ebook img

Equivalents of the Riemann Hypothesis I: Arithmetic Equivalents PDF

348 Pages·2017·9.38 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Equivalents of the Riemann Hypothesis I: Arithmetic Equivalents

EQUIVALENTS OF THE RIEMANN HYPOTHESIS VolumeOne:ArithmeticEquivalents TheRiemannhypothesis(RH)isperhapsthemostimportantoutstandingproblem inmathematics.Thistwo-volumetextpresentsthemainknownequivalentstoRH usinganalyticandcomputationalmethods.Thebooksaregentleonthereaderwith definitionsrepeated,proofssplitintologicalsections,andgraphicaldescriptionsof therelationsbetweendifferentresults.Theyalsoincludeextensivetables, supplementarycomputationaltools,andopenproblemssuitableforresearch. Accompanyingsoftwareisfreetodownload. Thesebookswillinterestmathematicianswhowishtoupdatetheirknowledge, graduateandseniorundergraduatestudentsseekingaccessibleresearchproblemsin numbertheory,andotherswhowanttoexploreandextendresultscomputationally. Eachvolumecanbereadindependently. Volume1presentsclassicalandmodernarithmeticequivalentstoRH,withsome analyticmethods.Volume2coversequivalenceswithastronganalyticorientation, supportedbyanextensivesetofappendicescontainingfullydevelopedproofs. EncyclopediaofMathematicsandItsApplications Thisseriesisdevotedtosignificanttopicsorthemesthathavewideapplicationin mathematicsormathematicalscienceandforwhichadetaileddevelopmentofthe abstracttheoryislessimportantthanathoroughandconcreteexplorationofthe implicationsandapplications. BooksintheEncyclopediaofMathematicsandItsApplicationscovertheir subjectscomprehensively.Lessimportantresultsmaybesummarizedasexercises attheendsofchapters.Fortechnicalities,readerscanbereferredtothe bibliography,whichisexpectedtobecomprehensive.Asaresult,volumesare encyclopedicreferencesormanageableguidestomajorsubjects. Encyclopedia of Mathematics and Its Applications AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridge UniversityPress.Foracompleteserieslistingvisit www.cambridge.org/mathematics. 119 M.DezaandM.DutourSikiric´GeometryofChemicalGraphs 120 T.NishiuraAbsoluteMeasurableSpaces 121 M.PrestPurity,SpectraandLocalisation 122 S.KhrushchevOrthogonalPolynomialsandContinuedFractions 123 H.NagamochiandT.IbarakiAlgorithmicAspectsofGraphConnectivity 124 F.W.KingHilbertTransformsI 125 F.W.KingHilbertTransformsII 126 O.CalinandD.-C.ChangSub-RiemannianGeometry 127 M.Grabischetal.AggregationFunctions 128 L.W.BeinekeandR.J.Wilson(eds.)withJ.L.GrossandT.W.TuckerTopicsinTopological GraphTheory 129 J.Berstel,D.PerrinandC.ReutenauerCodesandAutomata 130 T.G.FaticoniModulesoverEndomorphismRings 131 H.MorimotoStochasticControlandMathematicalModeling 132 G.SchmidtRelationalMathematics 133 P.KornerupandD.W.MatulaFinitePrecisionNumberSystemsandArithmetic 134 Y.CramaandP.L.Hammer(eds.)BooleanModelsandMethodsinMathematics,Computer Science,andEngineering 135 V.Berthe´andM.Rigo(eds.)Combinatorics,AutomataandNumberTheory 136 A.Krista´ly,V.D.Ra˘dulescuandC.VargaVariationalPrinciplesinMathematicalPhysics, Geometry,andEconomics 137 J.BerstelandC.ReutenauerNoncommutativeRationalSerieswithApplications 138 B.CourcelleandJ.EngelfrietGraphStructureandMonadicSecond-OrderLogic 139 M.FiedlerMatricesandGraphsinGeometry 140 N.VakilRealAnalysisthroughModernInfinitesimals 141 R.B.ParisHadamardExpansionsandHyperasymptoticEvaluation 142 Y.CramaandP.L.HammerBooleanFunctions 143 A.Arapostathis,V.S.BorkarandM.K.GhoshErgodicControlofDiffusionProcesses 144 N.Caspard,B.LeclercandB.MonjardetFiniteOrderedSets 145 D.Z.ArovandH.DymBitangentialDirectandInverseProblemsforSystemsofIntegraland DifferentialEquations 146 G.DassiosEllipsoidalHarmonics 147 L.W.BeinekeandR.J.Wilson(eds.)withO.R.OellermannTopicsinStructuralGraphTheory 148 L.Berlyand,A.G.KolpakovandA.NovikovIntroductiontotheNetworkApproximationMethod forMaterialsModeling 149 M.BaakeandU.GrimmAperiodicOrderI:AMathematicalInvitation 150 J.Borweinetal.LatticeSumsThenandNow 151 R.SchneiderConvexBodies:TheBrunn–MinkowskiTheory(SecondEdition) 152 G.DaPratoandJ.ZabczykStochasticEquationsinInfiniteDimensions(SecondEdition) 153 D.Hofmann,G.J.SealandW.Tholen(eds.)MonoidalTopology 154 M.CabreraGarc´ıaandA´.Rodr´ıguezPalaciosNon-AssociativeNormedAlgebrasI:The Vidav–PalmerandGelfand–NaimarkTheorems 155 C.F.DunklandY.XuOrthogonalPolynomialsofSeveralVariables(SecondEdition) 156 L.W.BeinekeandR.J.Wilson(eds.)withB.ToftTopicsinChromaticGraphTheory 157 T.MoraSolvingPolynomialEquationSystemsIII:AlgebraicSolving 158 T.MoraSolvingPolynomialEquationSystemsIV:BuchbergerTheoryandBeyond 159 V.Berthe´andM.Rigo(eds.)Combinatorics,WordsandSymbolicDynamics 160 B.RubinIntroductiontoRadonTransforms:WithElementsofFractionalCalculusandHarmonic Analysis 161 M.GherguandS.D.TaliaferroIsolatedSingularitiesinPartialDifferentialInequalities 162 G.MolicaBisci,V.RadulescuandR.ServadeiVariationalMethodsforNonlocalFractional Problems 163 S.WagonTheBanach–TarskiParadox(SecondEdition) 164 K.BroughanEquivalentsoftheRiemannHypothesisI:ArithmeticEquivalents 165 K.BroughanEquivalentsoftheRiemannHypothesisII:AnalyticEquivalents 166 M.BaakeandU.GrimmAperiodicOrderII:RepresentationTheoryandtheZelmanovApproach Encyclopedia of Mathematics and Its Applications Equivalents of the Riemann Hypothesis Volume One: Arithmetic Equivalents KEVIN BROUGHAN UniversityofWaikato,NewZealand UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 4843/24,2ndFloor,AnsariRoad,Daryaganj,Delhi–110002,India 79AnsonRoad,#06-04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107197046 DOI:10.1017/9781108178228 (cid:2)c KevinBroughan2017 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2017 PrintedintheUnitedKingdombyClays,StIvesplc AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloging-in-PublicationData Names:Broughan,KevinA.(KevinAlfred),1943–author. Title:EquivalentsoftheRiemannhypothesis/KevinBroughan,UniversityofWaikato, NewZealand. Description:Cambridge:CambridgeUniversityPress,2017–| Series:Encyclopediaofmathematicsanditsapplications;164| Includesbibliographicalreferencesandindex.Contents:volume1.Arithmeticequivalents Identifiers:LCCN2017034308|ISBN9781107197046(hardback:alk.paper:v.1) Subjects:LCSH:Riemannhypothesis.Classification:LCCQA246.B7452017| DDC512.7/3–dc23 LCrecordavailableathttps://lccn.loc.gov/2017034308 ISBN–2VolumeSet978-1-108-29078-4Hardback ISBN–Volume1978-1-107-19704-6Hardback ISBN–Volume2978-1-107-19712-1Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. DedicatedtoJackie,JudeandBeck RH isaprecisestatement,andinone sensewhat itmeansisclear,butwhat it is connected with, what it implies, where it comes from, can be very un- obvious. MartinHuxley Contents for Volume One ContentsforVolumeTwo pagex ListofIllustrations xiv ListofTables xvi PrefaceforVolumeOne xvii ListofAcknowledgements xxi 1 Introduction 1 1.1 ChapterSummary 1 1.2 EarlyHistory 1 1.3 VolumeOneSummary 8 1.4 Notation 12 1.5 BackgroundReading 13 1.6 UnsolvedProblems 14 2 TheRiemannZetaFunction 15 2.1 Introduction 15 2.2 BasicProperties 16 2.3 Zero-FreeRegions 21 2.4 Landau’sZero-FreeRegion 25 2.5 Zero-FreeRegionsSummary 29 2.6 TheProductOverZetaZeros 30 2.7 UnsolvedProblems 39 3 Estimates 40 3.1 Introduction 40 3.2 ConstructingTablesofBoundsforψ(x) 41 3.3 ExactVerificationUsingComputation 51 3.4 Estimatesforθ(x) 54 3.5 MoreEstimates 65 3.6 UnsolvedProblems 67 vii viii ContentsforVolumeOne 4 ClassicalEquivalences 68 4.1 Introduction 68 4.2 ThePrimeNumberTheoremandItsRHEquivalences 69 4.3 OscillationTheorems 81 4.4 ErrorsinArithmeticSums 88 4.5 UnsolvedProblems 93 5 Euler’sTotientFunction 94 5.1 Introduction 94 5.2 EstimatesforEuler’sFunctionϕ(n) 98 5.3 PreliminaryResultsWithRHTrue 110 5.4 FurtherResultsWithRHTrue 123 5.5 PreliminaryResultsWithRHFalse 130 5.6 Nicolas’FirstTheorem 135 5.7 Nicolas’SecondTheorem 137 5.8 UnsolvedProblems 142 6 AVarietyofAbundantNumbers 144 6.1 Introduction 144 6.2 SuperabundantNumbers 147 6.3 ColossallyAbundantNumbers 153 6.4 Estimatesforx ((cid:5)) 161 2 6.5 UnsolvedProblems 163 7 Robin’sTheorem 165 7.1 Introduction 165 7.2 Ramanujan’sTheoremAssumingRH 169 7.3 PreliminaryLemmasWithRHTrue 174 (cid:2) 7.4 Bounding p≤x(1−p−2)FromAboveWithRHTrue 180 7.5 BoundingloglogNFromBelowWithRHTrue 184 7.6 ProofofRobin’sTheoremWithRHTrue 186 7.7 AnUnconditionalBoundforσ(n)/n 188 7.8 BoundingloglogNFromAboveWithoutRH 190 7.9 ALowerBoundforσ(n)/nWithRHFalse 191 7.10 Lagarias’FormulationofRobin’sCriterion 193 7.11 UnconditionalResultsforLagarias’Formulation 196 7.12 UnitaryDivisorSums 197 7.13 UnsolvedProblems 198 8 NumbersThatDoNotSatisfyRobin’sInequality 200 8.1 Introduction 200 8.2 Hardy–RamanujanNumbers 202 8.3 IntegersNotDivisiblebytheFifthPowerofAnyPrime 208

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.