ebook img

Equivalence classes of Fibonacci lattices and their similarity properties PDF

1.3 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Equivalence classes of Fibonacci lattices and their similarity properties

EquivalenceclassesofFibonaccilatticesandtheirsimilarityproperties N. Lo Gullo,1,2 L. Vittadello,1 M. Bazzan,1,2 and L. Dell’Anna1,2 1Dipartimento di Fisica e Astronomia, Universita` degli Studi di Padova, Padova, Italy 2CNISM, sezione di Padova (Dated:July28,2016) Weinvestigate,theoreticallyandexperimentally,thepropertiesofFibonaccilatticeswitharbitraryspacings. Differently from periodic structures, the reciprocal lattice and the dynamical properties of Fibonacci lattices dependstronglyonthelenghtsoftheirlatticeparameters,evenifthesequenceoflongandshortsegment,the Fibonaccistring,isthesame. Inthisworkweshowthat,byexploitingaself-similaritypropertyofFibonacci stringsunderasuitablecompositionrule,itispossibletodefineequivalenceclassesofFibonaccilattices. We showthatthediffractionpatternsgeneratedbyFibonaccilatticesbelongingtothesameequivalenceclasscan 6 berescaledtoacommonpatternofstrongdiffractionpeaksthusgivingtothisclassificationaprecisemeaning. 1 Furthermoreweshowthat,throughthegaplabelingtheorem,gapsintheenergyspectraofFibonaccicrystals 0 belongingtothesameclasscanbelabeledbythesamemomenta(uptoaproperrescaling)andthatthelarger 2 gapscorrespondtothestrongpeaksofthediffractionspectra. Thisobservationmakesthedefinitionofequiv- l alence classes meaningful also for the spectral, and therefore dynamical and thermodynamical properties of u quasicrystals. Ourresultsapplytothemoregeneralclassofquasiperiodiclatticesforwhichsimilarityundera J suitabledeflationruleisinorder. 6 2 PACSnumbers: ] r e I. INTRODUCTION II. GENERALIZEDFIBONACCILATTICES h t o Inonedimension(1D)theparadigmofaquasicrystalisthe t. Sincethefirstexperimentalproofoftheexistenceofsolids Fibonaccilattice(FL).TheFLisa1Dlatticewhoseadjacent a pointshavedistancesbelongingtotheset{L,S},standingfor lacking of translational invariance, but exhibiting a discrete m LongandShortrespectively,whicharearrangedaccordingto Braggdiffractionspectrum[1],thestudyofquasicrystalsat- - tractedquitealotofattention.Theimpactofthisdiscoveryon agivensequence. Suchalatticecanbeconstructedbymeans d of the cut and project technique [3, 4, 21] thus obtaining for n thescientificcommunitywassuchthatin1992theformerdef- thecoordinatesofpointsontherealline[2](inunitsofS): o initionofcrystalhadtobemodifiedinordertoincludethose c structures whose diffraction pattern witnesses long range or- 1 (cid:106)n(cid:107) [ der yet lacking translational invariance [2–4]. More gener- xη =n−1+ (1) n η τ 2 ally, the study of quasiperiodic geometries has been recently v thesubjectofdifferentfieldsalldevotedtothepropagationof where n is a natural positive number,(cid:98)x(cid:99) is the integer part 9 wavesthroughquasiperiodicpotentials. Thespectralproper- of x and η = S/(L − S). The most common instance 9 tiesofquasicrystalshavebeenrecentlyusedtoengineertopo- (cid:0)√ (cid:1) found in literature is obtained for η = τ = 5+1 /2, 4 logicalpumpinginopticalwaveguides[5–7]andinultracold 7 the golden ratio. In this case the canonical FL (CFL) is ob- gases[8,9].Engeneeringofquasiperiodicstructureshavealso 0 tained, such that the lengths are (up to a simple rescaling): been employed in optical dielectric multilayers for resonant . L = 1 + 1/τ = τ, and S = 1. Nevertheless it is possi- 1 transmission [10], solar energy harvesting [11], plasmonics ble to construct Fibonacci lattices with η (cid:54)= τ (see App. A). 0 6 [12,13]andnonlinearoptics[14,15]. The distances ∆n = xηn+1 −xηn are either L = 1+1/η or 1 S =1andtheyarearrangedaccordingtotheFibonaccistring : Dynamical and transport phenomena in this kind of struc- (FS)LSLLSLSLLSLLSLSLLSLSL···.Thelatterisany v tures are also radically different compared to periodic me- wordmadeoftwoletters,LandS,obtainedbymeansofthe i X dia[16–20]. Forusualperiodicarrangements,dynamicaland substitutionruleS → LandL → LS startingfromtheletter r thermodynamicalpropertiesaredirectlyrelated,viatheBloch L. WenoticethataFSitselfisindependentontheparameter a theorem, to the geometry of the system. Quasiperiodic ge- ηanditonlydependsonthefactor1/τ. ometries,instead,lacksoftranslationalinvariancesothatadi- Conversely,givenaninfiniteFS,acompositionrule(LS → rectrelationbetweentheirstructureandtheirdynamicalprop- L(cid:48) and L → S(cid:48)) can be defined such that the old and the erties is not generally known. It would be therefore very in- newstringsarethesameduetothepeculiarpropertiesofthe terestingtofindasortofclassificationenablingonetogroup Fibonacci strings, as shown in Fig. 1. For the special case togetherdifferentaperiodicsystemsonthebasisofsomesim- η = τk, with k a non-vanishing integer i.e. for the canoni- ilaritybetweentheirgeometricarrangements.Inthispaperwe cal FL, this leads to a peculiar property: the new FL can be attempttodefinesuchaclassification,showingthatquasiperi- rescaledtotheoriginalone. Thiscaseisthemostcommonly odicstructureswhosegeometryisrelatedbyasuitablemath- encountered in literature, accompanied by the statement that ematicaltransformationsharethemaincharacteristicsoftheir the CFL is self-similar. It should be stressed however that reciprocallatticeandoftheirpseudo-bandstructure. this is not true for the general case η (cid:54)= τk. In this case, a 2 for irrational η we can resort to its continued fraction repre- L S L L S L S L L S L sentationinordertosetthewantedprecisiontotheabovecon- dition. L' S' L' L' S' L' S' LetusnowconsidertwoFLsbelongingtothesameequiv- alenceclassxηn0 andxηn1,withη1 =1+1/η0. Bydefininghn Figure1: Thecompositionrules(LS → L(cid:48), L → S(cid:48))onasemi- (kn)andh(cid:48)n(kn(cid:48))asthenumeratoranddenominatorofthen- infinite Fibonacci lattice reproduces another Fibonacci lattice with thrationalapproximantsof1+1/η (1+1/η ),thefollowing 0 1 differentlatticeparameters. relationshold: k = h +h(cid:48) andk(cid:48) = h . Thepositionof n n n n n thebrightestpeaksoftheFLxη1 arethenrelatedtothoseof n theFLxη0 by: n non-canonical Fibonacci lattice and the one obtained by ap- plyingthecompositionrulearecharacterizedbytwodifferent Q1(kn,kn(cid:48))=η1Q0(hn,h(cid:48)n) (4) lenghtratiosη andη becauseL(cid:48)/L (cid:54)= S(cid:48)/S. Thereforethe 1 2 In other word, althought the two Fibonacci lattices xη0 and newlatticecannotbetransformedintotheoldonebyasimple n rescaling. C(xηn0) = η1xηn1 cannot be rescaled one over the other (for the general case η (cid:54)= τ), their brightest peak pattern can, as We call C the operator corresponding to the effect of the aconsequenceofthefactthattheyarerelatedbythecompo- compositionruleontheFLxη. Itisnotdifficulttoshowthat n sition rule. Also the intensities of the brightest peaks can be C(xηn) = η1xηn1, whereη1 = 1+1/η: thecompositionrule relatedasI(η q,η )≈I(q,η )+ 1(1−I(q,η ))(forqsuch maps a FL xη into another FL, characterized by a new ratio 1 1 0 τ 0 n thatI(q,η ) > 0.5)showingthatthepeaksofthescaledlat- η and rescaled by η (see Fig. 1). If η = τ then η = τ 0 1 1 1 tice are even brighter than those of the original lattice. This (recall that τ2 −τ −1 = 0) and therefore the CFL is self- drives to the important conclusion that FL belonging to the similar. Ifthecompositionruleisappliedk times, theinitial sameequivalenceclasshavediffractionspectracharacterized FLismappedinto bythesamepatternofbrightestpeaks,andare,inthissense, (cid:32) k (cid:33) (cid:18) (cid:19) similar. C(k)(xηn)= (cid:89)ηi xηnk = Fk+1+ Fηk xηnk (2) i=1 III. SIMILARITYOFDIFFRACTIONPATTERNS where η = 1+1/η (η = η) and F are the Fibonacci i i−1 0 k numbers. Withthehelpofthisconceptwedefineequivalence Toquantifythedegreeofsimilaritybetweenthetwospec- classes for FLs by means of the following equivalence rela- tra, we use the Kullback-Leibler divergence (KLD), a quan- tion: tity useful to compare two distributions (normalized to unity over a common support). Let us consider the diffraction Definition - Two Fibonacci lattices xηna and xηnb are equiva- spectra I(q,ηα) and I(q,ηβ) of two arbitrary FL’s charac- lent(xηna ∼ xηnb)iftheyarelinked,uptoaproperrescaling, terized by ηα (cid:54)= ηβ. We define the normalized spectrum: bymeansofthecompositionruleC. Thelatticewiththemini- P(νq,η) = I(νq,η)/(cid:82)∞dkI(νk,η) where we introduced 0 mumη0suchthat1/(η0−1)isfiniteandpositiveiscalledthe ascalingparameterν. generatoroftheequivalenceclasswhichisdenotedby[η0]. TheKLDisdefinedas: Asimplewayoflabelingtheelementsofagivenequivalence D(η ,η ,ν)=(cid:90) ∞dkP(k,η )log(cid:18) P(k,ηα) (cid:19). (5) classisbymeansofthecontinuedfractionrepresentationfor α β α P (νk,η ) 0 β the{η }. i Bydefinitiononehasthatthemoresimilarthetwodiffraction Because of this, for quasiperiodic structures it is of lim- spectra, the smaller the value of the KLD. We will use it to ited practical utility to talk about the support of the diffrac- measureif,forgivenη andη ,thereexistascalingparameter tion pattern. It is more meaningful to describe the diffrac- α β ν forwhichthetwospectralooksimilar. tionspectrum(andthereciprocallattice)intermsofthepeaks In Fig. 2 a) and b) we plot 1/D(ηα,η,ν) comparing two whicharesignificantlyclosetoone,whichwillbereferredto 0 generators corresponding to ηa = 6/11 and ηb = 1/6 with as brightest peaks. By means of the cut and project method 0 0 FLs obtained from them by applying the composition rule outlined in App. A it is possible to show (see App. B) that the intensity I(q,η) at points q = Q(h,h(cid:48)) is given C(nα) respectively na = 1 and nb = 3 times. The inten- by sinc2(Q (h,h(cid:48))∆), where Q (h,h(cid:48)) = 2πd−1(h(1 + sities I(q,η) are evaluated by means of eq.B15 for lattices ⊥ ⊥ with N = 300 points. The maxima (minima of D) in the 1/η)−1−h(cid:48))and∆=τ(η/(η+1))/2. Thereforethebright- two figures correspond to (η,ν) = (ηa,ηa) and (η,ν) = estpeaksarefoundforpairs(h,h(cid:48))suchthatQ (h,h(cid:48)) ≈ 0 1 1 ⊥ (ηb,ηbηbηb) respectively, in agreement with eq. (4). This andthusfor 1 1 2 3 shows that two FL’s produce a similar diffraction pattern if h 1 andonlyiftheycanberelatedviaEq. (2)andthereforeonly =1+ . (3) h(cid:48) η iftheybelongtothesameequivalenceclass. In order to test our results on a real case, we performed a Sincehandh(cid:48) areintegers,theaboveconditioncanbesatis- diffraction experiment on two quasiperiodic diffraction grat- fiedexactlyonlyifη isarationalnumber. Ontheotherhand ings prepared using a photorefractive direct laser writing 3 D Figure 3: (Color online). a) Comparison between the theoretical diffractionpatternfortheFLxη0a (ηa = 0.5454, solidbluecurve) andtheexperimentaloneproducnedby0aFLC(cid:16)xη0a(cid:17)(solidredcurve, n N = 300 lines and L = 23 µm and S = 17 µm, ηa = 2.83). 1 ThetheoreticalspectrumhasbeenrescaledinaccordancewithEq. (4) and corrected for the structure factor contribution. b) The in- verse of KL divergence (D−1(ηa,η,ν)) between the (normalized Figure 2: (Color online) Inverse of KL divergence 1/D(ηa,η,ν) 1 0 over the interval) experimental diffraction pattern and the theoreti- comparing the diffraction spectra of the generator of a given class caldiffractionpatternsfordifferentgeneratorsanddifferentscaling. xηn0 with another Fibonacci lattice, for two choices of η0. a)η0a = Here∆ηa =η−ηaand∆ν =ν−1/ηa. Themaximum(minima 6/11;b)ηb =1/6.Here∆ηa =η−ηa,∆νa =ν−ηaand∆ηb = 0 0 0 1 1 ofD)isat(η,ν)=(ηa,1/ηa). η−ηb,∆νb =ν−ηbηbηb.Themaxima(minimaofD(η ,η ,ν)) 0 0 1 1 2 3 α β areobtainedat∆ηa,b = 0and∆νa,b = 0,indicatingthatthetwo spectra with the higest degree of similarity corresponds to lattices ηaxη1a =C(cid:16)xη0a(cid:17)andηbηbηbxη3b =C(3)(xη0b)respectively,i.e.the arangeofη0 andscalingfactorν. InFig. 3b)weshowitex- 1 n n 1 2 3 n n plicitlyforthegratingwithηaanditisclearthatthemaximum 1 firstandthethirdelementoftherespectiveequivalenceclasses. c) ofD−1 (minimumofD)isfoundatη = ηα andν = η−1. DirectcomparisonofthetwodiffractionspectrafortwoFLsxηn0aand Similarresultsareobtainedforthegrat0ingηb0. 1 ηaxη1a.ThemostprominentpeaksofthediffractionpatternI(q,ηa) 1 n 0 correspondwiththoseofthe(rescaled)spectrumI(ηaq,ηa). 1 1 IV. ENERGYSPECTRACOMPARISON We have therefore shown that all the FL belonging to the (DLW) technique [25, 26]. We used three gratings made up sameequivalenceclasshavediffractionspectrathat,although ofN =300linesallwritteninthesamesubstrate: (a)aperi- not equals, are characterized by a similar pattern of bright odicgratingwithspacingL=23µm;twoFibonaccigratings with (b) L = 23µm and S = 17µm (ηa = 17/6) and (c) peaks. Thisfindingisofcrucialimportancenotonlyinscat- L = 23µmandS = 15µm(ηb = 15/8)1respectively. Sofar tering phenomena but also in transport ones. In fact in a re- 3 cent work [23] a method to unambiguously link the gaps in weconsideredpointlattices,butrealstructuresareconstitued the integrated density of states to the brightest peaks in the bysomephysicalentity(basis)arrangedonthepointsofour diffraction pattern of the underlying potential has been pro- quasi-periodic Fibonacci lattice. (For a detailed description posed.Thisismoregeneralhasithasbeenshowninaseminal of the experimental set up see App. E). For these cases, the paperbyLuck[22]. LetusconsiderforexampletheHamilto- diffraction pattern is given by the sum in Eq. (B15) multi- nianforaparticleina1Dlattice: plied by the square modulus of a structure factor. The latter, in general, does not posses any scaling property and there- (cid:126)2 d2 foreitisnecessarytocorrectforitwhencomparingdifferent Hˆ = − +V(x) (6) 2 dx2 lattices. We did this experimentally by using the data of the (cid:90) periodicgratingtoextractaphenomenologicalexpressionfor V(x) = −V dyf(x−y)(cid:88)δ(y−x ) (7) 0 n the structure factor as a function of q. In Fig. 3 a) we com- n pare the experimental data relative to the grating ηb with the 1 theoretical diffraction pattern obtained from the generator of where x are the local minima of the potential and f(x) is n the corresponding equivalence class, ηb = 1/6. We observe introduced to account for the detailed shape of the potential 0 that,oncethespectrahavebeenrescaledinqfollowingeq.(4) minima (V > 0). We will consider the case x = xη ac- 0 n n andcorrectedinordertotakeintoaccountthestructurefactor cordingtothequasi-periodicsequenceofEq.1. InRef.[23] contributiontotheintensityofthepeaks,themostprominent it has been shown that it is possible to label the energy gaps diffraction features of the generator can be found in the ex- bymeansofthebrightestpeaksofthediffractionspectrum.In perimentaldataatthecorrectq positions. Thedegreeofsim- particularonehastoconsiderthepseudo-momentaqatwhich ilaritybetweenthespectrumofthegeneratorandtheexperi- the square of the Fourier transform of V(x) acquires values mentaloneisconfirmedbytheKLdivergenceDbetweenthe greater than a given threshold. This effectively corresponds experimentaldatapointsandthetheoreticaldiffractionspec- tochoosewhichfreestatesareeffectivelycoupledbythepo- trum(withtheinclusionofthestructurefactor)calculatedfor tential and, therefore, where wider gaps open in the single 4 shownthatitispossibletogroupdifferentFibonaccilattices intoequivalenceclasseswhoseelementssharethemainstruc- tural and dynamical properties as witnessed by their diffrac- tionspectraandtheenergygaps. Theseresultsshowthatthe concept of equivalence classes for FLs has not only a geo- metrical meaning but also an important role in the scatter- I ing,dynamicalandthermodynamicalpropertiesofthesystem, contained in the energy spectrum. It is worth stressing once again that this is a consequence of the self-similarity of FSs 0. under the composition rule and that FLs belonging to differ- entequivalenceclassescannotberescaledoneovertheother. Thegeneratorofaclassis,inthissense,thesimpleststructure giving a diffraction pattern which contains the main features common to all of the other elements of the class. Although Figure 4: (Color online). Plot of the energy level spacings of the wefocusedontheFibonaccilattices,ourargumentsapplyto Hamiltonian in Eq.(7) for a potential V(x) having minima at the themoregeneralclassofquasicrystalsforwhichdeflationor points of FLs xη with (blue dots) η = ηa, (red crosses) ηa. Be- lowwecomparenthegapswiththebrightest0peaksofI(q/ηa,1ηa). inflationrulescanmaptheinitiallatticesintoasimilarones. 1 1 particlespectrum. OneoftheresultspresentedinRef.[23]is Acknowledgments thatthisisequivalenttosetathresholdtotheintensityofthe peaks in the Bragg spectrum of the lattice. This can be eas- NL and LD acknowledge financial support from MIUR, ilyseenbyconsideringtheFouriertransformofthepotential throughFIRBProjectNo. RBFR12NLNA 002. LVandMB V(x),namelyV(q) = (cid:82) eıxqV(x)dxwhosesquaremodulus acknowledge financial support from Universit degli studi di isgivenby: Padova through Chip & CIOP project No. CPDA120359. The authors are thankful to Prof. Camilla Ferrante and Dr. |V(q)|2 =S(q)I(q,η) (8) Nicola Rossetto, from the Dipartimento di Chimica, Univer- whereS(q)isthesquareoftheFouriertransformoff(x)and sit di Padova, for providing access to the direct laser writing I(q,η)isgivenbyEq.B15.Itisclearfromwhatshownabove setup. The authors thank J. Settino for providing the energy andconfermedbytheexperimentonthediffractionpatterns, spectraofaparticleinaFibonaccilikelattice. that,apartfromthecontributionoftheactualformofthepo- tential(whichplaysaroleanalogoustothestructurefactorin diffractionexperiments),theenergypseudo-bandstructurein AppendixA:GeneralizedFibonaccilatticesfromcutand reciprocalspacehasthesameshape(uptoarescaling)forthe projectmethod lattices beloging to a given class. As an example, we com- puted the spectra of Eq. (7) in the case of Gaussian wells, The Fibonacci lattices we considered in the main text can namely f(x) = e−x2/2σ2 for a system with N = 100 min- beconstructedbymeansofthecutandprojecttechnique.One ima and x = xη with η = ηa,ηa and η = ηb,ηb. We possibleconstructionhasbeenpresentedinref.[21]Weprefer n n 0 1 0 3 choose V = 12, σ = 0.1. In Fig. 4 we plot the energy toresorttoamorestandardoneandinwhatfollowswewill 0 level spacing for lattices characterized by ηa = 6/11 (blue generalizetheonegiveninref. [3]. dots) and ηa = 17/6 (red crosses) both b0elonging to the Letusintroduceatwo-dimensionalperiodiclatticeIp and 0 2 equivalence class [η0a]. The momenta on the x-axis serve as its lattice vectors e1 and e2 such that any point of the lat- areferencewithrespecttothefreeparticledispersionrelation tice can be written as p = n1e1 + n2e2 with n1,n2 ∈ Z. ((cid:15)k = k2/2,V(x) = 0) to show where the potential V(x) Furthermore we introduce the line lτ whose unit vector is opens the gaps. After rescaling the momenta for the lattices ˆlτ = (cos(θτ),sin(θτ)) and the unit vector orthogonal to it withη = ηa byν = ηa wecanclearlyseethatthegapsap- ˆl⊥ = (sin(θ ),−cos(θ )) such that tan(θ ) = τ−1 where 1 a 1 τ √τ τ τ pearatthesamepoints. Ontheotherhandthesepointscorre- τ = (1 + 5)/2. The canonical Fibonacci lattice is con- spondtothebrightestpeaks,whereI(q/ηa,ηa)calculatedby structed by projecting on the line l the points of a square 1 1 τ Eq.(B15)issizeable.Similarresultsareobtained(notshown) lattice(e ·e = 0,|e | = |e |)thepointswhoseVonro¨ıcell 1 2 1 2 for the equivalence class [ηb] with ηb = 1/6 by considering iscutbythelineitself. Letusnoticethatwiththisprocedure 0 0 thetwolatticescharacterizedbyηb andηb =15/8,underthe thedifferentpointsareunambiguouslynumberedontheline 0 3 scalingνb =η1bη2bη3b. lτ onceanoriginandadirectionhavebeenchosen.Wearego- ingtoconstructourFibonaccilatticesusingthisdefinitionbut allowingthetwo-dimensionallatticetobegenericasinFig.5. V. CONCLUSIONS Nevertheless we will see that in order to obtain a Fibonacci lattice, namely a one-dimensional set of points whose dis- In conclusion, we investigated the diffraction spectra of tances are distributed according to the Fibonacci strings and FL’s in the general case η = S/(L−S) (cid:54)= τ. We have with the wanted ratio between long and short segments, we 5 willhavetorestrictthesetoftheallowedtwodimensionallat- tices. Followingthediscussioninref.[3]inorderfortheline γˆl tocuttheVonro¨ıcellcenteredatpointpithastointersect τ the secondary diagonal of the cell (joining the northwest to southeastpointofthecell). Thediagonalslieonlinesparallel toδ(e −e )andwhosepointsaregivenbyδ(e −e )+ne 1 2 1 2 1 with m ∈ Z. Their intersection with the line γˆl occurs at √ τ points(cid:0)n, n(cid:1)awherea=(τ2/ 1+τ2)A /(e −e )·ˆl⊥ τ τ2 u.c. 1 2 τ andA =(e ∧e )·zˆisthe(oriented)areaoftheunitcell u.c. 1 2 ofthelattice. Figure 5: (Color online) Construction of a generalized Fibonacci lattice from a 2D periodic lattice by means of the cut and project method.Bluedotsaretheprojectionofpointsofthe2Dlatticewhose ThisintersectionpointsareinsidetheVonro¨ıcellcentered Vonro¨icellsarecutbythelinelτ. atpoint(u,v)ifandonlyif |(e −e )·xˆ| |(e −e )·xˆ| u− 1 2 < naτ−1 <u+ 1 2 (A1) 2 2 |(e −e )·yˆ| |(e −e )·yˆ| v− 1 2 < naτ−2 <v+ 1 2 (A2) 2 2 On the other hand each point of the lattice can be written as projected.Thuswecanwriteu=n (e −e )·xˆ+ne ·xˆand 1 1 2 2 n e +n e andn +n =nbecauseitisthen-thpointtobe v =n (e −e )·yˆ+ne ·yˆandaboveinequalitiesbecome 1 1 2 2 1 2 1 1 2 2 (cid:16) s (cid:17) (cid:16) s (cid:17) n − x (e −e )·xˆ< n(aτ−1−e ·xˆ) < n + x (e −e )·xˆ (A3) 1 2 1 2 2 1 2 1 2 (cid:16) s (cid:17) (cid:16) s (cid:17) n − y (e −e )·yˆ< n(aτ−2−e ·yˆ) < n + y (e −e )·yˆ (A4) 1 2 1 2 2 1 2 1 2 wheres =Sign((e −e )·xˆ)andsimilarlyfors .Bymeans coordinatesonthethelinel : x 1 2 y τ of the expression for a it is easy to prove that (a τ−1 −e · 2 xˆ)/(e −e )·xˆ = (a τ−2−e ·yˆ)/(e −e )·yˆandthus 1 2 2 1 2 (cid:22) (cid:23) thetwoinequalitiesareequivalenttotheinequality: n x(cid:48) =ne ·ˆl +(e −e )·ˆl (A7) n 2 τ 1 2 τ β (cid:18) (cid:19) (cid:18) (cid:19) 1 n 1 n1− 2 < β < n1+ 2 (A5) Bynormalizingwithrespecttoe2·ˆlτ weeventuallyobtainthe one-dimensionallatticeofpoints e ·ˆl⊥ 1 β =1− 1 τ =1+r (A6) e ·ˆl⊥ τsin(α)−cos(α) 2 τ (cid:22) (cid:23) 1 n x =n+ (A8) where cos(α) = e1 ·e2/(|e1||e2|) and r = |e1|/|e2|. Be- n η β iinngeqnua1liatniesinttoegbeersnautimsfibeedritshethoatnlny1p=oss(cid:98)inβbi(cid:99)liwtyhfeorer t(cid:98)hxe(cid:99)aibsothvee η−1 =(cid:32)e1·ˆlτ −1(cid:33). (A9) integerpartofx. Afterprojectingontol ,then-thpointhas e ·ˆl τ 2 τ 6 In order for the above to be a Fibonacci lattice we require |(e − e ) · ˆl⊥| around the line γˆl . It is easy to see that 1 2 τ τ β = τ which is the case for τr = (τsin(α)−cos(α)) and A(q ) = A (q ,0). We therefore turn to the calculation of (cid:107) X (cid:107) thusη =(τ +tan(α))/((τ −1)tan(α)−τ2). Moreoverwe thelatter. Byintroducingthemassdensityofthetwodimen- (cid:80) have to require that r > 0 and η > 0 which is the case for sional lattice ρ((cid:126)r) = δ((cid:126)r −(cid:126)r ) and its Fourier tan−1(2τ +1) < α < tan−1(−τ)+π. As it can be seen transformρ((cid:126)r)=(cid:82) dk dmk1me−2ı(cid:126)r·(cid:126)kρ˜((cid:126)k)mw1emc2anwrite: ⊥ (cid:107) fromfigs.6foranygivenη >0therecorrespondapair(r,α): 1 1 (cid:90) A (q ,q ) = lim dk dk (B3) ητ +1 X (cid:107) ⊥ L→∞L2∆ ⊥ (cid:107) tan(α) = τ2 (A10) (cid:90) ∆ (cid:90) ∞ η−τ dx dx eı(cid:126)r·(q(cid:126)−(cid:126)k) ρ˜((cid:126)k) ⊥ (cid:107) (τtan(α)−1) −∆ −∞ r = (A11) (cid:112) τ 1+tan2(α) Theaboveintegralscanbecalculated: andthereforeatwodimensionallatticewhoseprojectionon A(q )=A (q ,0)=(cid:90) dk sin(k⊥∆)(cid:90) dk ρ˜((cid:126)k)δ(k −q ) thelinelτ returnsthewantedFL: (cid:107) X (cid:107) ⊥ k⊥∆ (cid:107) (cid:107) (cid:107) (B4) 1 (cid:106)n(cid:107) xη =n−1+ (A12) which expresses the fact that the diffraction pattern of an in- n η τ finite projected quasicrystal is the convolution of the Dirac (cid:32) (cid:33) e ·ˆl combformedbytheperiodichigherdimensionalperiodiclat- η−1 = 1 τ −1 , (A13) ticewiththesincfunctionintheorthogonalspace. e ·ˆl 2 τ Inparticularρ˜((cid:126)k)isaDiraccombpeakedatpointsk = hh(cid:48) whereweshiftedthewholelatticeinorderforthefirstpoint hw1+h(cid:48)w2whereweintroducedthereciprocallatticevectors tohavecoordinatex =0onthelinel . forthedualofthetwo-dimensionalperiodiclatticeIp: 1 τ 2 2π w = (e −e ·eˆ eˆ ) (B5) 1 l 1 1 2 2 1 2π w = (e −e ·eˆ eˆ ) (B6) 2 l 2 2 1 1 2 (B7) whereeˆ =e /|e |andl =|e |2−|e ·eˆ |2andsimilarlyfor i i i 1 1 1 2 l . Itiseasytocheckthatw ·e = 2πδ . Inwhatfollows 2 i j ij Figure6: (Coloronline)a)Valuesofr =|e1|/|e2|asafunctionof we assume that units are scaled such that e2 · ˆlτ = 1. In η. The red dot corresponds to the point (η,r) = (τ,1) for which ordertoevaluatetheparallelandperpendicularcomponentsof thecanonicalFibonaccilatticeisobtained. b)Valuesoftheangleα vectorsbelongingtothereciprocalspaceweneedtoevaluate betweene1ande2asafunctionofη.Thereddotcorrespondstothe wi·ˆlτ andwi·ˆlτ⊥. Inordertodosoitisusefultorewritethe point(η,α) =(τ,π/2)forwhichthecanonicalFibonaccilatticeis vectorse aslinearcombinationsofˆl andˆl⊥bymeansofthe obtained. i τ τ expressionsforη,βandtherelationbetweentanαandη.We thusobtain: (cid:18) (cid:19) (cid:18) (cid:19) AppendixB:Diffractionpattern e = 1+ 1 ˆl + 1 1+ 1 ˆl⊥ (B8) 1 η τ τ η τ Weareinterestedinthecalculationofthequantity: (cid:18) 1(cid:19) e = ˆl − 1+ ˆl⊥ (B9) 2 τ η τ A(q(cid:107))=Nl→im∞N1 (cid:88)eıxηnq(cid:107) (B1) Itisnoweasytocheckthat: n 2π 2π w ·ˆl = w ·ˆl = (B10) wherexη aregivenbyeq.A13. Usingtheunitvectorsˆl and 1 τ d 2 τ τd n τ 2π 2π ˆslτ⊥imwilaerclyanfowrrtihteeavnayriapbolient(cid:126)qin=spqa(cid:107)cˆleτa+s(cid:126)rq⊥=ˆlτ⊥x.(cid:107)Bˆlτy+inxtr⊥oˆldτ⊥ucainngd w1·ˆlτ⊥ = d(cid:16)1+ η1(cid:17) w2·ˆlτ⊥ =− d (B11) thequantity whered=(τ +1/η). Thereforewecandefine: A (q ,q )= lim 1 (cid:88)eıp(cid:126)n·q(cid:126) (B2) 2π (cid:18) h(cid:48)(cid:19) X (cid:107) ⊥ N→∞N n Q(h,h(cid:48))=khh(cid:48) ·ˆlτ = d h+ τ (B12) (cid:18) (cid:19) where we recall that p(cid:126) are points (cid:126)r of the two dimen- 2π η h sional periodic latticenwhich lie in an1snt2rip of width 2∆ = Q⊥(h,h(cid:48))=khh(cid:48) ·ˆlτ⊥ = d η+1 −h(cid:48) (B13) 7 Bymeansofeq.B4wecanthuswritetheintensitiesofthe where d = (τ + 1/η). By properly choosing the integers diffractedpointsas: h and h(cid:48), any real number can be arbitrarily well approxi- mated,showingthatthereciprocallatticeofaFLisdensein R,contrarilytoperiodiclatticeswhichexhibitadiscreterecip- I(q ,η)=|A(q )|2 =(cid:88)sin2(Q⊥(h,h(cid:48))∆)δ(q −Q(h,h(cid:48))) rocallattice. Moreoveritcanbeshown[3]thatthediffraction (cid:107) (cid:107) (Q (h,h(cid:48))∆)2 (cid:107) pattern has only pure point support, lacking of a continuous ⊥ h,h(cid:48) part (according to the classification of positive measures in (B14) theLebesgueclassification). where∆=τ(1+1/η)/2andweintroducetheexplicitdepen- denceoftheintensityontheparameterηwhichcharacterizes theFL.Asitcanbeseen,thediffractionspectrumconsistsof AppendixC:Brightestpeaks asetofsharppeakscenteredonadensesetofreciprocallat- ticepoints,asbychoosingtheappropriatevaluesofhandh’, 1. Conditionforbrightestpeaks anyqcanbeapproximatedwitharbitraryprecision. However, notallthesepeakshavethesameintensity. In order to find the set of points in reciprocal space cor- Infig.7weplotI(q )asgivenbyexpressionineq.B14and (cid:107) responding to a strong diffracted intensity for a FL, the fol- itsexpressioncalculatedexplicitlybyitsdefinitioneq.B1for lowing condition on the argument of the exponential in the a lattice of N = 300 points and η = 17/6. We can see that expressionforthediffractionpatternhastohold: asexpectedthepeaks’intensitiesarewellcapturedbyeq.B14 evenforfinitesystemsespeciallyforpeakscharacterizedbya significantintensity(¿0.2). Q (h,h(cid:48))≈0 (C1) ⊥ whichissatisfiedfor I q 1.0 h 1 ≈1+ . (C2) h(cid:48) η 0.8 Let us now consider the equivalence class [η ] and in par- 0 0.6 ticular the sequence xηn0. We can write η0 in the continued (cid:72) (cid:76) fractionrepresentation: 0.4 1 η =a + ≡[a ,a ,a ,a ,···] (C3) 0 0 a + 1 0 1 2 3 0.2 1 a2+a3+1... For a rational number the sequence of numbers a is finite, i q namely η0 = [a0,a1,··· ,an]. On the other hand, if η0 10 20 30 40 50 60 is irrational, it is possible to find a rational approximation within the wanted error by increasing the number of terms in its continued fraction representation. It is easy to see that Figure 7: (Color online) Comparison between the values of I(q ) (cid:107) η =1+1/η =[1,a ,a ,···]andingeneral usingthecutandprojectmethodandthedirectevaluationineq.B1 1 0 0 1 foralatticeofN =300pointsandη =17/6. Bluedotsarepoints η =[1,1,··· ,1,a ,a ,···]. (C4) k 0 1 correspondingtothevalueineq.B14whereasredcrossaregivenby (cid:124) (cid:123)(cid:122) (cid:125) eq.B1. k Withthisnotationisstraightforwardtoseethatregardlessof We now consider the (Fraunhofer) diffraction pattern of a thevalueofthegeneratorη0,thesequencesofanequivalence FLxη: class will tend to a Fibonacci sequence since limk→∞ηk = n [1,1,1,1,···] = τ [24]. Using the continued fraction nota- (cid:12) (cid:12)2 tion we can write a sequence of rational approximants to η0 I(q,η)=Nl→im∞N12 (cid:12)(cid:12)(cid:12)(cid:12)(cid:88)eıxηnq(cid:12)(cid:12)(cid:12)(cid:12) . (B15) taosbae0,inat1eaag01e+rs1,thae2(aaba1o2aav01e++1c1)o+nad0i,ti·o·n·C. 2Siinscseatbisofithedhifanwdehc(cid:48)hhoaovsee n h=s +t andh(cid:48) =s wheres andt arethen-thapprox- n n n n n Thisquantityisimportantbecauseitgivesadirectexperimen- imants of η namely η ≈ s /t and can easily be derived 0 0 n n talaccesstothereciprocallatticeofourstructure.Weshallsee fromthecontinuedfractionrepresentationofη . 0 that this quantity is also encountered in the determination of It is worth stressing that if η is a rational number (η = 0 0 a(pseudo)energydispersionrelation[23]. InthecaseofFLs a/b,witha,b ∈ N)handh(cid:48) canbechosensuchthath/h(cid:48) = thevaluesofqatwhichanon-vanishingintensityisexpected (a+b)/a. Thus, at points q = Q(m(a+b),mb) = 2mπ m aregivenby: (m ∈ Z) we have that I(q ,η ) = 1. On the other hand, m 0 forirrationalη theconditionisneversatisfiedexactlybutwe 0 2π (cid:18) h(cid:48)(cid:19) can resort to the rational approximants of η to estimate the Q(h,h(cid:48))= h+ , (B16) 0 d τ positionsatwhichthebrightestpeaksappear. 8 2. Relationbetweenpositionsofbrightestpeaks ∆I q 0.25 Letxη0 andxη1 betwoFibonaccilatticesbelongingtothe n n sameequivalenceclassandtheirassociatedreciprocallattices 0.20 Q (h,h(cid:48))=2πd−1(h+h(cid:48)/τ),Q (h,h(cid:48))=2πd−1(k+k(cid:48)/τ) 0 0 1 1 respectively,wheredi =τ +1/ηi. Bydefininghn (kn)and 0.15(cid:72) (cid:76) h(cid:48) (k(cid:48)) as the numerator and denominator of the n − th n n rationalapproximantsof1+1/η0 (1+1/η1),thefollowing 0.10 relationsholdtruek = h +h(cid:48) andk(cid:48) = h . Byinserting n n n n n theserelationsintotheexpressionforQ1(k,k(cid:48))weget: 0.05 2π (cid:18) k(cid:48) (cid:19) 2π (cid:18) h (cid:19) q Q (k ,k(cid:48)) = k + n = h +h(cid:48) + n 10 20 30 40 50 60 70 1 n n d n τ d n n τ 1 1 2πτ (cid:18) h(cid:48) (cid:19) d τ 2π (cid:18) h(cid:48) (cid:19) = d1 hn+ τn = d01 d0 hn+ τn (Friegdurcero8s:s)(C(Io(lηo1rqo,nηl1in)e−)PIl(oqt,oηf0)(b)lfuoerdthootss)eτq−f1o(r1w−hicIh(qI,(ηq0,)η)0)an>d d τ 0.5showingthattheintensitiesofthebrightestpeaksofthediffrac- = d0 Q0(hn,h(cid:48)n)=η1Q0(hn,h(cid:48)n) tionpatternofaFLxηn1 generatedfromaFLxηn0 bymeansofthe 1 compositionrulearemoreintenseofthoseoftheoriginallatticeby whereinthelastlineweusedthefactthatd τ/d =η . This afactorofτ. 0 1 1 means that the lattice obtained by applying the composition ruleC(xηn0)=η1xηn1 hasbrightestpeaksatthesamepositions oftheoriginallatticeonlyrescaledbyafactoreta . 1 3. Relationbetweenintensitiesofbrightestpeaks From eq.B14 we can also estimate the relation between the intensities of the brightest peaks in the diffraction spec- trum of two FL belonging to the same class. Using the ex- samplewiththeaidofacomputer-controlledXYstageatcon- pression in eq.B14 and assuming k⊥∆ ≈ 0 we can write stantspeedof50µm/s. Thenominalprecisionofthetrans- sin2(k⊥∆)/(k⊥∆)2 −1 ≈ (k⊥∆)2/9. Using the condition lation stage is 0.5µm for the conditions used in this experi- fork⊥ ≈ 0andfollowingacalculationsimilartothattode- ment. A frequency doubled diode pumped Nd:YWO4 solid terminedrelationbetweenthepositionsofthebrightestpeaks state laser (Coherent Verdi V5) emitting a CW beam at 532 wefindthat(k⊥1∆1)2 =(k⊥0∆0)2/τ2. Thereforewehave nmhasbeenusedaslightsourceforDLW.Thebeamwassuit- ablyattenuatedbyaseriesofneutraldensityfiltersandsentto 1 I(η1q,η1)≈I(q,η0)+ τ(1−I(q,η0)), (C5) afocusingmicroscopeobjective(Olympus100X/0.80)sothat thepoweraftertheobjectivewassetat17mW.Thesubstrate meaning that the intensities of brightest peaks of the scaled usedtoengravetheopticalstructuresisaslabofphotorefrac- lattice are more intense of those of the original lattice by a tive lithium niobate doped with iron at the nominal concen- termproportionaltothedifferencebetweenthemaximumat- tration of 0.1 mol% in the melt. The sample was X-cut with tainableintensityandtheintensityoftheoriginallatticeinten- dimensions(X×Y×Z)1mm×8mm×13mmandthelines sities. werewrittenontheXface,byscanningalongtheYdirection Infig.8weplotthequantities(bluedots)τ−1(1−I(q,η0)) with an ordinarily polarized beam. This process can induce and (red cross) (I(η1q,η1) − I(q,η0)) for q such that extraordinaryrefractiveindexchangesaslargeas10−3inthe I(q,η0) > 0.5 and for lattices of N = 300 sites and η0 = written lines and therefore can be used to produce arbitrary 6/11andη1 =1+1/η0respectively. diffraction structures. The diffraction pattern of these struc- tures was measured with the help of a computer-controlled optical diffractometer in which the sample and the detector AppendixD:Experimentalsetup were mounted on two co-axial goniometers that were inde- pendently controlled by a computer [26]. An optical beam TotestexperimentallythediffractionfromFL’s,aseriesof producedbyaHe-Nelaserat632.8nmwithapowerof4mW quasi-periodic diffraction gratings have been prepared using wasexpanded,polarizedalongtheextraordinarydirectionand a photorefractive direct laser writing (DLW) technique [25]. finally transmitted through the sample surface, resulting in a Thistechniqueconsistsinscanningwithafocusedlaserbeam clearlyvisiblediffractionpattern. Thispatternwasmeasured aphotorefractivesample,engravingonitaseriesoflineswith by a Si photodiode and a lock-in amplifier and recorded on amodifiedrefractiveindexwithrespecttotherestofthesam- the computer as a function of the detector and of the sample ple. Thescanningmovementisperformedbytranslatingthe angle. 9 AppendixE:Experimentaldiffractionpatterns form for S(q) describes adequately the peak intensity in the wholerangeofmeasuredvalues(seefig. 9): 1. Structurefactor Inordertocomparetheexperimentaldatawiththetheoret- S(q)=S0e−λq−qq0 (E2) icalcalculationweneedtotakeintoaccountthatourgratings aremadeupofa(quasi)periodicrepetitionofaregionwitha where the parameters S ,λ,q are determined by a least 0 0 modifiedrefractiveindex,∆n(x). Thisleadstothefact,well square fit in the range q ∈ [0.5,3] µm−1 excluding the last knownfromstandarddiffractiontheory,thatthediffractedin- peaks because the corresponding momenta where compara- tensityinreciprocalspaceisproportionaltotheproductoftwo ble with a length scale of the order of the optical waveguide terms: afirstone,S(q)=(cid:12)(cid:12)(cid:82) ∆n(x)eıxqdx(cid:12)(cid:12)2whichdependson width. We also notice that all measured diffraction patterns thedetailedstructureoftherepeatedunitofthegrating(struc- drop almost to zero outside the interval q ∈ [−4,4] µm−1; turefactor)andasecondtermduetolatticegeometry,which this is due to the fact that our lines have a width determined isthetrueobjectofthisstudy: bythelaserwritingopticswhichisnotsmallerthan2µm,so thatourdiffractionpatterncannotprobe|q|>3µm−1. (cid:12) (cid:12)2 IR(q,η)=S(q)N12 (cid:12)(cid:12)(cid:12)(cid:12)(cid:88)eıxηnq(cid:12)(cid:12)(cid:12)(cid:12) =S(q)I(q,η) (E1) 2. Comparisonwiththeoreticalpatterns n The structure factor modulates the intensity of the lattice In Fig. 10 we compare the theoretical diffraction pattern diffractionpattern,complicatingthecomparisonbetweenex- I(q,η) with the experimental data points for the grating ηb. periments and theory. In principle S(q) could be calculated 3 Theintensityoftheexperimentalpointshasbeenrescaledto byknowingthedetailsoftherefractiveindexprofilechanges take into account the contribution of the structure factor of produced by our technique. Here we used another approach the grating and the q axis of the experimental plot has been whichexploitsthefactoursamplesdifferonlyforthelinepo- rescaledinordertocompareitwiththesimulation,whichcon- sitionsequencex . Wecanusethereforetheperiodicgrating n siders FL’s with S = 1. A similar figure is obtained for the (Fig.9)tomeasurethefunctionS(q)directlyatthereciprocal caseηa =17/6. Theagreementisverysatisfactory: notonly latticepoints{qi }oftheperiodicgrating,whereI(qi )has 1 M M thepositionbutalsotheintensityofthediffractionpeaksare localmaxima. correctlyobtained,confirmingthatourapproachisreliable. I q 10(cid:45)4 I(q,η b) 10(cid:45)6 10(cid:45)8(cid:72) (cid:76) 10(cid:45)10 q q (cid:45)2 0 2 4 Figure 10: (Color online). Experimental diffraction pattern (solid Figure9: (Coloronline). Experimentaldiffractionpatternofthepe- redtopcurve)comparedwiththetheoreticaldiffractionpatternwith riodicgratingwithspacingL=23µm(blue,solidcurve)andfitof theinclusionofthestructurefactor(solidbluebottomcurve)fora thesatellitepeakintensitiesusingfunctionE2(red,dashedcurve). FibonaccigratingwithN = 300linesandL = 23 µmandS = 15µm,ηb =1.875. 3 We found that the following phenomenological functional [1] D.Shechtman,I.Blech,D.Gratias,andJ.W.Cahn,Phys.Rev. [4] C. Janot, Quasicrystals - A primer (second edition), Oxford Lett.53,1951(1984). UniversityPress(1994). [2] D.Levine,andP.J.Steinhardt,Phys.Rev.B34,596(1986). [5] Y. E. Kraus, and O. Zilberberg, Phys. Rev. Lett. 109, 116404 [3] M.Senechal,Quasicrystalsandgeometry,CambridgeUniver- (2012). sityPress(1995). [6] Y.E.Kraus,Y.Lahini,Z.Ringel,M.Verbin,andO.Zilberberg, 10 Phys.Rev.Lett.109,106402(2012). [18] Ch.Li,H.Cheng,R.Chen,Tian.Ma,Li-G.Wang,Yu.Song, [7] M.Verbin,O.Zilberberg,Y.E.Kraus,Y.Lahini,andY.Silber- andHai-Q.Lin,Appl.Phys.Lett.103,172106(2013). berg,Phys.Rev.Lett.110,076403(2013). [19] L.DalNegro(ed.)OpticsofAperiodicStructures: Fundamen- [8] M.Lohse,C.Schweizer,O.Zilberberg,M.Aidelsburger,andI. talsandDeviceApplications,PanStanfordUniversityPublish- Bloch,Nat.Phys.3584(2015). ing(2014). [9] K.Singh,K.Saha,S.A.Parameswaran,andD.M.Weld,Phys. [20] G.Radons,W.JustandP.Hussler(eds.)CollectiveDynamics Rev.A92,063426(2015). ofNonlinearandDisorderedSystems,Springer-Verlag,Berlin [10] R.W.Peng,Y.M.Liu,X.Q.Huang,F.Qiu,MuWang,A.Hu, -Heidelberg(2005). S.S.Jiang, D.Feng, L.Z.Ouyang, andJ.Zou, Phys.Rev.B [21] P.Buczek, L.Sadun, andJ.Wolny, ActaPhysicaPolonicaB, 69,165109(2004). 36,3(2005). [11] A.Lin,Y.K.Zhong,S.M.Fu,C.W.Tseng,andS.L.Yan,Opt. [22] J.-M.LuckPhys.Rev.B39,5834(1989). Expr.22(53)a880(2014). [23] J.-M. Gambaudo, and P. Vignolo, New J. Phys. 16, 043013 [12] A.Gopinath,S.V.Boriskina,N.-N.Feng,B.M.Reinhard,and (2014). L.DalNegro,NanoLett.8,2423(2008). [24] Thiscanalsobeseenbyexplicitcalculation,infactitispossible [13] X.Huang,andM.L.Brongersma,NanoLett.,13,5420(2013). to show that η = Fk+1η0+Fk, where F are the Fibonacci [14] Y.W.Lee,F.C.Fan,Y.C.Huang,B.Y.Gu,B.Z.Dong,and k Fkη0+Fk−1 k numbers(F =0).Theaboveexpressiontendstoτ ask→∞ 0 M.H.Chou,Opt.Lett.27,2191(2002). duetothefactthatF /F →τ inthislimit. k+1 k [15] P.Y.Chou, W.K.Chang, H.P.Chung, andY.H.ChenOpt. [25] L.Vittadello,A.Zaltron,N.Argiolas,M.Bazzan,N.Rossetto, Express,22(23)28857(2014). andR.Signorini,J.Phys.D49,125103(2015). [16] N. D. Lanzillotti-Kimura, A. Fainstein, B. Jusserand, A. [26] M. Bazzan, N. Argiolas, C. Sada, P. Mazzoldi, S. Grilli, P. Lemaitre, O. Mauguin, and L. Largeau, Phys. Rev. B 76, Ferraro, P. De Natale, and L. Sansone, Ferroelectrics 352, 25 174301(2007). (2007). [17] A.R.Overy,A.B.Cairns,M.J.Cliffe,M.G.Tucker,andA.L. Goodwin,arXiv:1508.05909.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.