ebook img

Equivalents of the Riemann Hypothesis II Analytic Equivalents PDF

512 Pages·2017·7.93 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Equivalents of the Riemann Hypothesis II Analytic Equivalents

EQUIVALENTS OF THE RIEMANN HYPOTHESIS VolumeTwo:AnalyticEquivalents TheRiemannhypothesis(RH)isperhapsthemostimportantoutstandingproblem inmathematics.Thistwo-volumetextpresentsthemainknownequivalentstoRH usinganalyticandcomputationalmethods.Thebooksaregentleonthereaderwith definitionsrepeated,proofssplitintologicalsections,andgraphicaldescriptionsof therelationsbetweendifferentresults.Theyalsoincludeextensivetables, supplementarycomputationaltools,andopenproblemssuitableforresearch. Accompanyingsoftwareisfreetodownload. Thesebookswillinterestmathematicianswhowishtoupdatetheirknowledge, graduateandseniorundergraduatestudentsseekingaccessibleresearchproblemsin numbertheory,andotherswhowanttoexploreandextendresultscomputationally. Eachvolumecanbereadindependently. Volume1presentsclassicalandmodernarithmeticequivalentstoRH,withsome analyticmethods.Volume2coversequivalenceswithastronganalyticorientation, supportedbyanextensivesetofappendicescontainingfullydevelopedproofs. EncyclopediaofMathematicsandItsApplications Thisseriesisdevotedtosignificanttopicsorthemesthathavewideapplicationin mathematicsormathematicalscienceandforwhichadetaileddevelopmentofthe abstracttheoryislessimportantthanathoroughandconcreteexplorationofthe implicationsandapplications. BooksintheEncyclopediaofMathematicsandItsApplicationscovertheir subjectscomprehensively.Lessimportantresultsmaybesummarizedasexercises attheendsofchapters.Fortechnicalities,readerscanbereferredtothe bibliography,whichisexpectedtobecomprehensive.Asaresult,volumesare encyclopedicreferencesormanageableguidestomajorsubjects. Encyclopedia of Mathematics and Its Applications AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridge UniversityPress.Foracompleteserieslistingvisit www.cambridge.org/mathematics. 119 M.DezaandM.DutourSikiric´GeometryofChemicalGraphs 120 T.NishiuraAbsoluteMeasurableSpaces 121 M.PrestPurity,SpectraandLocalisation 122 S.KhrushchevOrthogonalPolynomialsandContinuedFractions 123 H.NagamochiandT.IbarakiAlgorithmicAspectsofGraphConnectivity 124 F.W.KingHilbertTransformsI 125 F.W.KingHilbertTransformsII 126 O.CalinandD.-C.ChangSub-RiemannianGeometry 127 M.Grabischetal.AggregationFunctions 128 L.W.BeinekeandR.J.Wilson(eds.)withJ.L.GrossandT.W.TuckerTopicsinTopological GraphTheory 129 J.Berstel,D.PerrinandC.ReutenauerCodesandAutomata 130 T.G.FaticoniModulesoverEndomorphismRings 131 H.MorimotoStochasticControlandMathematicalModeling 132 G.SchmidtRelationalMathematics 133 P.KornerupandD.W.MatulaFinitePrecisionNumberSystemsandArithmetic 134 Y.CramaandP.L.Hammer(eds.)BooleanModelsandMethodsinMathematics,Computer Science,andEngineering 135 V.Berthe´andM.Rigo(eds.)Combinatorics,AutomataandNumberTheory 136 A.Krista´ly,V.D.Ra˘dulescuandC.VargaVariationalPrinciplesinMathematicalPhysics, Geometry,andEconomics 137 J.BerstelandC.ReutenauerNoncommutativeRationalSerieswithApplications 138 B.CourcelleandJ.EngelfrietGraphStructureandMonadicSecond-OrderLogic 139 M.FiedlerMatricesandGraphsinGeometry 140 N.VakilRealAnalysisthroughModernInfinitesimals 141 R.B.ParisHadamardExpansionsandHyperasymptoticEvaluation 142 Y.CramaandP.L.HammerBooleanFunctions 143 A.Arapostathis,V.S.BorkarandM.K.GhoshErgodicControlofDiffusionProcesses 144 N.Caspard,B.LeclercandB.MonjardetFiniteOrderedSets 145 D.Z.ArovandH.DymBitangentialDirectandInverseProblemsforSystemsofIntegraland DifferentialEquations 146 G.DassiosEllipsoidalHarmonics 147 L.W.BeinekeandR.J.Wilson(eds.)withO.R.OellermannTopicsinStructuralGraphTheory 148 L.Berlyand,A.G.KolpakovandA.NovikovIntroductiontotheNetworkApproximationMethod forMaterialsModeling 149 M.BaakeandU.GrimmAperiodicOrderI:AMathematicalInvitation 150 J.Borweinetal.LatticeSumsThenandNow 151 R.SchneiderConvexBodies:TheBrunn–MinkowskiTheory(SecondEdition) 152 G.DaPratoandJ.ZabczykStochasticEquationsinInfiniteDimensions(SecondEdition) 153 D.Hofmann,G.J.SealandW.Tholen(eds.)MonoidalTopology 154 M.CabreraGarc´ıaandA´.Rodr´ıguezPalaciosNon-AssociativeNormedAlgebrasI:The Vidav–PalmerandGelfand–NaimarkTheorems 155 C.F.DunklandY.XuOrthogonalPolynomialsofSeveralVariables(SecondEdition) 156 L.W.BeinekeandR.J.Wilson(eds.)withB.ToftTopicsinChromaticGraphTheory 157 T.MoraSolvingPolynomialEquationSystemsIII:AlgebraicSolving 158 T.MoraSolvingPolynomialEquationSystemsIV:BuchbergerTheoryandBeyond 159 V.Berthe´andM.Rigo(eds.)Combinatorics,WordsandSymbolicDynamics 160 B.RubinIntroductiontoRadonTransforms:WithElementsofFractionalCalculusandHarmonic Analysis 161 M.GherguandS.D.TaliaferroIsolatedSingularitiesinPartialDifferentialInequalities 162 G.MolicaBisci,V.RadulescuandR.ServadeiVariationalMethodsforNonlocalFractional Problems 163 S.WagonTheBanach–TarskiParadox(SecondEdition) 164 K.BroughanEquivalentsoftheRiemannHypothesisI:ArithmeticEquivalents 165 K.BroughanEquivalentsoftheRiemannHypothesisII:AnalyticEquivalents 166 M.BaakeandU.GrimmAperiodicOrderII:RepresentationTheoryandtheZelmanovApproach Encyclopedia of Mathematics and Its Applications Equivalents of the Riemann Hypothesis Volume Two: Analytic Equivalents KEVIN BROUGHAN UniversityofWaikato,NewZealand UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 4843/24,2ndFloor,AnsariRoad,Daryaganj,Delhi–110002,India 79AnsonRoad,#06-04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107197121 DOI:10.1017/9781108178266 (cid:2)c KevinBroughan2017 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2017 PrintedintheUnitedKingdombyClays,StIvesplc AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloguinginPublicationData Names:Broughan,KevinA.(KevinAlfred),1943–author. Title:EquivalentsoftheRiemannhypothesis/KevinBroughan, UniversityofWaikato,NewZealand. Description:Cambridge:CambridgeUniversityPress,2017–| Series:Encyclopediaofmathematicsanditsapplications;165| Includesbibliographicalreferencesandindex.Contents:volume2.AnalyticEquivalents Identifiers:LCCN2017034308|ISBN9781107197121(hardback:alk.paper:v.1) Subjects:LCSH:Riemannhypothesis. Classification:LCCQA246.B7452017|DDC512.7/3–dc23 LCrecordavailableathttps://lccn.loc.gov/2017034308 ISBN–2VolumeSet978-1-108-29078-4Hardback ISBN–Volume1978-1-107-19704-6Hardback ISBN–Volume2978-1-107-19712-1Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyInternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. DedicatedtoJackie,JudeandBeck RH isaprecisestatement,andinone sensewhat itmeansisclear,butwhat it is connected with, what it implies, where it comes from, can be very un- obvious. MartinHuxley Contents for Volume Two ContentsforVolumeOne pagexi ListofIllustrations xiv ListofTables xvi PrefaceforVolumeTwo xvii ListofAcknowledgements xx 1 Introduction 1 1.1 WhyThisStudy? 1 1.2 SummaryofVolumeTwo 2 1.3 HowtoReadThisBook 7 2 SeriesEquivalents 8 2.1 Introduction 8 2.2 TheRieszFunction 10 2.3 AdditionalPropertiesoftheRieszFunction 14 2.4 TheSeriesofHardyandLittlewood 15 2.5 AGeneralTheoremforaClassofEntireFunctions 16 2.6 FurtherWork 22 3 BanachandHilbertSpaceMethods 23 3.1 Introduction 23 3.2 PreliminaryDefinitionsandResults 25 3.3 Beurling’sTheorem 29 3.4 RecentDevelopments 35 4 TheRiemannXiFunction 37 4.1 Introduction 37 4.2 PreliminaryResults 40 4.3 Monotonicityof|ξ(s)| 49 vii viii ContentsforVolumeTwo 4.4 PositiveEvenDerivatives 51 4.5 Li’sEquivalence 54 4.6 MoreRecentResults 59 5 TheDeBruijn–NewmanConstant 62 5.1 Introduction 62 5.2 PreliminaryDefinitionsandResults 66 5.3 ARegionforΞλ(z)WithOnlyRealZeros 69 5.4 TheExistenceofΛ 77 5.5 ImprovedLowerBoundsforΛ 77 5.5.1 Lehmer’sPhenomenon 78 5.5.2 TheDifferentialEquationSatisfiedbyH(t,z) 81 5.5.3 FindingaLowerBoundforΛ UsingLehmerPairs 87 C 5.6 FurtherWork 92 6 OrthogonalPolynomials 93 6.1 Introduction 93 6.2 Definitions 94 6.3 OrthogonalPolynomialProperties 96 6.4 Moments 99 6.5 Quasi-AnalyticFunctions 104 6.6 Carleman’sInequality 106 6.7 RiemannZetaFunctionApplication 113 6.8 RecentWork 116 7 CyclotomicPolynomials 117 7.1 Introduction 117 7.2 Definitions 118 7.3 PreliminaryResults 119 7.4 RiemannHypothesisEquivalences 124 7.5 FurtherWork 126 8 IntegralEquations 127 8.1 Introduction 127 8.2 PreliminaryResults 129 8.3 TheMethodofSekatskii,BeltraminelliandMerlini 133 8.4 Salem’sEquation 139 8.5 Levinson’sEquivalence 142 9 Weil’sExplicitFormula,InequalityandConjectures 150 9.1 Introduction 150 9.2 Definitions 152 9.3 PreliminaryResults 152 9.4 Weil’sExplicitFormula 154

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.