Equilibrium Statistical Physics Marc Baus Carlos F. Tejero Equilibrium Statistical Physics Phases of Matter and Phase Transitions With 82 Figures and 8 Tables MarcBaus CarlosF.Tejero Universite´LibredeBruxelles UniversidadComplutensedeMadrid Faculte´desSciences FacultaddeCienciasF´ısicas BoulevardduTriomphe CiudadUniversitaria 1050Bruxelles,Belgium 28040Madrid,Spain [email protected] cftejero@fis.ucm.es ISBN978-3-540-74631-7 e-ISBN978-3-540-74632-4 LibraryofCongressControlNumber:2007936163 (cid:2)c MarcBaus,CarlosF.Tejero2008 Thisworkissubjecttocopyright. Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermitted onlyundertheprovisions oftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsare liabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelaws andregulationsandthereforefreeforgeneraluse. Coverdesign:eStudioCalamarS.L. Printedonacid-freepaper 9 8 7 6 5 4 3 2 1 springer.com ToourdaughtersKatia,Erika,Bele´nandEva Preface The purpose of this textbookis to introducethe student to a basic area of macro- scopic physics, namely the statistical mechanical study of the different phases of matter, as well as the phase transitions between them. Although many books on statistical physics, for both equilibrium and non-equilibriumsystems, are already available,theylargelydifferincontents.Thisgenerallyreflectsnotonlythediffer- ent interests of their authors, but also the epoch in which they were written. For instance, the early books did usually devote much space to problems of the solid state,whereaslateronesdoinclude,moreover,severalaspectsoftheliquidstate.At present,however,the main emphasisin physicsis on softmatter (e.g.liquid crys- tals, colloids, polymers), and therefore these particular states of matter have also beenincludedinthisvolume.Themainpurposeofthistextbookwillconsist,hence, inprovidingitsstudentswitha firstintroduction,withinthegeneralframeworkof equilibriumstatisticalphysics,toamuchlargervarietyofphasesandphasetransi- tionsthanwaspreviouslythe case fortextbooksof statistical mechanics.Manyof thesenoveltopicsdo,ofcourse,deserveamoredetailedstudythantheonewhich canbe providedhere.Indeed,in the spiritof a firstintroduction,onlyverysimple modelsofthesephaseswillbegiven,butmoredetailedinformationcanbefoundin thesuggestionsforfurtherreadinggivenintheReferences. For pedagogicalreasons, the subject matter of this book has been divided into four parts (Parts I–IV), and a series of appendices(AppendicesA–D), devoted to somemathematicaltoolsusedinthemaintext. InPartI (Chaps.1–3),a summaryisprovidedofthe mechanical(Chap.1) and thermodynamical(Chap.2)basisofthepostulatesofequilibriumstatisticalphysics (Chap.3).Althoughmoststudentsofequilibriumstatisticalmechanicswillingen- eralhaveapriorknowledgeof,classicalandquantum,mechanicsandofequilibrium thermodynamics,byincludingasummaryofthesetopicsthepresentbookbecomes moreself-contained.Afactgenerallywellappreciatedbythestudents. In PartII (Chaps. 4–6),the generalprinciplesof equilibriumstatistical physics areillustratedforthesimplecaseofthenon-interactingoridealsystems.Thethree main Gibbs ensembles, microcanonical (Chap. 4), canonical (Chap. 5) and grand canonical(Chap.6),arestudied,togetherwithsomeoftheirstandardapplications. vii viii Preface Thesetopics,althoughsimpleinprinciple,doneverthelessdrawthestudents’atten- tiontosomeofthesubtletiesofstatisticalphysics. In Part III (Chaps. 7–9), these general principlesare applied to the less simple interactingor non-idealsystems. This, of course, can onlybe doneapproximately and the most currentapproximationmethodsfor the study of classical interacting systems are summarized(Chap.7). Based on these methods,some simple models formostofthecurrentphasesofmatterareintroduced(Chap.8),andthephasetran- sitionsbetweensomeofthesephasesaresubsequentlystudied(Chap.9).Although the simple modelsof these phasesconsideredhereare onlycaricaturesof the real systems, their study will preparethe studentsforthe more realistic, butalso more difficult,studiesfoundinthecurrentliterature. Finally,PartIV(Chaps.10–13)isdevotedto anintroductiontosomemoread- vancedmaterial.Thisincludesanintroductiontocriticalphenomenaandtherenor- malizationgroupcalculationofcriticalexponents(Chap.10),thestudyofinterfaces andthecalculationofthesurfacetension(Chap.11),thestudyoftopologicaldefects (innematicliquidcrystals)andtheresultingtexture(Chap.12),andtheclassicalthe- oriesofthephasetransformationkinetics(Chap.13).Itishopedthatexposingthe studentsto anelementarytreatmentofthese moreadvancedtopicswillencourage themtoalsostudythesetopicsinmoredetail. Thepresenttextbookisaimedatstudentsofcondensedmatterphysics,physical chemistryormaterialsscience, butthroughoutthe levelof rigoris onewhichwill bemostfamiliartostudentsoftheoreticalphysics.Likewise,thereferencesquoted attheendofeachchaptermainlyfocusonbookswheresupplementarymaterialcan befoundwithasimilardegreeofrigor,i.e.thosetextsmostusefultothereadersof thepresentone. Thisvolumeisanenlargedversionofaprevioustext,originallywritteninSpan- ish(C. F. TejeroyM.Baus, F´ısicaestad´ısticadelequilibrio.Fasesdelamateria, A.D.I.,Madrid(2000),ISBN84-931805-0-5).WeareindebtedtoM.Lo´pezdeHaro foritstranslationintoEnglishandalsoforhelpfulandinterestingsuggestions.We alsothankT.deVosforhishelpwiththefigures.Thisfinalversionownsmuchto themanydiscussionswithourstudentsattheFaculte´desSciences(Universite´Libre deBruxelles)andattheFacultaddeCienciasF´ısicas(UniversidadComplutensede Madrid)andwithourcolleagues,M.Fisher,R.Lovett,J.P.RyckaertandJ.M.Ortiz deZa´rate,allofwhicharegratefullyacknowledged.Finally,wewouldalsoliketo thankourwifes,MyriamandIsabel,fortheirsupport. BrusselsandMadrid, M.Baus June2007 C.F.Tejero Contents PartI Basics 1 Mechanics..................................................... 3 1.1 ClassicalMechanics ........................................ 3 1.2 Hamilton’sEquations ....................................... 4 1.3 ExternalParameters ........................................ 5 1.4 DynamicalFunctions ....................................... 7 1.5 QuantumMechanics........................................ 9 1.6 Self-adjointOperators....................................... 10 1.7 EigenvalueEquation........................................ 11 1.8 Schro¨dinger’sEquation...................................... 13 1.8.1 FreeParticle ........................................ 14 1.8.2 HarmonicOscillator.................................. 16 1.8.3 ParticleinaMagneticField............................ 16 1.9 SystemofIdenticalParticles ................................. 18 References..................................................... 20 2 Thermodynamics .............................................. 21 2.1 FundamentalEquation ...................................... 21 2.2 IntensiveVariables ......................................... 23 2.3 LawofEntropyIncrease..................................... 25 2.4 ThermodynamicPotentials................................... 26 2.5 EquilibriumConditions ..................................... 28 2.6 StabilityConditions ........................................ 29 2.7 CoexistenceConditions ..................................... 32 2.8 PhaseDiagrams............................................ 33 2.8.1 GibbsFreeEnergy ................................... 33 2.8.2 HelmholtzFreeEnergy ............................... 37 2.8.3 vanderWaalsLoop .................................. 39 2.8.4 AnExampleofaPhaseDiagram ....................... 41 References..................................................... 43 ix x Contents 3 StatisticalPhysics .............................................. 45 3.1 DynamicalFunctionsandFields .............................. 46 3.2 Liouville’sEquation ........................................ 48 3.3 SystemsinEquilibrium ..................................... 49 3.4 DensityOperator........................................... 51 3.5 Ergodicity................................................. 53 3.6 ThermodynamicLimit ...................................... 55 3.7 SymmetryBreaking ........................................ 61 References..................................................... 63 PartII IdealSystems 4 MicrocanonicalEnsemble....................................... 67 4.1 ClassicalMicrocanonicalEnsemble ........................... 67 4.2 ClassicalIdealGas ......................................... 69 4.3 EntropyandtheGibbsParadox ............................... 71 4.4 TemperatureandThermalEquilibrium......................... 75 4.5 IdealSystems.............................................. 77 4.6 EquipartitionTheorem ...................................... 78 4.7 EquationofState........................................... 79 4.8 EntropyandIrreversibility ................................... 81 4.9 QuantumMicrocanonicalEnsemble........................... 83 4.10 AbsoluteNegativeTemperatures.............................. 86 References..................................................... 88 5 CanonicalEnsemble............................................ 89 5.1 ClassicalCanonicalEnsemble................................ 89 5.2 MeanValuesandFluctuations................................ 91 5.3 HelmholtzFreeEnergy...................................... 93 5.4 ClassicalIdealGas ......................................... 94 5.5 IdealGasinanExternalPotential ............................. 95 5.6 EquipartitionTheorem ...................................... 97 5.7 ClassicalTheoryofRadiation ................................ 99 5.8 ClassicalTheoryofSolids ...................................101 5.9 QuantumCanonicalEnsemble................................103 5.10 IdealQuantumSystems .....................................105 5.11 Maxwell–BoltzmannStatistics ...............................106 5.12 Maxwell–Boltzmann’sIdealGas..............................108 5.13 Brillouin’sParamagnetism...................................109 5.14 PhotonGas................................................111 5.15 PhononGas ...............................................114 References.....................................................119 Contents xi 6 GrandCanonicalEnsemble .....................................121 6.1 ClassicalGrandCanonicalEnsemble ..........................121 6.2 MeanValuesandFluctuations................................125 6.3 GrandPotential ............................................127 6.4 ClassicalIdealGas .........................................128 6.5 ClassicalIdealGasinanExternalPotential.....................129 6.6 Two-ParticleDistributionFunction............................131 6.7 DensityFluctuations........................................133 6.8 CorrelationsattheCriticalPoint ..............................135 6.9 QuantumGrandCanonicalEnsemble..........................138 6.10 Bose–EinsteinandFermi–DiracStatistics ......................139 6.11 VirialExpansionsintheClassicalLimit........................142 6.12 BosonGas:Bose–EinsteinCondensation.......................144 6.12.1 SpecificHeat........................................147 6.12.2 EquationofState ....................................150 6.13 FermionGas...............................................152 References.....................................................158 PartIII Non-idealSystems 7 ClassicalSystemswithInteractions ..............................163 7.1 ThermodynamicIntegration..................................163 7.2 ThermodynamicPerturbationTheory..........................165 7.3 VirialExpansions ..........................................167 7.4 DirectCorrelationFunction ..................................171 7.5 DensityFunctionalTheory...................................173 7.6 MeanFieldTheory .........................................175 7.7 NumericalSimulations......................................177 7.7.1 MolecularDynamics .................................178 7.7.2 MonteCarloMethod .................................179 References.....................................................183 8 PhasesofMatter ..............................................185 8.1 Crystals...................................................186 8.1.1 CrystalStructure.....................................186 8.1.2 CellTheory.........................................188 8.1.3 vanderWaalsTheory.................................191 8.1.4 VariationalTheory ...................................192 8.2 Fluids ....................................................196 8.2.1 DenseFluids........................................196 8.2.2 FluidStructure ......................................199 8.2.3 FluidsandGlasses ...................................203 8.2.4 VaporandLiquid ....................................206 xii Contents 8.3 Mixtures..................................................209 8.3.1 BinaryMixtures .....................................209 8.3.2 ColloidalSuspensions ................................211 8.3.3 Asakura–OosawaPotential ............................213 8.3.4 DLVOPotential .....................................215 8.4 LiquidCrystals ............................................216 8.4.1 Maier–SaupeTheory .................................217 8.4.2 OnsagerTheory .....................................220 8.5 Polymers .................................................223 8.5.1 RadiusofGyration...................................224 8.5.2 Flory–HugginsTheory................................226 References.....................................................231 9 PhaseTransitions ..............................................233 9.1 StructuralTransitions .......................................233 9.1.1 Fluid–SolidTransition................................234 9.1.2 Isotropic–NematicTransition ..........................237 9.2 IsostructuralTransitions.....................................239 9.2.1 Liquid–VaporTransition ..............................239 9.2.2 Solid–SolidTransition................................241 9.3 SymmetryBreakingandOrderParameters .....................242 9.4 LandauTheory.............................................245 9.4.1 ContinuousTransitions ...............................247 9.4.2 DiscontinuousTransitions.............................247 9.5 BifurcationTheory .........................................248 9.6 CriticalPoints .............................................251 9.6.1 IsolatedCriticalPoints................................251 9.6.2 Liquid–VaporCriticalPoint ...........................253 9.6.3 Solid–SolidCriticalPoint .............................254 9.6.4 ConsoluteCriticalPoint ..............................256 9.6.5 CriticalLines .......................................259 9.7 Summary .................................................261 9.8 TriplePoints...............................................262 9.8.1 OrdinaryTriplePoint.................................262 9.8.2 CriticalEndpoint ....................................263 9.8.3 BicriticalPoint ......................................264 9.8.4 TricriticalPoint......................................265 References.....................................................265