CB678-BOOK-DVR CB678-Colby January23,2004 19:4 CharCount=0 EQUIVALENCE AND DUALITY FOR MODULE CATEGORIES (withTiltingandCotiltingforRings) This book provides a unified approach to many of the theories of equiva- lenceanddualitybetweencategoriesofmodulesthathavetranspiredoverthe last 45 years. In particular, during the past dozen or so years many authors (includingtheauthorsofthisbook)haveinvestigatedrelationshipsbetween categoriesofmodulesoverapairofringsthatareinducedbybothcovariant andcontravariantrepresentablefunctors,inparticularbytiltingandcotilting theories. Byherecollectingandunifyingthebasicresultsoftheseinvestigationswith innovativeandeasilyunderstandableproofs,theauthors’aimistoprovidean aidtofurtherresearchinthiscentraltopicinabstractalgebraandareference forallwhoseresearchliesinthisfield. RobertR.ColbyisProfessorEmeritusattheUniversityofHawaiiandInde- pendentScholarattheUniversityofIowa. KentR.FullerisaprofessorofmathematicsattheUniversityofIowa. i CB678-BOOK-DVR CB678-Colby January23,2004 19:4 CharCount=0 CAMBRIDGETRACTSINMATHEMATICS GeneralEditors B.BOLLOBA`S,W.FULTON,A.KATOK,F.KIRWAN, P.SARNAK,B.SIMON 161 Equivalence and Duality for Module Categories (with Tilting and Cotilting for Rings) ii CB678-BOOK-DVR CB678-Colby January23,2004 19:4 CharCount=0 EQUIVALENCE AND DUALITY FOR MODULE CATEGORIES (with Tilting and Cotilting for Rings) ROBERT R. COLBY UniversityofHawaiiandUniversityofIowa KENT R. FULLER UniversityofIowa iii cambridge university press Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge cb2 2ru, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521838214 © Robert R. Colby and Kent R. Fuller 2004 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format isbn-13 978-0-511-18531-1 eBook (NetLibrary) isbn-10 0-511-18531-6 eBook (NetLibrary) isbn-13 978-0-521-83821-4 hardback isbn-10 0-521-83821-5 hardback Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. CB678-BOOK-DVR CB678-Colby January23,2004 19:4 CharCount=0 Contents Preface page vii Acknowledgment ix 1 Some Module Theoretic Observations 1 1.1 TheKernelofExt1(V, )1 R 1.2 Gen(V)andFiniteness 2 1.3 Add(V ) and Prod(V ) 8 R R 1.4 TorsionTheory 9 2 RepresentableEquivalences 12 2.1 AdjointnessofHom (V, )and ⊗ V 12 R S 2.2 Weak∗-modules 14 2.3 ∗-modules 18 2.4 ThreeSpecialKindsof∗-modules 22 3 TiltingModules 28 3.1 GeneralizedTiltingModules 28 3.2 TiltingModules 31 3.3 TiltingTorsionTheories 34 3.4 PartialTiltingModules 36 3.5 TheTiltingTheorem 40 3.6 GlobalDimensionandSplitting 45 3.7 GrothendieckGroups 49 3.8 TorsionTheoryCounterEquivalence 57 4 RepresentableDualities 66 4.1 TheU-dual 67 4.2 CostarModules 69 4.3 Quasi-DualityModules 75 4.4 MoritaDuality 84 5 Cotilting 86 5.1 CotiltingTheorem 86 5.2 CotiltingModules 91 v CB678-BOOK-DVR CB678-Colby January23,2004 19:4 CharCount=0 vi Contents 5.3 CotiltingBimodules 97 5.4 CotiltingviaTiltingandMoritaDuality 103 5.5 WeakMoritaDuality 108 5.6 FinitisticCotiltingModulesandBimodules 115 5.7 U-torsionlessLinearCompactness 119 5.8 ExamplesandQuestions 126 A AdjointsandCategoryEquivalence 131 A.1 TheYoneda–GrothendieckLemma 131 A.2 AdjointCovariantFunctors 132 A.3 EquivalenceofCategories 135 B NoetherianSerialRings 139 B.1 FinitelyGeneratedModules 139 B.2 InjectiveModules 143 Bibliography 147 Index 151 CB678-BOOK-DVR CB678-Colby January23,2004 19:4 CharCount=0 Preface Approximatelyforty-fiveyearsagoK.Moritapresentedthefirstmajorresults on equivalences and dualities between categories of modules over a pair of rings. These results, which characterized an equivalence between the entire categories of right (or left) modules over two rings as being represented by thecovariantHomandtensorfunctorsinducedbyabalancedbimodulethat isaso-calledprogeneratoroneitherside,andwhichcharacterizedaduality between reasonably large subcategories of right and left modules over two rings as being represented by the contravariant Hom functors induced by a balancedbimodulethatisaninjectivecogeneratoronbothsides,havecome tobeknownastheMoritatheorems. Morita’s theorems on equivalence are exemplified by the equivalence of thecategoriesofrightmodulesoverasimpleartinianringandtherightvector spacesoveritsunderlyingdivisionring.Morethanadozenyearslaterthesec- ondauthor,expandingontherelationshipbetweenthecategoryofmodules generatedbyasimplemoduleandthevectorspacesoveritsendomorphism ring,introducedtheconceptofaquasi-progeneratortocharacterizetheequiv- alencesbetweenasubcategoryofrightmodulesoveroneringthatisclosed undersubmodules,epimorphicimages,anddirectsumsandthecategoryof allrightmodulesoveranotherring.Intheinterim,employingthenotionof linearcompactness,B.J.Mu¨llerhadcharacterizedthereflexivemodulesun- der Morita duality and given a one-sided characterization of the bimodules inducingthesedualities.Theseresultsledtoseveralinvestigationsofthedual notionofaquasi-progeneratorthatwerefertoasaquasi-dualitymodule. Intheearly1980sthenotionoftiltingmodulesandthetiltingtheoremfor finitelygeneratedmodulesoverartinalgebraswasintroducedandpolishedin papersbyS.BrennerandM.C.R.Butler,D.HappelandC.M.Ringel,and K.Bongartztoprovidenewinsightandexamplesintherepresentationtheory ofartinalgebras.Thishasprovedparticularlyeffectiveinthestudyofalgebras ofvariousrepresentationtypes.Thedefinitionofatiltingmodulealsoapplies tomodulesoverarbitraryringsand,inthissetting,inducestorsiontheoriesin vii CB678-BOOK-DVR CB678-Colby January23,2004 19:4 CharCount=0 viii Preface thecategoriesofmodulesovertworingsandapairofequivalencesbetween thetorsionandtorsion-freepartsofthetorsiontheories.Thesetiltingmodules andequivalencesareamongtheprincipaltopicsofthisbook. Neartheendofthe1980sC.MeniniandA.Orsattiintroducedatypeof module, which has come to be known as a ∗-module, that generalizes both quasi-progeneratorsandtiltingmodulesbyinducinganequivalencebetween asubcategoryofmodulesoveroneringthatisclosedunderdirectsumsand epimorphicimagesandasubcategoryofmodulesoverasecondringthatis closedunderdirectproductsandsubmodules. At about the same time, the first author introduced a generalization of Morita duality and the notions of cotilting modules and a cotilting theorem fornoetherianrings.Thisinspiredseveralversionsofcotiltingmodulesand cotiltingtheoremsthatarefurtherprincipaltopicsofthisbook. Just as progenerators, quasi-progenerators, and tilting modules are all ∗-modules, so are Morita duality modules, quasi-duality modules, and the variousflavorsofcotiltingmodules,alldualversionsof∗-modules,akindof modulethatwecallcostarmodules.Asissooftenthecaseinmathematics, generalizationsofaconceptledtoabetterunderstandingoftheconcept.Here weprovideunifiedproofsregardingthevarioustypesofequivalenceanddu- ality,andthemodulesthatinducethem,byapproachingthemviathegeneral notionsof∗-modulesandcostarmodules.Wefeelthatthisapproachshould yieldimprovedaccessibilityto,andbetterunderstandingof,theseconcepts. En route we present much of the relatively little that is known about how propertiesof(themodulesover)oneoftheringsinquestionaretransformed totheotherringunderthesevariousequivalencesanddualities.Wehopethat thisexpositionwillinspirefurtherresearchinthisandrelateddirections. This book contains some of the work of many authors that has inspired and, to a small extent been inspired by, our own research. We have made an attempt to give credit where it is due, but surely we have inadvertently omitted references to some works that should have been mentioned. To the authors of these works, we offer our sincere apologies, and note that they haveundoubtedlybeenreferredtoinoneormoreofthepapersand/orbooks inourbibliography. CB678-BOOK-DVR CB678-Colby January23,2004 19:4 CharCount=0 Acknowledgment ColbywishestoexpresshisgratitudeforthehospitalityoftheUniversityof Iowa,whereheisanindependentscholar. ix