ebook img

Equations for arithmetic pointed tori PDF

193 Pages·2010·2.26 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Equations for arithmetic pointed tori

Equations for arithmetic pointed tori Thesiscommittee: Prof.dr.P.Bayer,UniversitatdeBarcelona Prof.dr.G.L.M.Cornelissen,UniversiteitUtrecht Prof.dr.S.J.Edixhoven,UniversiteitLeiden Prof.dr.M.vanderPut,RijksuniversiteitGroningen Dr.J.Voight,UniversityofVermont Cover: Thewhitepatternontheforegroundofthecoverconsistsoftheedgesof partofthequadrilateraltilingoftheupperhalf-planeconstructedinSection1.2 forthearithmetic(1;e)-groupe2d1D6i(seetheAppendixforthisnotation). Thebluebackgroundcontainstheoctagonaltilingassociatedwiththegroup e3d1D6ii,asconstructedinSection1.3. ISBN:978-90-393-5373-8. PrintedbyWo¨hrmannPrintService,Zutphen. Copyright(cid:13)c 2010byJ.R.Sijsling. Allrightsreserved. Equations for arithmetic pointed tori Vergelijkingen voor arithmetische gepunte tori (meteensamenvattinginhetNederlands) Proefschrift terverkrijgingvandegraadvandoctoraandeUniversiteitUtrecht opgezagvanderectormagnificus,prof.dr.J.C.Stoof, ingevolgehetbesluitvanhetcollegevoorpromoties inhetopenbaarteverdedigenopmaandag30augustus2010 desmiddagste4.15uur door Jan Roelof Sijsling geborenop23december1983 teArnhem Promotor: Prof.dr.F.Beukers OpgedragenaanmijngrootvaderJanSijsling Forwhowouldlose, thoughfullofpain,thisintellectualbeing, thosethoughtsthatwanderthrougheternity... —JohnMilton,ParadiseLost Contents Introduction ix 1 Fundamentaldomains 1 1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Quadrilaterals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Dirichletdomains . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4 Explicithomology . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2 Quaternions 21 2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 Eichlerorders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3 Moreorders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4 Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.5 Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.6 Classandtypenumbers . . . . . . . . . . . . . . . . . . . . . . . 36 3 Curves 39 3.1 Shimuracurves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2 FromK+ toK1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 B B 3.3 Arithmetic(1;e)-curves . . . . . . . . . . . . . . . . . . . . . . . 50 4 Traces 53 4.1 Quaternioniccuspforms . . . . . . . . . . . . . . . . . . . . . . . 53 4.2 ComputingHeckeoperators . . . . . . . . . . . . . . . . . . . . . 60 4.3 Shimuracongruence . . . . . . . . . . . . . . . . . . . . . . . . . 66 5 Uniformizations 69 5.1 Dualgraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.2 SearchingY (p) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 0 6 Covers 85 6.1 Bely˘ımaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.2 (1;e)-covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 viii Contents 7 Equations 115 7.1 Themodels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 7.2 Provingcorrectness . . . . . . . . . . . . . . . . . . . . . . . . . . 145 A Tables 151 Bibliography 159 Indexofnotation 163 Samenvatting(SummaryinDutch) 165 CurriculumVitae 173 Dankwoord(Acknowledgements) 175 Introduction LetGL+(R)begroupofmatricesin M (R)whosedeterminantispositive,and 2 2 letPGL+(R)bethequotientofGL+(R)byitscenterR×. Denotingthegroup 2 2 ofholomorphicautomorphismsofthecomplexupperhalf-planeHbyAut(H), onehasthewell-knownisomorphism PGL+(R) −∼→Aut(H) 2 (cid:20)(cid:18) a b (cid:19)(cid:21) (cid:18) az+b(cid:19) 7−→ z 7→ . c d cz+d Let Γ be a Fuchsian group of the first kind, that is, a discrete subgroup of PGL+(R)offinitecovolume. ThenthegroupΓactsonH,andonecanconsider 2 thequotient Y(Γ) = Γ\H. Thisthesisisdevotedtostudyingthesequotientsandtheirarithmeticnature foraspecialfinitelistofPGL+(R)-conjugacyclassesofΓcutoutbyarather 2 restrictivesetofconditions,asin[Tak83]. Thegreaterpartofthisintroduction isdedicatedtodescribingtheseconditionsandtogivingabroaderoverviewby relatingthemtoseveralcongruentareasofmathematics. Afterthis,wedescribe ourstudyoftheresultinglist. Lame´ equations ThefirstconditionsthatweimposeonΓareofageometricnature: wedemand that • ThequotientY(Γ)iscompactandofgenus1;and • Theramificationlocusofthecanonicalprojection H −π→Y(Γ) consistsofasinglepointPofY(Γ),whereπramifieswithindexe ≥2. Intheterminologyof[Bea95],ΓisaFuchsiangroupofsignature(1;e). Being acompactRiemannsurface,Y(Γ)hasanalgebraicstructure: infact,because ofthecompactnesscondition,itisaprojectivealgebraiccurveoverC. Ithas x Introduction adistinguishedpoint, namely P. WearethereforejustifiedincallingY(Γ) a pointedcomplextorus,althoughintherestofthisthesis,wewillusuallyreferto itasa(1;e)-curve. OurmotivationforconsideringsuchΓandY(Γ)isthefollowing. Consider themultivaluedinversemap Y(Γ)9π9−K1 H. ThisinversemapisintimatelyrelatedtoadifferentialequationonY(Γ). Indeed, chooseaWeierstrassequation y2 = p(x) forY(Γ)suchthatPisthepointatinfinity. Thenπ−1 canbedescribedasthe quotientoftwosolutionsoftheLame´differentialequation (cid:20) (cid:21) d (y )2−(n(n+1)x+A) u =0 (0.1) dx onY(Γ). Herewedenote 1 1 n = − <0, 2e 2 and A ∈Cisanaccessoryparameter. Thisdifferentialequationhasexactlyone singularpoint,givenbyP,whichisregularsingular. Lame´ equationscanbethoughtofasbeingthesimplesthighergenusanalogue ofthehypergeometricdifferentialequations (cid:20) d2 d (cid:21) x(1−x) +(c−(a+b+1)x) −ab u =0 (0.2) dx2 dx (with a,b,c ∈ C) on P1. These hypergeometric equations describe similar multivaluedinversemaps Y(∆)99KH, namely those arising from triangle groups ∆, which are the Fuchsian groups whosesignatureequals(0;p,q,r)forsome p,q,r ∈Z≥2. Thepresenceoftheextraparameter AintheLame´ equation(0.1)isanew feature that does not occur in the hypergeometric case: like the parameter n in (0.1), the parameters a, b and c in (0.2) are determined by the signature (0;p,q,r)oftheassociatedtrianglegroup∆. We now turn to the second demand on Γ that relates these groups to a classicalconstructionduetoShimura. Arithmeticity Thegeometricdemandsabovearesatisfiedbyacontinuumofdiscretegroups Γ ⊂PGL+(R),evenuptoconjugacy. Indeed,letEbeanellipticcurve,andlet 2 e ∈Z≥2beaninteger. Considerthemaximalcover Eee −→ E (0.3)

Description:
pointed tori over number fields. Whenever The first explicit results on arithmetic pointed tori are due to Chudnovsky and Søren Kierkegaard.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.