ebook img

ERIC ED563467: Exploring the Variability in the Validity of SAT Scores and High School GPA for Predicting First-Year College Grades at Different Colleges and Universities PDF

2010·0.08 MB·English
by  ERIC
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview ERIC ED563467: Exploring the Variability in the Validity of SAT Scores and High School GPA for Predicting First-Year College Grades at Different Colleges and Universities

Exploring the Variability in the Validityy of SAT Scores and High School GPA for Predicting First- Year College Grades at Different Colleges and UUnniivveerrssiittiieess Jennifer L. Kobrin & Brian F. Patterson The College Board Background The SAT is one of the most researched tests, with • hhuunnddrreeddss ooff ppuubblliisshheedd vvaalliiddiittyy ssttuuddiieess. Vast majority of studies including samples at • mullttiiplle iinsttiittuttiions examiine tthhe rellattiionshhiip off SAT scores and HSGPA with college ppeerrffoorrmmaannccee iinn aaggggrreeggaattee. Studies show that the relationship of SAT scores • aanndd HHSSGGPPAA wwiitthh FFYYGGPPAA vvaarriieess aatt ddiiffffeerreenntt institutions/different types of institutions. 2 Prior Research Exploring Variations in SAT Predictive Validityy Baird (1983) used college characteristics as predictor • variables to predict the size of the simple and multiple correlations of SAT and HSGPA with FYGPA (validity coefficients). AA ffew sttuddiies hhave examiinedd tthhe valliiddiitty off tthhe SSAATT usiing • a multilevel view: BBrroowwnn aanndd ZZwwiicckk ((22000066)) –– VVaalliiddiittyy ooff SSAATT aanndd SSAATT SSuubbjjeecctt TTeessttss •• for predicting FYGPA at Univ. of CA. Culpepper and Davenport (2009) – Variability in differential • preddiicttiion off FFYYGGPPAA usiing SSAATT andd HHSSGGPPAA bby raciiall//etthhniic group. Shen et al. (2010) – created factors of institutional characteristics • and used these to predict variability in SAT validity after taking account of statistical artifacts. 3 Purpose of the Current Study To demonstrate the utility of a multilevel model to understand the rreellaattiioonnsshhiipp ooff iinnssttiittuuttiioonnaall characteristics to the validity of the SSAATT andd HHSSGGPPAA ffor preddiicttiing ffiirstt- yyear collegge GPA ((FYGPA)). 4 Method Sample consisted of about 150,000 students from 109 • ccoolllleeggeess aanndd uunniivveerrssiittiieess aaccrroossss tthhee UU..SS.. SAT scores obtained from 2006 college-bound seniors • cohort; HSGPA self-repported on SAT Questionnaire. First phase replicated Baird (1983) to identify variables to • use in the multilevel modeling. (Results from this phase will not be presented today) Second pphase used Hierarchical Linear Modelingg ((HLM)) • to model the variability in the relationship of SAT scores and HSGPA with FYGPA across the 109 institutions. 5 HLM Specifics Analyses followed a step-wise approach, • begginningg with null model ((one-wayy random effects ANOVA) FFuullll mmaaxxiimmuumm lliikkeelliihhoooodd eessttiimmaattiioonn uusseedd iinn aallll •• models. RRaannddoomm eeffffeeccttss iinncclluuddeedd ffoorr aallll ssttuuddeenntt-lleevveell • predictors. SSttuddentt-llevell preddiicttors ((SSAATT, HHSSGGPPAA)) were • centered within institution (group-mean centered) aanndd iinnssttiittuuttiioonn-lleevveell pprreeddiiccttoorrss wweerree ggrraanndd-mmeeaann centered. 6 Model-Building Summary Model 1 – Null Model (ICC = 0.109) • Model 2 – added student-level predictors • (SAT/1000 and HSGPA) Model 3 – added average SAT/1000 and average • HSGPA as Level 2 predictors. Models 4 and 5 – added Level 2 predictors one at • a time accordingg to apppproximate coefficients and t-values estimated by the HLM program. 7 Final Model Level 1: FFYYGGPPAA = ββ + ββ **((HHSSGGPPAA)) + ββ **((SSAATT ttottall//11000000)) + r . ij 0j 1j ij 2j ij ij Level 2: β = γ + γ (average SAT) + γ (average HSGPA) + γ 0j 00 01 j 02 j 03 (private) + γ ( small) + γ (large) + γ (very large) + μ j 04 j 05 j 06 j 0j β = γ + γ (average SAT) + γ (average HSGPA) + γ 1j 10 11 j 12 j 13 (average financial aid) + γ (% white) + μ 14 1j ββ = γ + γ ((average SSAATT)) + γ ((average HHSSGGPPAA)) + γ 2j 20 21 j 22 j 23 (% submitting SAT) + γ (small) + γ (large) + γ (very j 24 j 25 j 26 largge)) + μ jj 22jj.. 8 Results: Final Estimation of Fixed Effects for Interceppt ((Averagge FYGPA)) Variable Coefficient Robust S.E. IInntteerrcceepptt 22.996633 00.003366 Average SAT/1000 0.912 0.151 AAvveerraaggee HHSSGGPPAA 00.002277 00.112299 Private Institution 0.105 0.039 Small Institution -0.073 0.041 Large Institution -0.009 0.030 Very large institution -0.031 0.045 9 Results: Final Estimation of Fixed Effects for HSGPA Sloppe ((Predictive Validityy of HSGPA)) Variable Coefficient Robust S.E. HHSSGGPPAA ssllooppee 00.441199 00.000088 Average SAT/1000 -0.298 0.129 AAvveerraaggee HHSSGGPPAA 00.005533 00.009911 Average Financial Aid -0.000 0.000 Percent of White first-yyear 0.002 0.000 students 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.