ebook img

Equivalence of topological mirror and chiral superconductivity in one dimension PDF

1.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Equivalence of topological mirror and chiral superconductivity in one dimension

Equivalenceoftopologicalmirrorandchiralsuperconductivityinonedimension Eugene Dumitrescu1, Girish Sharma1, Jay D. Sau2, and Sumanta Tewari1 1Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 2 CondensedMatterTheoryCenter,DepartmentofPhysics,UniversityofMaryland,CollegePark,MD20742 Recentlyithasbeenproposedthataunitarytopologicalmirrorsymmetrycanstabilizemultiplezeroenergy Majorana fermion modes in one dimensional (1D) time reversal (TR) invariant topological superconductors. Hereweestablishanexactequivalencebetween1D“topologicalmirrorsuperconductivity”andchiraltopologi- calsuperconductivityinBDIclasswhichcanalsostabilizemultipleMajorana-Kramerspairsin1DTR-invariant topologicalsuperconductors. Theequivalenceprovesthattopologicalmirrorsuperconductivitycanbeunder- stoodaschiralsuperconductivityintheBDIsymmetryclassco-existingwithtime-reversalsymmetry. Further- 5 more, weshowthatthemirrorBerryphasecoincideswiththechiralwindinginvariantoftheBDIsymmetry 1 class, which is independent of the presence of the time-reversal symmetry. Thus, the time-reversal invariant 0 topological mirror superconducting state may be viewed as a special case of the BDI symmetry class in the 2 well-knownAltland-Zirnbauerperiodictableoffreefermionicphases. Weillustratetheresultswiththeexam- n plesof1Dspin-orbitcoupledquantumwiresinthepresenceofnodelesss superconductivityandtherecently ± a discussedexperimentalsystemofferromagneticatom(Fe)chainsembeddedonalead(Pb)superconductor. J 5 Introduction : Mirror symmetry, when coupled with time- symmetry. We then establish an exact equivalence between ] reversal(TR)andparticle-hole(PH)symmetries,hasrecently “mirror Berry phase”1 used to justify the presence of multi- l l beenproposed1tostabilizeaone-dimensionaltopologicalsu- ple MKPs in DIII systems and the integer winding number a perconductingphasewithanintegernumberofspatiallyover- invariant ofthe BDIclass25. However, the winding invariant h - lappingzeroenergyMajoranafermionmodes. Thenumberof fortheBDIclasscontinuestobewell-definedandunchanged s Majorana edge modes in a so-called “topological mirror su- evenwhenthetime-reversalsymmetryisbroken. Theequiva- e m perconductor” is indexed by a mirror Berry phase γm Z lenceprovesthat“topologicalmirrorsuperconductivity”1can ∈ which was defined in Ref. 1. Mirror symmetry and a mirror beviewedasbelongingtotheBDIsymmetryclassinthewell- . t Berry phase topological invariant have been used to theoret- known periodic table of Altland-Zirnbaur classification of a m ically explain the existence of multiple Majorana modes in freefermionicphases4–6andthattheco-existingtime-reversal heterostructure based topological superconductors involving symmetrydoesnotqualitativelymodifythetopologicalphase. - d a proximity induced s±-wave pairing potential on spin-orbit Therefore, in one dimension the chiral BDI symmetry is in n coupled semiconductor wires1. A mirror symmetry has also factmoregeneralthanmirrorsymmetryinthesensethatper- o beenrecentlyinvokedtodiscussthetopologicalpropertiesin turbationswhichbreakboththesymplecticTRsymmetryand c thecontextofferromagneticatomicchainsembeddedonthe topological mirror symmetry may keep the chiral symmetry [ surfaceofaPbsuperconductor2,3. invariant,allowingmultipleMajoranafermionmodesevenin 1 Topological classification based on a unitary mirror sym- theabsenceofmirrorsymmetry. Incontrast,chiralsymmetry v metry aims to extend the Z -invariant of the DIII symmetry breakingtermsalsonecessarilybreakeithermirrorortimere- 2 5 class to allow the existence of multiple Majorana Kramers versalsymmetry(undereitherofthesecircumstancesthemir- 8 pairs(MKPs)1. IntheAltland-Zirnbauerframeworkofclassi- rorBerryphasecannotbedefined1)andthereforetopological 9 0 ficationoffreefermionicphases4–6, Majoranafermionshave mirrorsymmetrycannotbethoughtofasanindependentsym- 0 beenpredictedtooccurasedgestatesinlowdimensionalsys- metryinone-dimension. . temsbelongingtothetopologicalclassesD7–14,DIII15–25,and Mirror versus chiral symmetric systems: In this paper we 1 0 BDI26–33. Thisraisesthefundamentalquestionofwhetheror will consider a superconducting system with particle-hole 5 notmirrorsymmetryinonedimensionrefinesthetopological symmetryΞandtime-reversalsymmetryΘ. Superconducting 1 classification in the Altland-Zirnbauer framework, and if so, systems with mirror symmetry for which the “mirror Berry : is mirror symmetry a critical ingredient for the protection of phase”isdefined1 haveanadditionalunitarysymmetryoper- v i MKPsintime-reversalinvariantDIIIsystems? Inonedimen- ator such that [ ,Θ] = [ ,Ξ] = [ ,H] = 0 (where X sionitiswellknownthatthechiralBDIsymmetryclassalso H isMthe BdG HamMiltonian foMr which exMplicit examples are r supports an arbitrary number of Majorana end modes due to discussed in later sections) and 2 = 1. On the other a itsZinvariant26,27,32and,withconcurrentTRsymmetry,stabi- hand,systemsinthechiralBDIsyMmmetryc−lasshaveapseudo lizesmultipleMajorana-Kramerspairs25 asedgemodes. Itis timereversaloperator (with 2 =1)whichincombination thereforenaturaltoaskhowthesetwosymmetries(mirrorand withtheparticle-holesOymmetrOyΞdefinesachiralityoperator chiral),whichbothproducemultipleMKPsinthepresenceof =Ξ withtheproperties 2 =1, ,H =0,[Θ, ]=0. concurrent TR, are related andinvestigate the conditions un- CNoteth·aOtwehaveassumedheCrethatt{hCetwo}time-reverCsalop- derwhichtheymaydiffer,ifatall. erators and Θ commute. From these definitions it is clear O In this work we formulate a general procedure illustrat- thatwhentheseBDIsymmetryoperatorsarepresentonecan ing how the presence of mirror symmetry promotes a one- definea“mirror”operator = Θ,whichsatisfiesallthe M O· dimensionalclassDIIItopologicalsuperconductortothechi- properties mentioned for the Mirror operator. Alternatively ral topological class BDI that co-exists with a time-reversal for systems with time-reversal and mirror symmetry one can 2 definethepseudo-timereversal =Θ ,whichisrequired connectionofthetwochiralHamiltoniansarerelatedby O ·M tocharacterizesystemsintheBDIsymmetryclass.Therefore, (cid:88) superconducting systems with TR and BDI symmetries have a(k,θ =0)= f n,k ∇ n,k (7) n k (cid:104) | | (cid:105) thesameoperatorcontentassystemswithTRandmirrorsym- n metries. =(cid:88)f n,k Z(k)†∇ [Z(k)n,k ] (8) n k 0 EquivalenceofmirrorBerryphaseandBDIwindingnum- (cid:104) | | (cid:105) n ber: The topological invariant associated with the BDI sym- (cid:88) =a (k,θ =0)+ f n,k [Z(k)†∇ Z(k)]n,k (9) metryi.e. thewindingnumberfor coincideswiththemirror 0 n k 0 (cid:104) | | (cid:105) BerryphasedefinedinRef.[1]arCealsorelated. Toseethis, n wefollowRef.[1]todefinethemirrorBerryphaseanddefine =∂kArg[Det(U(k)V†(k))]=∂kArg[Det[Q(k)]]. (10) afamilyofHamiltoniansparametrizedbyθas Therefore the integral of the Berry connection, which is re- H(k,θ)=H(k)cosθ+ sinθ. (1) lated to the mirror Berry phase, is the same as the winding C numberinvariantoftheBDIclass. Noteherethatwehaveintroducedaslightmodificationtothe Example 1: Spin-orbit coupled nanowire proximity cou- definitionusedinRef.[1],whereforthechiralityoperatorwe pled to s± superconductor: As a concrete example, we il- haveused =Π insteadofΠ=iΘ Ξ.Butsince com- lustrate the equivalence of topological mirror and chiral su- muteswithCH thi·sMisessentiallyequival·entapartfromMthefact perconductivity for a system consisting of a spin-orbit cou- thatwiththistransformation,themirrorBerryphaseinRef.[ pled semiconductor nanowire with proximity induced s±- 1] becomes the total Chern number of H(k,θ) . The Chern wavesuperconductivity1. Inprinciplethismaybeexperimen- numberisgivenbyintegratingthecurvatureoftheBerrycon- tally achieved by depositing an InSb nanowire onto an Iron nectionandusingStokestheoremisrelatedtotheintegralof based superconductor with a sign changing extended s-wave theBerryconnectionwrittenas orderparameter. TheeffectiveBogoliubov-deGennes(BdG) Hamiltonian for the nanowire with proximity induced super- a(k,θ)=(cid:88)fn n,k,θ ∇θ,k n,k,θ (2) conductivityisH =(cid:80)kΨ†kH(k)Ψk where, (cid:104) | | (cid:105) n H(k)=( 2tcos(k) µ)σ τ +α sin(k)σ τ (11) 0 z R y z − − atθ = 0,where n,k,θ arewave-functionsparametrizedei- +∆scos(k)σ0τx. | (cid:105) theronthetopHemisphereπ/2>θ >0orthebottomHemi- Here k k is the 1D crystal momentum and Ψ = sphere−π/2<θ <0. (c ,c ,≡c† x, c† )T is a four component Nambu spkinor TheHamiltonianH(k)isoff-diagonalwithanoff-diagonal k↑ k↓ −k↓ − −k↑ acting in the τ (particle-hole) and σ (spin) spaces. Addi- matrixQ(k)as tionally, t is the nearest neighbor hopping, µ is the chemi- (cid:18) (cid:19) calpotential,α isthestrengthofRashbaspinorbitcoupling 0 Q(k) R H(k)= Q(k)† 0 (3) (whichwehavenchosentobealongyˆwithoutlossofgener- ality)and∆ istheproximityinducedpairpotential. s AswithanysuperconductingmeanfieldBdGHamiltonian inthebasiswhere isdiagonalandhasawindingnumber definedintermsofCthephaseArg(det(Q(k)))26. ThematrWix Eq. (11) is invariant under a particle-hole transformation de- notedbytheoperatorΞ. ThePHconstraintforBlochHamil- Q(k)canalsobedecomposed(singularvaluedecomposition) tonians is ΞH(k)Ξ−1 = H( k) and the anti-unitary PH as − − operator in our basis is given by Ξ = σ τ . In addi- y y K Q(k)=U†Σ V , (4) tion to belonging in the time reversal symmetry class DIII k k k with a Z invariant (by virtue of the time-reversal symme- 2 try ΘH(k)Θ−1 = H( k) where Θ = iσ τ with the whereU ,V areunitaryandΣ isapositivediagonalmatrix. y 0 k k k − K K complexconjugationoperator),theHamiltonianinEq.(11)is The Hamiltonian H(k) can be transformed using a unitary alsoinvariantunderamirrorsymmetry1 = iσ τ since transformation y 0 H(k) −1 = H(k) (i.e. [ ,H(k)]M= 0). −Note that the (cid:18) (cid:19) M M M U 0 momentum has not changed sign under the mirror operation Z(k)= k (5) 0 V since the mirror operator is unitary and the reflection as- k M sociatedwiththemirrorsymmetryistakenabouta1Dmirror todefineanotherchiralHamiltonian line1. Since the Hamiltonian in Eq. (11) is invariant under Θ (cid:18) (cid:19) H¯(k)=Z(k)H(k)Z(k)† = 0 Σ(k) . (6) and M as defined above, it is also clearly invariant under Σ(k) 0 their composition which we define as = Θ . Ex- O · M plicitly, = σ τ which squares to +1 and the Hamilto- 0 0 SincethisHamiltonianH¯(k)haswave-functions n,k that nian in EOq. 11 tranKsforms under this operator according to 0 are easy to write down in terms of the diagonal m|atrix(cid:105)Σ(k) H(k) −1 = H( k), which is the pseudo time-reversal O O − one can easily check that this Hamiltonian has vanishing symmetry introduced above. The presence of a TR-operator windingnumber0andalsozeroChernnumber0. TheBerry with 2 = 1, alongwithPHsymmetry, meansthatEq.(11) O 3 also satisfies the requirements to be in the topological class Operator Symmetry Ex.1 Ex.2 BDIindexedbyanintegerwindinginvariant Z. Aswe showedinthelastsection, themirrorBerrypWhas∈ecalculated Ξ PH σyτyK σyτyK ninumthbeeprresetnhcaetcoafnMbeadnedfinΘediswiidthenthtiecahletlopothfethBeDpIsewuidnodiTnRg M Mirror iσyτ0 idˆ·στ0 operatorW = Θ (with 2 = 1) and the PH operator Θ DIIITR iσ τ K iσ τ K O · M O y 0 y 0 Ξ. Belowwefirstreviewtheactionof andthepseudoTR operator onthePaulimatricesσ ,andMthenconsiderpertur- O BDITR K (dˆ·yˆ+i(dˆ×yˆ)·σ)K i O bationswhichremoveeachsymmetryindividually. Π DIIIChiral σ τ σ τ 0 y 0 y It is straightforward to observe the following relations in- volvingtheactionofTR(conventionalaswellaspseudo)and C BDIChiral σ τ dˆ·στ y y y mirrorsymmetriesonthePaulimatrices: Θσ Θ−1 = σ (12a) TABLEI.Summaryofsymmetryoperatorsandtheirexplicitforms i i − inExamples1,2.Particle-holeandtime-reversalsymmetriesareanti- σ −1 =+η σ (12b) i i i unitaryoperatorswhicharetheproductofaunitaryoperator,acting M M σ −1 = η σ (12c) inparticle-holeandspinspace,andthecomplexconjugationoperator i i i O O − K. whereη = 1fori=x,z andη =+1fori=y(notethat i i − inobtainingEq.12cwehaveusedthefactthat = Θ ). O ·M Thus,underthemirroroperation( )spincomponentsinthe M z x z planeacquireaphaseof 1whilethespincomponent − − normal to the mirror plane (see Fig. 1) is unchanged. Note thattheSU(2)angularmomentumalgebraoftheσ operators ([σ ,σ ]=2i(cid:15) σ )ispreservedundertheactionof since i j ijk k two(one)operatorsareeven(odd)under 34. O O Consider case (i) – A perturbation which potentially can break the mirror symmetry of Eq. (11) is a Zeeman term HZ =V·σwhen|Vxz|=(cid:54) 0where|Vxz|=(cid:112)Vx2+Vz2,and Mxz V = (V ,V ,V ). Such a perturbation also breaks the con- x y z y ventionalTRsymmetryΘbutkeepsthepseudoTRsymmetry αˆ ( Θ)andhencethechiralsymmetryofthetotalHamilto- x M· nianintactsolongasV =0. Thus,inthiscase,eventhough y themirrorBerryphasecannolongerbedefined,theBDIchi- ralinvariant remainswelldefinedandthesystemcanhost FIG.1. Mirrorsymmetryforspin-orbitcoupledwires(Example1). W an integer number of protected Majorana fermion modes at Inthiscasethe1Dnanowire(red)liesalongthex-axis.Thebluear- theedges. Nowconsidercase(ii)–whenV = (0,V ,0)the rowdenotesthedirectionofthespin-orbitfieldinspinspacewhich y Hamiltonianismirrorsymmetric( isunbroken)butchiral definesthemirrorplane(lightblue).WhenaZeemanfieldliesinthe and TR symmetries both break doMwn (i.e. the Hamiltonian mirrorplanethemirrorsymmetryisbrokenbutchiralsymmetryis is not invariant under Θ and, consequently, also not under preserved. IfaZeemanfieldisnormaltothemirrorplanethemir- rorsymmetryispreservedwhiletimereversalandchiralsymmetries = Θ). In this case, even though the mirror symme- O M· are removed. However, in this case, there is no mirror topological trypersists,themirrorBerryphaseprocedureisnolongerap- invariantsincethemirrorBerryphaseisonlydefinedinthepresence plicable due to the lack of time reversal symmetry (note that oftime-reversalsymmetry(classDIII).Figureformirrorsymmetry themirrorBerryphaseisonlydefinedinthepresenceofΘ1). forferromagneticatomchainembeddedonPbsuperconductor(Ex- Thus we find that the mirror symmetry helps us find a suit- ample2)shouldbeanalogous. ablepseudoTRoperator whichinturnhelpsusdefinethe O chiral operator = Ξ. This procedure is valid as long C O · astheTRoperatorΘisasymmetryorasincase(i)wherein physicalsystem. both Θ and are broken by the same Zeeman field. Such M a procedure of defining a chiral symmetry does not work in Example 2: Ferromagnetic atom (Fe) chain embedded case (ii) and also in case (iii) where the mirror symmetry is in Pb superconductor: Motivated by recent experimental broken(say,byanadditionalnext-nearest-neighborspin-orbit findings2,3, as a second illustrative example we consider a couplingHSO = α(cid:48)sin(2k)(c σ)τ withc yˆ25)butΘis simple effective model for a ferromagnetic (Fe) atom chain k · z ⊥ unbroken. Note that in both case (ii) and (iii) neither mirror embedded in a Pb superconductor which can support Ma- Chernnorthechiralwindingnumberinvariantcanbedefined. jorana modes and topological superconductivity. The effec- However,aswehaveestablishedinthiswork,whenbothin- tive mean-field BdG Hamiltonian, which gives a sufficient variantsaredefined(i.e.,inthepresenceofΘ),theyareiden- descriptionoftopologicalsuperconductivityoftheferromag- tical,andthetopologicalmirrorsuperconductivityandchiral neticnanowireassumingthattheunderlyingdegreesoffree- BDIsuperconductivityareequivalentdescriptionsofthesame dominthePbsubstratehavebeenintegratedout,canbewrit- 4 tenas33,35,36H =(cid:80) Ψ†H(k)Ψ where, it breaks = Θ) and thus the system belongs to class k k k O M· D where even number of localized Majorana bound states H(k)=( 2tcos(k) µ)σ τ (13) 0 z hybridize into finite-energy quasiparticles. Thus the mirror − − +∆ sin(k)d στ +V στ . symmetryalonedoesnotprotectspatiallylocalizedMajorana p x 0 · · multiplets at the sample edges. Let us now introduce a Zee- In Eq. (13) ∆ is the magnitude of the induced spin-triplet p man field which only lies in the mirror plane which is per- pairing potential in the ferromagnetic nanowire. The Zee- pendiculartothedˆ-vector. Nowthemirroroperatornolonger mantermduetoaconstantinternalmagnetizationinthefer- commuteswiththeHamiltonianH andthusmirrorsymmetry romagnet, V = (V ,V ,V ) (which is assumed to be V = x y z isbroken. HoweverinthiscasesinceΘisalsobrokenbythe (0,0,J)). Zeeman field the pseudo TR operator = Θ remains Agenericd-vectorpointinginanarbitrarydirectioninspin O M· unbroken. Thus chiral symmetry is unbroken and this is a spaceiswrittenasdˆ=(sinθcosφ,sinθsinφ,cosθ)inpolar classBDIsystemasdiscussedearlCier33,35,36. coordinates. In order to understand the role of mirror sym- Conclusion: In this work we show that topological mir- metry let us first consider Eq. (13) with no intrinsic magne- ror superconductivity that results from the co-existence of a tization (i.e V = 0). In this case, the only spin space Pauli mirrorsymmetryandsymplectictime-reversalsymmetrymay matrix (σ) appears in the superconducting term and the ob- also be viewed as a co-existence of symplectic time-reversal vious choice of would be = idˆ στ . Thus the mir- 0 andchiraltopologicalsuperconductivityintheBDIsymmetry ror plane is the pMlane perpendiMcular to th·e dˆ-vector. Follow- classinone dimension. ThemirrorBerryphase1 isfound to ingtheprocedurediscussedpreviouslywedefineanoperator coincidewiththewindingnumberinvariantthatcharacterizes =Θ =(iσ sinθcosφ+σ sinθsinφ iσ cosθ) = z 0 x theBDIsymmetryclassinonedimension. Thewindingnum- O ·M − K (dˆ yˆ+i(dˆ yˆ) σ) . Clearly 2 =+1and H(k) −1 = berandotherqualitativeaspectsofthephasesuchasnumber · × · K O O O +H( k) and thus fulfills the requirements of a class BDI of edge Majorana modes, continue to survive even when the − or pseudo time reversal operator. The chiral operator is symplectictime-reversalΘandmirror-symmetry arebro- = Ξ = dˆ στ forourHamiltonian. Indeed, thefCorm kenweakly.ThusthetopologicalmirrorphaseisadMiabatically y C O· · oftheoperatorsinExample1canbeunderstoodbytheabove connected to a BDI phase by infinitesimal perturbations that relationdescribingthestructureofthe operator.Inthespin- breakthemirrorandtime-reversalsymmetrywhilepreserving O orbit coupled system the direction of the spin-orbit field (re- theBDIchiralsymmetry .Suchaperturbationdoesnothave C member the Rashba term involved a σ ) plays the role of an aqualitativeeffectsuchassplittingedgeMajoranamodes.We y effectived-vector forthe effectivep-wavepairing createdby illustrate our point with two examples, namely, a spin-orbit thecombinationofspin-orbitcouplingandsingletsupercon- coupledsemiconductornanowirewithproximityinducedex- ductivity. tended s-wave pairing potential1, and the recently discussed NowletusturnontheeffectiveZeemanfieldVandexam- experimental system of chains of ferromagnetic atoms on a inewhathappenstothemirrorsymmetry. Aslongastheonly spin-orbitcoupledsubstrateofPbsuperconductor2,3. non-zerocomponentofV isalongthedˆvector, mirrorsym- Acknowledgment: This work is supported by AFOSR metry remains intact because the mirror operator still com- (FA9550-13-1-0045). J.D.S. would like to acknowledge the muteswiththeHamiltonianinEq.13. Howeverthisdirection UniversityofMaryland,CondensedMattertheorycenter,and oftheZeemanfieldbreaksthechiralsymmetry = Ξ(as theJointQuantuminstituteforstartupsupport. C O· 1 F.Zhang,C.L.Kane,andE.J.Mele,Phys.Rev.Lett.111,056403 11 JayD.Sau,R.M.Lutchyn,S.Tewari,S.DasSarma,Phys.Rev. (2013). Lett.104,040502(2010). 2 S.Nadj-Perge,I.K.Drozdov,J.Li,H.Chen,S.Jeon,J.Seo,A. 12 J.D.Sau,S.Tewari,R.Lutchyn,T.StanescuandS.DasSarma, H. MacDonald, B. A. Bernevig, A. Yazdani, Science 346, 602 Phys.Rev.B82,214509(2010). (2014). 13 R. M. Lutchyn, J. D. Sau, S. Das Sarma, Phys. Rev. Lett. 105, 3 J.Li,H.Chen,I.K.Drozdov,A.Yazdani,B.A.Bernevig,A.H. 077001(2010). MacDonald,arXiv:1410.3453[cond-mat.mes-hall](2014). 14 Y. Oreg, G. Refael, F. V. Oppen, Phys. Rev. Lett. 105, 177002 4 A.AltlandandM.R.Zirnbauer,Phys.Rev.B55,1142(1997). (2010). 5 A.Kitaev,AIPConf.Proc.1134,22(2009). 15 S. Nakosai, J. C. Budich, Y. Tanaka, B. Trauzettel, and N. Na- 6 A.Schnyder,S.Ryu,A.Furusaki,A.W.W.Ludwig,Phys.Rev. gaosa,Phys.Rev.Lett.110,117002(2013). B78,195125(2008);S.Ryu,A.Schnyder,A.Furusaki,A.W.W. 16 M.Sato,Y.Tanaka,K.Yada,andT.Yokoyama,Phys.Rev.B83, Ludwig,NewJ.Phys.12,065010(2010). 224511(2011). 7 S.DasSarma,C.Nayak,S.Tewari,Phys.Rev.B73,220502(R) 17 L.M.Wong,K.T.Law,Phys.Rev.B86,184516(2012). (2006). 18 S. Deng, L. Viola, and G. Ortiz, Phys. Rev. Lett. 108, 036803 8 L.FuandC.L.Kane,Phys.Rev.Lett.100,096407(2008). (2012). 9 C.W.Zhang,S.Tewari,R.M.Lutchyn,S.DasSarma,Phys.Rev. 19 F.Zhang,C.L.Kane,andE.J.Mele,Phys.Rev.Lett.111,056402 Lett.101,160401(2008). (2013). 10 M.Sato,Y.Takahashi,S.Fujimoto,Phys.Rev.Lett.103,020401 20 A.Keselman,L.Fu,A.Stern,andE.Berg,Phys.Rev.Lett.111, (2009). 116402(2013). 5 21 X. J. Liu, C. L. M. Wong, K. T. Law, Phys. Rev. X 4, 021018 29 M. Diez, J. P. Dahlhaus, M. Wimmer, and C. W. J. Beenakker, (2014). Phys.Rev.B86,094501(2012) 22 S.Deng,G.Ortiz,L.Viola,Phys.Rev.B87,205414(2013). 30 C. L. M. Wong, J. Liu, K. T. Law, P. A. Lee, Phys. Rev. B 88, 23 E.Gaidamauskas,J.Paaske,K.Flensberg,Phys.Rev.Lett.122, 060504(R)(2013) 126402(2014). 31 J.J.He,J.Wu,T.-P.Choy,X.-J.Liu,Y.Tanaka,andK.T.Law, 24 A.Haim, A.Keselman, E.Berg, andY.Oreg, Phys.Rev.B89, Nat.Commun.5,3232(2014). 220504(R)(2014). 32 C.W.J.Beenakker,arXiv:1407.2131. 25 E. Dumitrescu, J. D. Sau, S. Tewari, Phys. Rev. B 90, 245438 33 E.DumitrescuandS.Tewari,Phys.Rev.B88,220505(R)(2013). (2014). 34 R.WinklerandU.Zulicke,Phys.Lett.A374,4003(2010); 26 S.TewariandJ.D.Sau,Phys.Rev.Lett.109,150408(2012). 35 H.-Y.Hui,P.M.R.Brydon,J.D.Sau,S.TewariandS.DasSarma 27 S.Tewari,T.D.Stanescu,J.D.Sau,andS.DasSarma,Phys.Rev. arXiv:1407.7519(2014). B86,024504(2012). 36 E. Dumitrescu, B. Roberts, S. Tewari, J. D. Sau, S. Das Sarma, 28 Y. Niu, S. B. Chung, C.-H. Hsu, I. Mandal, S. Raghu, and S. arXiv:1410.5412. Chakravarty,Phys.Rev.B85,035110(2012).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.