EQUIVALENTS OF THE RIEMANN HYPOTHESIS VolumeOne:ArithmeticEquivalents TheRiemannhypothesis(RH)isperhapsthemostimportantoutstandingproblem inmathematics.Thistwo-volumetextpresentsthemainknownequivalentstoRH usinganalyticandcomputationalmethods.Thebooksaregentleonthereaderwith definitionsrepeated,proofssplitintologicalsections,andgraphicaldescriptionsof therelationsbetweendifferentresults.Theyalsoincludeextensivetables, supplementarycomputationaltools,andopenproblemssuitableforresearch. Accompanyingsoftwareisfreetodownload. Thesebookswillinterestmathematicianswhowishtoupdatetheirknowledge, graduateandseniorundergraduatestudentsseekingaccessibleresearchproblemsin numbertheory,andotherswhowanttoexploreandextendresultscomputationally. Eachvolumecanbereadindependently. Volume1presentsclassicalandmodernarithmeticequivalentstoRH,withsome analyticmethods.Volume2coversequivalenceswithastronganalyticorientation, supportedbyanextensivesetofappendicescontainingfullydevelopedproofs. EncyclopediaofMathematicsandItsApplications Thisseriesisdevotedtosignificanttopicsorthemesthathavewideapplicationin mathematicsormathematicalscienceandforwhichadetaileddevelopmentofthe abstracttheoryislessimportantthanathoroughandconcreteexplorationofthe implicationsandapplications. BooksintheEncyclopediaofMathematicsandItsApplicationscovertheir subjectscomprehensively.Lessimportantresultsmaybesummarizedasexercises attheendsofchapters.Fortechnicalities,readerscanbereferredtothe bibliography,whichisexpectedtobecomprehensive.Asaresult,volumesare encyclopedicreferencesormanageableguidestomajorsubjects. Encyclopedia of Mathematics and Its Applications AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridge UniversityPress.Foracompleteserieslistingvisit www.cambridge.org/mathematics. 119 M.DezaandM.DutourSikiric´GeometryofChemicalGraphs 120 T.NishiuraAbsoluteMeasurableSpaces 121 M.PrestPurity,SpectraandLocalisation 122 S.KhrushchevOrthogonalPolynomialsandContinuedFractions 123 H.NagamochiandT.IbarakiAlgorithmicAspectsofGraphConnectivity 124 F.W.KingHilbertTransformsI 125 F.W.KingHilbertTransformsII 126 O.CalinandD.-C.ChangSub-RiemannianGeometry 127 M.Grabischetal.AggregationFunctions 128 L.W.BeinekeandR.J.Wilson(eds.)withJ.L.GrossandT.W.TuckerTopicsinTopological GraphTheory 129 J.Berstel,D.PerrinandC.ReutenauerCodesandAutomata 130 T.G.FaticoniModulesoverEndomorphismRings 131 H.MorimotoStochasticControlandMathematicalModeling 132 G.SchmidtRelationalMathematics 133 P.KornerupandD.W.MatulaFinitePrecisionNumberSystemsandArithmetic 134 Y.CramaandP.L.Hammer(eds.)BooleanModelsandMethodsinMathematics,Computer Science,andEngineering 135 V.Berthe´andM.Rigo(eds.)Combinatorics,AutomataandNumberTheory 136 A.Krista´ly,V.D.Ra˘dulescuandC.VargaVariationalPrinciplesinMathematicalPhysics, Geometry,andEconomics 137 J.BerstelandC.ReutenauerNoncommutativeRationalSerieswithApplications 138 B.CourcelleandJ.EngelfrietGraphStructureandMonadicSecond-OrderLogic 139 M.FiedlerMatricesandGraphsinGeometry 140 N.VakilRealAnalysisthroughModernInfinitesimals 141 R.B.ParisHadamardExpansionsandHyperasymptoticEvaluation 142 Y.CramaandP.L.HammerBooleanFunctions 143 A.Arapostathis,V.S.BorkarandM.K.GhoshErgodicControlofDiffusionProcesses 144 N.Caspard,B.LeclercandB.MonjardetFiniteOrderedSets 145 D.Z.ArovandH.DymBitangentialDirectandInverseProblemsforSystemsofIntegraland DifferentialEquations 146 G.DassiosEllipsoidalHarmonics 147 L.W.BeinekeandR.J.Wilson(eds.)withO.R.OellermannTopicsinStructuralGraphTheory 148 L.Berlyand,A.G.KolpakovandA.NovikovIntroductiontotheNetworkApproximationMethod forMaterialsModeling 149 M.BaakeandU.GrimmAperiodicOrderI:AMathematicalInvitation 150 J.Borweinetal.LatticeSumsThenandNow 151 R.SchneiderConvexBodies:TheBrunn–MinkowskiTheory(SecondEdition) 152 G.DaPratoandJ.ZabczykStochasticEquationsinInfiniteDimensions(SecondEdition) 153 D.Hofmann,G.J.SealandW.Tholen(eds.)MonoidalTopology 154 M.CabreraGarc´ıaandA´.Rodr´ıguezPalaciosNon-AssociativeNormedAlgebrasI:The Vidav–PalmerandGelfand–NaimarkTheorems 155 C.F.DunklandY.XuOrthogonalPolynomialsofSeveralVariables(SecondEdition) 156 L.W.BeinekeandR.J.Wilson(eds.)withB.ToftTopicsinChromaticGraphTheory 157 T.MoraSolvingPolynomialEquationSystemsIII:AlgebraicSolving 158 T.MoraSolvingPolynomialEquationSystemsIV:BuchbergerTheoryandBeyond 159 V.Berthe´andM.Rigo(eds.)Combinatorics,WordsandSymbolicDynamics 160 B.RubinIntroductiontoRadonTransforms:WithElementsofFractionalCalculusandHarmonic Analysis 161 M.GherguandS.D.TaliaferroIsolatedSingularitiesinPartialDifferentialInequalities 162 G.MolicaBisci,V.RadulescuandR.ServadeiVariationalMethodsforNonlocalFractional Problems 163 S.WagonTheBanach–TarskiParadox(SecondEdition) 164 K.BroughanEquivalentsoftheRiemannHypothesisI:ArithmeticEquivalents 165 K.BroughanEquivalentsoftheRiemannHypothesisII:AnalyticEquivalents 166 M.BaakeandU.GrimmAperiodicOrderII:RepresentationTheoryandtheZelmanovApproach Encyclopedia of Mathematics and Its Applications Equivalents of the Riemann Hypothesis Volume One: Arithmetic Equivalents KEVIN BROUGHAN UniversityofWaikato,NewZealand UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 4843/24,2ndFloor,AnsariRoad,Daryaganj,Delhi–110002,India 79AnsonRoad,#06-04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107197046 DOI:10.1017/9781108178228 (cid:2)c KevinBroughan2017 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2017 PrintedintheUnitedKingdombyClays,StIvesplc AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloging-in-PublicationData Names:Broughan,KevinA.(KevinAlfred),1943–author. Title:EquivalentsoftheRiemannhypothesis/KevinBroughan,UniversityofWaikato, NewZealand. Description:Cambridge:CambridgeUniversityPress,2017–| Series:Encyclopediaofmathematicsanditsapplications;164| Includesbibliographicalreferencesandindex.Contents:volume1.Arithmeticequivalents Identifiers:LCCN2017034308|ISBN9781107197046(hardback:alk.paper:v.1) Subjects:LCSH:Riemannhypothesis.Classification:LCCQA246.B7452017| DDC512.7/3–dc23 LCrecordavailableathttps://lccn.loc.gov/2017034308 ISBN–2VolumeSet978-1-108-29078-4Hardback ISBN–Volume1978-1-107-19704-6Hardback ISBN–Volume2978-1-107-19712-1Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. DedicatedtoJackie,JudeandBeck RH isaprecisestatement,andinone sensewhat itmeansisclear,butwhat it is connected with, what it implies, where it comes from, can be very un- obvious. MartinHuxley Contents for Volume One ContentsforVolumeTwo pagex ListofIllustrations xiv ListofTables xvi PrefaceforVolumeOne xvii ListofAcknowledgements xxi 1 Introduction 1 1.1 ChapterSummary 1 1.2 EarlyHistory 1 1.3 VolumeOneSummary 8 1.4 Notation 12 1.5 BackgroundReading 13 1.6 UnsolvedProblems 14 2 TheRiemannZetaFunction 15 2.1 Introduction 15 2.2 BasicProperties 16 2.3 Zero-FreeRegions 21 2.4 Landau’sZero-FreeRegion 25 2.5 Zero-FreeRegionsSummary 29 2.6 TheProductOverZetaZeros 30 2.7 UnsolvedProblems 39 3 Estimates 40 3.1 Introduction 40 3.2 ConstructingTablesofBoundsforψ(x) 41 3.3 ExactVerificationUsingComputation 51 3.4 Estimatesforθ(x) 54 3.5 MoreEstimates 65 3.6 UnsolvedProblems 67 vii viii ContentsforVolumeOne 4 ClassicalEquivalences 68 4.1 Introduction 68 4.2 ThePrimeNumberTheoremandItsRHEquivalences 69 4.3 OscillationTheorems 81 4.4 ErrorsinArithmeticSums 88 4.5 UnsolvedProblems 93 5 Euler’sTotientFunction 94 5.1 Introduction 94 5.2 EstimatesforEuler’sFunctionϕ(n) 98 5.3 PreliminaryResultsWithRHTrue 110 5.4 FurtherResultsWithRHTrue 123 5.5 PreliminaryResultsWithRHFalse 130 5.6 Nicolas’FirstTheorem 135 5.7 Nicolas’SecondTheorem 137 5.8 UnsolvedProblems 142 6 AVarietyofAbundantNumbers 144 6.1 Introduction 144 6.2 SuperabundantNumbers 147 6.3 ColossallyAbundantNumbers 153 6.4 Estimatesforx ((cid:5)) 161 2 6.5 UnsolvedProblems 163 7 Robin’sTheorem 165 7.1 Introduction 165 7.2 Ramanujan’sTheoremAssumingRH 169 7.3 PreliminaryLemmasWithRHTrue 174 (cid:2) 7.4 Bounding p≤x(1−p−2)FromAboveWithRHTrue 180 7.5 BoundingloglogNFromBelowWithRHTrue 184 7.6 ProofofRobin’sTheoremWithRHTrue 186 7.7 AnUnconditionalBoundforσ(n)/n 188 7.8 BoundingloglogNFromAboveWithoutRH 190 7.9 ALowerBoundforσ(n)/nWithRHFalse 191 7.10 Lagarias’FormulationofRobin’sCriterion 193 7.11 UnconditionalResultsforLagarias’Formulation 196 7.12 UnitaryDivisorSums 197 7.13 UnsolvedProblems 198 8 NumbersThatDoNotSatisfyRobin’sInequality 200 8.1 Introduction 200 8.2 Hardy–RamanujanNumbers 202 8.3 IntegersNotDivisiblebytheFifthPowerofAnyPrime 208