengeofunsupervisedlearningandfittingaproba- student.InthemeasurewechosethevalueN=50becauseitcovers bilisticmodelisfindingthecorrectnumberofclasses.Inourcase, mostofthevariabilityinthestudentsactivitysequencesandisnot thesimilarityofthealgorithmwithotherclusteringtechniquessuch toolargeasstill19%ofthestudentshaveanactivitywithmorethan astheK-meansleadstothe"elbowheuristic",oftenusedinpractice. 50repetitions. Theideaistochoosethenumberofclusterslargeenoughtoexplain a large part of the variability, but such that a greater number of clusterswouldnotexplainsubstantiallymore. MSE= (A 11) N ∑ ∑ (Preal(|a|>n)−Psim(|a|>n))2 | |− ∗ a An<N ∈ (6) Inordertoprovethecorrectnessofthemodelingmethod,wedivided ourdatasetintoatrainingsetandatestsetforvalidatingtheresults. Thefirststepistorunthealgorithmonthetrainingsetwithseveral parameterK and then, usethe computed parametersto simulate anewpopulationofstudentsandfinallycomparethispopulation with the students from the testing set. In Figure 3 we can see thatthefitdoesnotimprovemuchafterK=15,becausetoohigh numberofclustersmakesthealgorithmlearnmostlythenoisefrom the random actions of the students instead of their real intrinsic behaviouralpatterns. Figure 2: Average distance of students from their model for differentnumberofclasses Inordertoconfirmtheresultofthisfirstmeasureofquality,we designedanothermeasuredescribedintheequation(5).Thegoalis toquantifyhowthestudentssequencesdivergefromtheirattributed cluster.Intheequation, A isthecardinalityofthesetofpossible | | activities, ps(a) is the probability of finding the activity a if we takeuniformlyatrandomanactivityofstudentsand p (a)isthe k probabilityoffindingtheactivityaifwetakeuniformlyatrandom anactivityfromasequencegeneratedbytheclassk. 1 Figure 3: Measure of accuracy of a simulation for different d2(s,k)= A ∑(ps(a)−pk(a))2 (5) numberofclasses | |a A ∈ Thesmallerrorprovesthatthedistributionobtainedfromsimula- Thisdistancemeasureshowsanelbowshapeforthesamevaluesof tionsisclosetotheoriginaldistribution.Thisimpliesthatthemodel Kbetween10and15asitcanbeseenonFigure2. Weconclude properlytrainedonsmallsampleofstudentsoronjustfewfirst thatMOOCstudentsfromourdatasetcanbemeaningfullyclustered events,canbeextrapolatedbysimulationtofurthereventsorlarger into10 15differentclasses. samples. − Proceedings of the 9th International Conference on Educational Data Mining 362 Inanexperimentalsetup,simulationswithvaryinginitialconditions pages83–92.ACM,2014. ofthemodel(e.x.probabilitiesoftransitions)cangiveusdistribu- [6] A.P.Dempster,N.M.Laird,andD.B.Rubin.Maximum tionsofeventsatthelaterstate.Knowingprobabilitydistributionsof likelihoodfromincompletedataviatheemalgorithm.Journal theresultsoftwoconditionsallowstoestimatesamplesizesneeded oftheRoyalStatisticalSociety.SeriesB(Methodological), forfindingstatisticalevidenceoftheinvestigatedeffect. 39(1):pp.1–38,1977. [7] AndrewJElliotandToddMThrash.Approach-avoidance 7. DISCUSSION motivationinpersonality:approachandavoidance temperamentsandgoals.Journalofpersonalityandsocial InSection5weshowedthatSemi-Markovchainscanbesuccess- psychology,82(5):804,2002. fullyappliedtodescribebehaviouralpatternsofstudents(RQ1).In Section5.2,asimplestudywithreducednumberofclustersprove [8] JoséPGonzález-BrenesandYunHuang.Usingdatafromreal theirpotentialinterpretability(RQ2).InSection6,wediscusshow andsimulatedlearnerstoevaluateadaptivetutoringsystems. thesemodelscanbeusedtoinferdistributionsofevents(RQ3). InProceedingsoftheWorkshopsatthe18thInternational ConferenceonArtificialIntelligenceinEducationAIED, Ourmethodhastwomainlimitations.Theycanbefurtherrelaxed 2015. withadditionaldataorwithincorporationofdomainknowledge. [9] JamesAGordon,WilliamMWilkerson,DavidWilliamson Shaffer,andElizabethGArmstrong."practicing"medicine TheHomogeneityoftheMarkovprocess: TheMarkovassump- withoutrisk:students’andeducators’responsesto tionwasintroducedforreducingthenumberofparametersofour high-fidelitypatientsimulation.AcademicMedicine, model.Itisastrongsimplification,whichentailssomedrawbacks. 76(5):469–472,2001. Thisassumptionimplicitlyrequiresthatstudentbehavewithexactly [10] RenéFKizilcec,ChrisPiech,andEmilySchneider. thesametransitionmatrixduringthewholecourse.Themotivation Deconstructingdisengagement:analyzinglearner tokeeplearningshouldincreasewhengettingclosertotheendof subpopulationsinmassiveopenonlinecourses.In thecourseandthusthedropoutratedecreases, whichcannotbe Proceedingsofthethirdinternationalconferenceonlearning capturebyourmethod.Agoodwaytoovercomethisweaknessis analyticsandknowledge,pages170–179.ACM,2013. touseinhomogeneousMarkovmodelswithtransitionsprobabilities [11] KennethRKoedinger,NoboruMatsuda,ChristopherJ thatarefunctionsoftime. MacLellan,andElizabethAMcLaughlin.Methodsfor evaluatingsimulatedlearners:Examplesfromsimstudent. Differencesbetweencourses:Thequalityofthevideos,thelevel 17thInternationalConferenceonArtificialIntelligencein ofdifficultyoftheassignmentsorthediscussiontopicsinthefo- EducationAIED,5:45–54,2015. rumsareallfactorsthatcangreatlyinfluencethebehaviourofa [12] NanLi,ŁukaszKidzin´ski,PatrickJermann,andPierre student.Noneofthesewereincludedinourmodel.Wehypothesize Dillenbourg.Howdoin-videointeractionsreflectperceived thataddingexternalannotationsthatwouldimpactthetransition videodifficulty?InProceedingsoftheEuropeanMOOCs probabilitiesofourMarkovmodelscouldhelpsolvethisproblem. StakeholderSummit2015,numberEPFL-CONF-207968, Asfornow,ourmodelcanbeusedtocomparecourses.Forexample, pages112–121.PAUEducation,2015. ifwerunthealgorithmontwoMOOCsandrealisethattheVideo [13] RanLiuandKennethRKoedinger.Variationsinlearningrate: Watchersofonecoursehavealowerengagement,thatshowsalower Studentclassificationbasedonsystematicresidualerror qualityofvideocontentwhiledifferencesfortheForumFollower patternsacrosspracticeopportunities.InEducationalData mayrevealdifferencesonthequalityoftheForumdiscussions. Mining2015.EDM,2015. [14] GordMcCallaandJohnChampaign.Aied2013simulated 8. REFERENCES learnersworkshop.InArtificialIntelligenceinEducation, [1] GirishBalakrishnanandDerrickCoetzee.Predictingstudent pages954–955.Springer,2013. retentioninmassiveopenonlinecoursesusinghiddenmarkov [15] RichardNockandFrankNielsen.Onweightingclustering. models.ElectricalEngineeringandComputerSciences PatternAnalysisandMachineIntelligence,IEEE UniversityofCaliforniaatBerkeley,2013. Transactionson,28(8):1223–1235,2006. [2] EricBonabeau.Agent-basedmodeling:Methodsand [16] MirkoRaca,ŁukaszKidzin´ski,andPierreDillenbourg. techniquesforsimulatinghumansystems.Proceedingsofthe Translatingheadmotionintoattention-towardsprocessingof NationalAcademyofSciences,99(suppl3):7280–7287,2002. student’sbody-language.InProceedingsofthe8th [3] ChristopherGBrinton,MungChiang,SonalJain,HKLam, InternationalConferenceonEducationalDataMining, ZhenmingLiu,andFelixMingFaiWong.Learningabout numberEPFL-CONF-207803,2015. sociallearninginmoocs:Fromstatisticalanalysisto [17] ArtiRamesh,DanGoldwasser,BertHuang,HalDauméIII, generativemodel.LearningTechnologies,IEEETransactions andLiseGetoor.Modelinglearnerengagementinmoocs on,7(4):346–359,2014. usingprobabilisticsoftlogic.InNIPSWorkshoponData [4] EdHChi,PeterPirolli,KimChen,andJamesPitkow.Using DrivenEducation,2013. informationscenttomodeluserinformationneedsandactions [18] IpkeWachsmuthandJens-HolgerLorenz.Sharpeningone’s andtheweb.InProceedingsoftheSIGCHIconferenceon diagnosticskillbysimulatingstudents’errorbehaviors.Focus Humanfactorsincomputingsystems,pages490–497.ACM, onlearningproblemsinmathematics,9(2),1987. 2001. [19] ChristopherAWolters.Advancingachievementgoaltheory: [5] CarletonCoffrin,LindaCorrin,PauladeBarba,andGregor Usinggoalstructuresandgoalorientationstopredictstudents’ Kennedy.Visualizingpatternsofstudentengagementand motivation,cognition,andachievement.Journalof performanceinmoocs.InProceedingsofthefourth educationalpsychology,96(2):236,2004. internationalconferenceonlearninganalyticsandknowledge, Proceedings of the 9th International Conference on Educational Data Mining 363

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.