Equations for arithmetic pointed tori Thesiscommittee: Prof.dr.P.Bayer,UniversitatdeBarcelona Prof.dr.G.L.M.Cornelissen,UniversiteitUtrecht Prof.dr.S.J.Edixhoven,UniversiteitLeiden Prof.dr.M.vanderPut,RijksuniversiteitGroningen Dr.J.Voight,UniversityofVermont Cover: Thewhitepatternontheforegroundofthecoverconsistsoftheedgesof partofthequadrilateraltilingoftheupperhalf-planeconstructedinSection1.2 forthearithmetic(1;e)-groupe2d1D6i(seetheAppendixforthisnotation). Thebluebackgroundcontainstheoctagonaltilingassociatedwiththegroup e3d1D6ii,asconstructedinSection1.3. ISBN:978-90-393-5373-8. PrintedbyWo¨hrmannPrintService,Zutphen. Copyright(cid:13)c 2010byJ.R.Sijsling. Allrightsreserved. Equations for arithmetic pointed tori Vergelijkingen voor arithmetische gepunte tori (meteensamenvattinginhetNederlands) Proefschrift terverkrijgingvandegraadvandoctoraandeUniversiteitUtrecht opgezagvanderectormagnificus,prof.dr.J.C.Stoof, ingevolgehetbesluitvanhetcollegevoorpromoties inhetopenbaarteverdedigenopmaandag30augustus2010 desmiddagste4.15uur door Jan Roelof Sijsling geborenop23december1983 teArnhem Promotor: Prof.dr.F.Beukers OpgedragenaanmijngrootvaderJanSijsling Forwhowouldlose, thoughfullofpain,thisintellectualbeing, thosethoughtsthatwanderthrougheternity... —JohnMilton,ParadiseLost Contents Introduction ix 1 Fundamentaldomains 1 1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Quadrilaterals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Dirichletdomains . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4 Explicithomology . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2 Quaternions 21 2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 Eichlerorders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3 Moreorders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4 Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.5 Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.6 Classandtypenumbers . . . . . . . . . . . . . . . . . . . . . . . 36 3 Curves 39 3.1 Shimuracurves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2 FromK+ toK1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 B B 3.3 Arithmetic(1;e)-curves . . . . . . . . . . . . . . . . . . . . . . . 50 4 Traces 53 4.1 Quaternioniccuspforms . . . . . . . . . . . . . . . . . . . . . . . 53 4.2 ComputingHeckeoperators . . . . . . . . . . . . . . . . . . . . . 60 4.3 Shimuracongruence . . . . . . . . . . . . . . . . . . . . . . . . . 66 5 Uniformizations 69 5.1 Dualgraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.2 SearchingY (p) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 0 6 Covers 85 6.1 Bely˘ımaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.2 (1;e)-covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 viii Contents 7 Equations 115 7.1 Themodels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 7.2 Provingcorrectness . . . . . . . . . . . . . . . . . . . . . . . . . . 145 A Tables 151 Bibliography 159 Indexofnotation 163 Samenvatting(SummaryinDutch) 165 CurriculumVitae 173 Dankwoord(Acknowledgements) 175 Introduction LetGL+(R)begroupofmatricesin M (R)whosedeterminantispositive,and 2 2 letPGL+(R)bethequotientofGL+(R)byitscenterR×. Denotingthegroup 2 2 ofholomorphicautomorphismsofthecomplexupperhalf-planeHbyAut(H), onehasthewell-knownisomorphism PGL+(R) −∼→Aut(H) 2 (cid:20)(cid:18) a b (cid:19)(cid:21) (cid:18) az+b(cid:19) 7−→ z 7→ . c d cz+d Let Γ be a Fuchsian group of the first kind, that is, a discrete subgroup of PGL+(R)offinitecovolume. ThenthegroupΓactsonH,andonecanconsider 2 thequotient Y(Γ) = Γ\H. Thisthesisisdevotedtostudyingthesequotientsandtheirarithmeticnature foraspecialfinitelistofPGL+(R)-conjugacyclassesofΓcutoutbyarather 2 restrictivesetofconditions,asin[Tak83]. Thegreaterpartofthisintroduction isdedicatedtodescribingtheseconditionsandtogivingabroaderoverviewby relatingthemtoseveralcongruentareasofmathematics. Afterthis,wedescribe ourstudyoftheresultinglist. Lame´ equations ThefirstconditionsthatweimposeonΓareofageometricnature: wedemand that • ThequotientY(Γ)iscompactandofgenus1;and • Theramificationlocusofthecanonicalprojection H −π→Y(Γ) consistsofasinglepointPofY(Γ),whereπramifieswithindexe ≥2. Intheterminologyof[Bea95],ΓisaFuchsiangroupofsignature(1;e). Being acompactRiemannsurface,Y(Γ)hasanalgebraicstructure: infact,because ofthecompactnesscondition,itisaprojectivealgebraiccurveoverC. Ithas x Introduction adistinguishedpoint, namely P. WearethereforejustifiedincallingY(Γ) a pointedcomplextorus,althoughintherestofthisthesis,wewillusuallyreferto itasa(1;e)-curve. OurmotivationforconsideringsuchΓandY(Γ)isthefollowing. Consider themultivaluedinversemap Y(Γ)9π9−K1 H. ThisinversemapisintimatelyrelatedtoadifferentialequationonY(Γ). Indeed, chooseaWeierstrassequation y2 = p(x) forY(Γ)suchthatPisthepointatinfinity. Thenπ−1 canbedescribedasthe quotientoftwosolutionsoftheLame´differentialequation (cid:20) (cid:21) d (y )2−(n(n+1)x+A) u =0 (0.1) dx onY(Γ). Herewedenote 1 1 n = − <0, 2e 2 and A ∈Cisanaccessoryparameter. Thisdifferentialequationhasexactlyone singularpoint,givenbyP,whichisregularsingular. Lame´ equationscanbethoughtofasbeingthesimplesthighergenusanalogue ofthehypergeometricdifferentialequations (cid:20) d2 d (cid:21) x(1−x) +(c−(a+b+1)x) −ab u =0 (0.2) dx2 dx (with a,b,c ∈ C) on P1. These hypergeometric equations describe similar multivaluedinversemaps Y(∆)99KH, namely those arising from triangle groups ∆, which are the Fuchsian groups whosesignatureequals(0;p,q,r)forsome p,q,r ∈Z≥2. Thepresenceoftheextraparameter AintheLame´ equation(0.1)isanew feature that does not occur in the hypergeometric case: like the parameter n in (0.1), the parameters a, b and c in (0.2) are determined by the signature (0;p,q,r)oftheassociatedtrianglegroup∆. We now turn to the second demand on Γ that relates these groups to a classicalconstructionduetoShimura. Arithmeticity Thegeometricdemandsabovearesatisfiedbyacontinuumofdiscretegroups Γ ⊂PGL+(R),evenuptoconjugacy. Indeed,letEbeanellipticcurve,andlet 2 e ∈Z≥2beaninteger. Considerthemaximalcover Eee −→ E (0.3)
Description: