UUnniivveerrssiittyy ooff WWiinnddssoorr SScchhoollaarrsshhiipp aatt UUWWiinnddssoorr Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 2017 EErrggoonnoommiicc EEvvaalluuaattiioonn ffoorr RRiigghhtt AAnnggllee PPoowweerr TToooollss:: DDiirreecctt CCuurrrreenntt PPhhyyssiiccaall DDeemmaannddss CCoommppaarriissoonn –– AA FFooccuuss oonn MMuussccllee AAccttiivviittyy Danielle DeVries University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd RReeccoommmmeennddeedd CCiittaattiioonn DeVries, Danielle, "Ergonomic Evaluation for Right Angle Power Tools: Direct Current Physical Demands Comparison – A Focus on Muscle Activity" (2017). Electronic Theses and Dissertations. 5975. https://scholar.uwindsor.ca/etd/5975 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. Ergonomic Evaluation for Right Angle Power Tools: Direct Current Physical Demands Comparison – A Focus on Muscle Activity By Danielle DeVries A Thesis Submitted to the Faculty of Graduate Studies Through the Faculty of Human Kinetics In Partial Fulfillment of the Requirements for The Degree of Master of Human Kinetics at the University of Windsor Windsor, Ontario, Canada 2017 © 2017 Danielle DeVries i Ergonomic Evaluation for Right Angle Power Tools: Direct Current Physical Demands Comparison – A Focus on Muscle Activity By Danielle DeVries APPROVED BY: ______________________________________________ J. Urbanic Department of Mechanical, Automotive & Materials Engineering ______________________________________________ K. Kenno Department of Kinesiology ______________________________________________ J. Cort, Advisor Department of Kinesiology April 13, 2017 ii DECLARATION OF ORIGINALITY I hereby certify that I am the sole author of these thesis and that no part of this thesis has been published or submitted for publication. I certify that, to the best of my knowledge, my thesis does not infringe upon anyone’s copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or any other material from the work of other people included in my thesis, published or otherwise, are fully acknowledged in accordance with the standard referencing practices. Furthermore, to the extent that I have included copyrighted material that surpasses the bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I have obtained a written permission from the copyright owner(s) to include such material(s) in my thesis and have included copies of such copyright clearances to my appendix. I declare that this is a true copy of my thesis, including any final revisions, as approved by my thesis committee and the Graduate Studies office, and that this thesis has not been submitted for a higher degree to any other University or Institution. iii ABSTRACT The purpose of this study was to evaluate the differences in muscle activation and handle forces between three direct current right angle power tool fastening strategies: turbo tight, two stage without soft stop and two stage with soft stop. Thirty-six participants (20-60 yrs) were assigned to one of two experimental groups: hard-joints or soft-joints. Participants conducted fastenings at four different postures for three different target torques and muscle sEMG was collected on 16 muscles of the upper body. Data from the muscle sEMG, and forces collected at the handle were analyzed using repeated measures ANOVA with Tukey’s post hoc test to determine statistical significance (p<0.05). Results found that the participants sEMG activation impulse was less for the turbo tight fastening strategy in comparison to the two-stage fastening strategy with and without soft stop. These findings were not impacted by joint type, posture or target torque. iv ACKNOWLEDGEMENT I would like to thank my friends and family for supporting me throughout this milestone of my life. I appreciate everything you have all done for me, particularly those willingly being a participating in my study! Mom & Dad, I greatly appreciate all the motivation and encouragement you have given me over the years, especially once I started my career and needed you more than ever. Kefsere and Heather, thank you for letting me claim your couches for my own, its where I got my best work done. Sara Santarossa, thank you for all the coffee runs and study dates and stats help, you kept me sane throughout this whole process. To my committee members, Dr. Kenji Kenno and Dr. Jill Urbanic, thank you for lending me your time and knowledge to help me complete my thesis, I couldn’t have completed it without you. I especially want to thank my advisor, Dr. Joel Cort, for his guidance and wisdom along the way. You have helped me along this entire journey and I wouldn’t have been able to get to this point without you. Thank you for believing in me and pushing me to finish this thesis after starting my career, is the was motivation I needed to spend all those extra hours after working completing this project. I would also like to thank Tianna Beharriell and all the other graduate and undergraduate students that have helped me along the way. From trial runs to data collection, I wouldn’t have gotten to this point without you. Another big thank you to Don Clarke for all his help with the tools and technology used. You were such a huge help in developing this data collection and you helped keep things running smoothly along the way. v Lastly, I would like to thank Christian Steingraber for all his help in our thesis. I could not have done it without you, from bouncing idea’s off you or the hours upon hours spent collecting data, glad you were the one I got to complete this project with. I wish you all the best in your future. The last couple years have been the most rewarding and the most challenging years of my life, and I could not have done any of it without any of you. I wouldn’t change anything during the time it took to get to this place as it has helped me grow into the person I am today. vi TABLE OF CONTENTS DECLARATION OF ORIGINALITY ......................................................... iii ABSTRACT ........................................................................................ iv ACKNOWLEDGEMENT ........................................................................ v LIST OF TABLES ................................................................................. xi LIST OF FIGURES .............................................................................. xii LIST OF APPENDICES ....................................................................... xvi LIST OF ABBREVIATIONS ................................................................ xvii CHAPTER 1: INTRODUCTION .............................................................. 1 1.1 BACKGROUND .................................................................................................................. 1 1.2 STATEMENT OF PURPOSE ...................................................................................................... 2 1.3 HYPOTHESES .......................................................................................................................... 2 CHAPTER 2: LITERARTURE REVIEW ..................................................... 4 2.1 POWER TOOL USE IN THE AUTOMOTIVE INDUSTRY ............................................................. 4 2.1.1 POWER TOOL VARIETY .................................................................................................... 5 2.1.2 POWER TOOL FASTENING PROCEDURE .......................................................................... 6 2.1.3 PNEUMATIC RIGHT ANGLE POWER TOOLS ..................................................................... 7 2.1.4 DIRECT CURRENT RIGHT ANGLE POWER TOOLS ............................................................. 8 2.1.5 JOINT TYPES .................................................................................................................. 11 2.1.6 POWER TOOL EFFECTS ON THE HUMAN BODY ............................................................ 14 vii 2.2 MECHANICS OF MUSCLE CONTRACTION ............................................................................. 16 2.2.1 MOTOR UNIT ................................................................................................................. 16 2.2.2 MUSCLE FIBER RECRUITMENT ...................................................................................... 20 2.2.3 RESTING MEMBRANE POTENTIAL ................................................................................. 21 2.2.4 ACTION POTENTIAL PROPAGATION .............................................................................. 21 2.2.5 EXCITATION-CONTRACTION COUPLING ........................................................................ 23 2.2.6 SLIDING FILAMENT THEORY .......................................................................................... 25 2.2.7 MUSCLE PROPRIOCEPTORS ........................................................................................... 27 2.3 MUSCLE FORCE PRODUCTION ............................................................................................. 29 2.3.1 CONTRACTIONS ............................................................................................................. 29 2.3.2. TENSION ....................................................................................................................... 30 2.4 MUSCLE RELATIONSHIPS ...................................................................................................... 31 2.4.1 EMG TO FORCE.............................................................................................................. 31 2.4.2 LENGTH-TENSION .......................................................................................................... 31 2.4.3 FORCE-VELOCITY ........................................................................................................... 33 2.5 WORK-RELATED MUSCULOSKELETAL INJURIES OF THE UPPER EXTREMITY ....................... 34 2.5.1 FATIGUE AND MUSCLE DAMAGE .................................................................................. 35 2.5.2 ECCENTRIC STRETCHING DAMAGE ............................................................................... 36 2.5.2.1 SARCOMERE DISRUPTION ...................................................................................... 36 2.5.2.2 EXCITATION-CONTRACTION COUPLING DAMAGE ................................................. 37 2.5.3 CHANGES SEEN AFTER ECCENTRIC EXERCISE ................................................................ 37 2.5.3.1 DECREASE IN FORCE ............................................................................................... 37 2.5.3.2 FALL IN ACTIVE TENSION ........................................................................................ 38 2.5.3.3 SHIFT IN OPTIMAL LENGTH FOR ACTIVE TENSION ................................................ 38 2.5.3.4 RISE IN PASSIVE TENSION ...................................................................................... 39 2.6 EMG ...................................................................................................................................... 39 CHAPTER 3: METHODS ..................................................................... 41 3.1 PARTICIPANTS ...................................................................................................................... 41 3.2 INSTRUMENTATION AND MEASUREMENT .......................................................................... 41 3.3 EXPERIMENTAL DESIGN ....................................................................................................... 44 3.4 DATA ANALYSIS .................................................................................................................... 48 3.5 STATISTICAL ANALYSIS ......................................................................................................... 49 viii CHAPTER 4: RESULTS........................................................................ 50 4.1 HANDLE FORCES ................................................................................................................... 50 4.2 MUSLCE IMPULSE................................................................................................................. 53 4.2.1 RIGHT ANTERIOR DELTOID ............................................................................................ 53 4.2.2 RIGHT BICEP BRACHII .................................................................................................... 56 4.2.3 RIGHT EXTENSOR CARPI ULNARIS ................................................................................. 60 4.2.4 RIGHT FLEXOR CARPI RADIALIS ..................................................................................... 61 4.2.5 RIGHT FLEXOR CARPI ULNARIS...................................................................................... 64 4.2.6 RIGHT PECTORALIS MAJOR ........................................................................................... 66 4.2.7 RIGHT TRICEPS BRACHII ................................................................................................ 67 4.2.8 RIGHT UPPER TRAPEZIUS .............................................................................................. 67 4.3 BORG RATINGS OF PERCIEVED EXERTION ........................................................................... 73 CHAPTER 5: DISCUSSION .................................................................. 75 5.1 HANDLE FORCES ................................................................................................................... 78 5.2 MUSCLES OF THE SHOULDER GIRDLE .................................................................................. 79 5.3 MUSCLES OF THE UPPER ARM ............................................................................................. 81 5.4 MUSCLES OF THE FOREARM ................................................................................................ 82 5.5 HYPOTHESES REVISITED ................................................................................................. 83 5.6 LIMITATIONS AND ASSUMPTIONS ................................................................................. 85 CHAPTER 6: CONCLUSIONS .............................................................. 86 6.1 IMPLICATIONS FOR INDUSTRY ............................................................................................. 87 6.2 FUTURE RESEARCH DIRECTIONS .......................................................................................... 87 REFERENCES .................................................................................... 89 APPENDIX A ..................................................................................... 95 APPENDIX B ..................................................................................... 97 ix
Description: