ebook img

Epidemics and Rumours in Complex Networks PDF

130 Pages·2010·0.596 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Epidemics and Rumours in Complex Networks

LONDONMATHEMATICALSOCIETYLECTURENOTESERIES ManagingEditor:ProfessorM.Reid,MathematicsInstitute, UniversityofWarwick,CoventryCV47AL,UnitedKingdom Thetitlesbelowareavailablefrombooksellers,orfromCambridgeUniversityPressatwww.cambridge.org/mathematics 220 Algebraicsettheory, A.JOYAL&I.MOERDIJK 221 Harmonicapproximation, S.J.GARDINER 222 Advancesinlinearlogic, J.-Y.GIRARD,Y.LAFONT&L.REGNIER(eds) 223 Analyticsemigroupsandsemilinearinitialboundaryvalueproblems, K.TAIRA 224 Computability,enumerability,unsolvability, S.B.COOPER,T.A.SLAMAN&S.S.WAINER(eds) 225 Amathematicalintroductiontostringtheory, S.ALBEVERIOetal 226 Novikovconjectures,indextheoremsandrigidityI, S.C.FERRY,A.RANICKI&J.ROSENBERG(eds) 227 Novikovconjectures,indextheoremsandrigidityII, S.C.FERRY,A.RANICKI&J.ROSENBERG(eds) 228 ErgodictheoryofZd-actions, M.POLLICOTT&K.SCHMIDT(eds) 229 Ergodicityforinfinitedimensionalsystems, G.DAPRATO&J.ZABCZYK 230 Prolegomenatoamiddlebrowarithmeticofcurvesofgenus2, J.W.S.CASSELS&E.V.FLYNN 231 Semigrouptheoryanditsapplications, K.H.HOFMANN&M.W.MISLOVE(eds) 232 ThedescriptivesettheoryofPolishgroupactions, H.BECKER&A.S.KECHRIS 233 Finitefieldsandapplications, S.COHEN&H.NIEDERREITER(eds) 234 Introductiontosubfactors, V.JONES&V.S.SUNDER 235 Numbertheory:Se´minairedethe´oriedesnombresdeParis1993–94, S.DAVID(ed) 236 TheJamesforest, H.FETTER&B.GAMBOADEBUEN 237 Sievemethods,exponentialsums,andtheirapplicationsinnumbertheory, G.R.H.GREAVESetal(eds) 238 Representationtheoryandalgebraicgeometry, A.MARTSINKOVSKY&G.TODOROV(eds) 240 Stablegroups, F.O.WAGNER 241 Surveysincombinatorics,1997, R.A.BAILEY(ed) 242 GeometricGaloisactionsI, L.SCHNEPS&P.LOCHAK(eds) 243 GeometricGaloisactionsII, L.SCHNEPS&P.LOCHAK(eds) 244 Modeltheoryofgroupsandautomorphismgroups, D.M.EVANS(ed) 245 Geometry,combinatorialdesignsandrelatedstructures, J.W.P.HIRSCHFELDetal(eds) 246 p-Automorphismsoffinitep-groups, E.I.KHUKHRO 247 Analyticnumbertheory, Y.MOTOHASHI(ed) 248 TametopologyandO-minimalstructures, L.VANDENDRIES 249 Theatlasoffinitegroups–Tenyearson, R.T.CURTIS&R.A.WILSON(eds) 250 Charactersandblocksoffinitegroups, G.NAVARRO 251 Gro¨bnerbasesandapplications, B.BUCHBERGER&F.WINKLER(eds) 252 Geometryandcohomologyingrouptheory, P.H.KROPHOLLER,G.A.NIBLO&R.STO¨HR(eds) 253 Theq-Schuralgebra, S.DONKIN 254 Galoisrepresentationsinarithmeticalgebraicgeometry, A.J.SCHOLL&R.L.TAYLOR(eds) 255 Symmetriesandintegrabilityofdifferenceequations, P.A.CLARKSON&F.W.NIJHOFF(eds) 256 AspectsofGaloistheory, H.VO¨LKLEIN,J.G.THOMPSON,D.HARBATER&P.MU¨LLER(eds) 257 Anintroductiontononcommutativedifferentialgeometryanditsphysicalapplications(2ndEdition), J.MADORE 258 Setsandproofs, S.B.COOPER&J.K.TRUSS(eds) 259 Modelsandcomputability, S.B.COOPER&J.TRUSS(eds) 260 GroupsStAndrews1997inBathI, C.M.CAMPBELLetal(eds) 261 GroupsStAndrews1997inBathII, C.M.CAMPBELLetal(eds) 262 Analysisandlogic, C.W.HENSON,J.IOVINO,A.S.KECHRIS&E.ODELL 263 Singularitytheory, W.BRUCE&D.MOND(eds) 264 Newtrendsinalgebraicgeometry, K.HULEK,F.CATANESE,C.PETERS&M.REID(eds) 265 Ellipticcurvesincryptography, I.BLAKE,G.SEROUSSI&N.SMART 267 Surveysincombinatorics,1999, J.D.LAMB&D.A.PREECE(eds) 268 Spectralasymptoticsinthesemi-classicallimit, M.DIMASSI&J.SJO¨STRAND 269 Ergodictheoryandtopologicaldynamicsofgroupactionsonhomogeneousspaces, M.B.BEKKA&M.MAYER 271 Singularperturbationsofdifferentialoperators, S.ALBEVERIO&P.KURASOV 272 Charactertheoryfortheoddordertheorem, T.PETERFALVI.TranslatedbyR.SANDLING 273 Spectraltheoryandgeometry, E.B.DAVIES&Y.SAFAROV(eds) 274 TheMandelbrotset,themeandvariations, T.LEI(ed) 275 Descriptivesettheoryanddynamicalsystems, M.FOREMAN,A.S.KECHRIS,A.LOUVEAU&B.WEISS(eds) 276 Singularitiesofplanecurves, E.CASAS-ALVERO 277 Computationalandgeometricaspectsofmodernalgebra, M.ATKINSONetal(eds) 278 Globalattractorsinabstractparabolicproblems, J.W.CHOLEWA&T.DLOTKO 279 Topicsinsymbolicdynamicsandapplications, F.BLANCHARD,A.MAASS&A.NOGUEIRA(eds) 280 CharactersandautomorphismgroupsofcompactRiemannsurfaces, T.BREUER 281 Explicitbirationalgeometryof3-folds, A.CORTI&M.REID(eds) 282 Auslander–Buchweitzapproximationsofequivariantmodules, M.HASHIMOTO 283 Nonlinearelasticity, Y.B.FU&R.W.OGDEN(eds) 284 Foundationsofcomputationalmathematics, R.DEVORE,A.ISERLES&E.SU¨LI(eds) 285 Rationalpointsoncurvesoverfinitefields, H.NIEDERREITER&C.XING 286 Cliffordalgebrasandspinors(2ndEdition), P.LOUNESTO 287 TopicsonRiemannsurfacesandFuchsiangroups, E.BUJALANCE,A.F.COSTA&E.MART´INEZ(eds) 288 Surveysincombinatorics,2001, J.W.P.HIRSCHFELD(ed) 289 AspectsofSobolev-typeinequalities, L.SALOFF-COSTE 290 QuantumgroupsandLietheory, A.PRESSLEY(ed) 291 Titsbuildingsandthemodeltheoryofgroups, K.TENT(ed) 292 Aquantumgroupsprimer, S.MAJID 293 SecondorderpartialdifferentialequationsinHilbertspaces, G.DAPRATO&J.ZABCZYK 294 Introductiontooperatorspacetheory, G.PISIER 295 Geometryandintegrability, L.MASON&Y.NUTKU(eds) 296 Lecturesoninvarianttheory, I.DOLGACHEV 297 Thehomotopycategoryofsimplyconnected4-manifolds, H.-J.BAUES 298 Higheroperads,highercategories, T.LEINSTER(ed) 299 Kleiniangroupsandhyperbolic3-manifolds, Y.KOMORI,V.MARKOVIC&C.SERIES(eds) 300 IntroductiontoMo¨biusdifferentialgeometry, U.HERTRICH-JEROMIN 301 StablemodulesandtheD(2)-problem, F.E.A.JOHNSON 302 DiscreteandcontinuousnonlinearSchro¨dingersystems, M.J.ABLOWITZ,B.PRINARI&A.D.TRUBATCH 303 Numbertheoryandalgebraicgeometry, M.REID&A.SKOROBOGATOV(eds) 304 GroupsStAndrews2001inOxfordI, C.M.CAMPBELL,E.F.ROBERTSON&G.C.SMITH(eds) 305 GroupsStAndrews2001inOxfordII, C.M.CAMPBELL,E.F.ROBERTSON&G.C.SMITH(eds) 306 Geometricmechanicsandsymmetry, J.MONTALDI&T.RATIU(eds) 307 Surveysincombinatorics2003, C.D.WENSLEY(ed.) 308 Topology,geometryandquantumfieldtheory, U.L.TILLMANN(ed) 309 Coringsandcomodules, T.BRZEZINSKI&R.WISBAUER 310 Topicsindynamicsandergodictheory, S.BEZUGLYI&S.KOLYADA(eds) 311 Groups:topological,combinatorialandarithmeticaspects, T.W.MU¨LLER(ed) 312 Foundationsofcomputationalmathematics,Minneapolis2002, F.CUCKERetal(eds) 313 Transcendentalaspectsofalgebraiccycles, S.MU¨LLER-STACH&C.PETERS(eds) 314 Spectralgeneralizationsoflinegraphs, D.CVETKOVIC´,P.ROWLINSON&S.SIMIC´ 315 Structuredringspectra, A.BAKER&B.RICHTER(eds) 316 Linearlogicincomputerscience, T.EHRHARD,P.RUET,J.-Y.GIRARD&P.SCOTT(eds) 317 Advancesinellipticcurvecryptography, I.F.BLAKE,G.SEROUSSI&N.P.SMART(eds) 318 Perturbationoftheboundaryinboundary-valueproblemsofpartialdifferentialequations, D.HENRY 319 DoubleaffineHeckealgebras, I.CHEREDNIK 320 L-functionsandGaloisrepresentations, D.BURNS,K.BUZZARD&J.NEKOVA´Rˇ(eds) 321 Surveysinmodernmathematics, V.PRASOLOV&Y.ILYASHENKO(eds) 322 Recentperspectivesinrandommatrixtheoryandnumbertheory, F.MEZZADRI&N.C.SNAITH(eds) 323 Poissongeometry,deformationquantisationandgrouprepresentations, S.GUTTetal(eds) 324 Singularitiesandcomputeralgebra, C.LOSSEN&G.PFISTER(eds) 325 LecturesontheRicciflow, P.TOPPING 326 ModularrepresentationsoffinitegroupsofLietype, J.E.HUMPHREYS 327 Surveysincombinatorics2005, B.S.WEBB(ed) 328 Fundamentalsofhyperbolicmanifolds, R.CANARY,D.EPSTEIN&A.MARDEN(eds) 329 SpacesofKleiniangroups, Y.MINSKY,M.SAKUMA&C.SERIES(eds) 330 Noncommutativelocalizationinalgebraandtopology, A.RANICKI(ed) 331 Foundationsofcomputationalmathematics,Santander2005, L.M.PARDO,A.PINKUS,E.SU¨LI& M.J.TODD(eds) 332 Handbookoftiltingtheory, L.ANGELERIHU¨GEL,D.HAPPEL&H.KRAUSE(eds) 333 Syntheticdifferentialgeometry(2ndEdition), A.KOCK 334 TheNavier–Stokesequations, N.RILEY&P.DRAZIN 335 Lecturesonthecombinatoricsoffreeprobability, A.NICA&R.SPEICHER 336 Integralclosureofideals,rings,andmodules, I.SWANSON&C.HUNEKE 337 MethodsinBanachspacetheory, J.M.F.CASTILLO&W.B.JOHNSON(eds) 338 Surveysingeometryandnumbertheory, N.YOUNG(ed) 339 GroupsStAndrews2005I, C.M.CAMPBELL,M.R.QUICK,E.F.ROBERTSON&G.C.SMITH(eds) 340 GroupsStAndrews2005II, C.M.CAMPBELL,M.R.QUICK,E.F.ROBERTSON&G.C.SMITH(eds) 341 Ranksofellipticcurvesandrandommatrixtheory, J.B.CONREY,D.W.FARMER,F.MEZZADRI& N.C.SNAITH(eds) 342 Ellipticcohomology, H.R.MILLER&D.C.RAVENEL(eds) 343 AlgebraiccyclesandmotivesI, J.NAGEL&C.PETERS(eds) 344 AlgebraiccyclesandmotivesII, J.NAGEL&C.PETERS(eds) 345 Algebraicandanalyticgeometry, A.NEEMAN 346 Surveysincombinatorics2007, A.HILTON&J.TALBOT(eds) 347 Surveysincontemporarymathematics, N.YOUNG&Y.CHOI(eds) 348 Transcendentaldynamicsandcomplexanalysis, P.J.RIPPON&G.M.STALLARD(eds) 349 ModeltheorywithapplicationstoalgebraandanalysisI, Z.CHATZIDAKIS,D.MACPHERSON,A.PILLAY& A.WILKIE(eds) 350 ModeltheorywithapplicationstoalgebraandanalysisII, Z.CHATZIDAKIS,D.MACPHERSON,A.PILLAY& A.WILKIE(eds) 351 FinitevonNeumannalgebrasandmasas, A.M.SINCLAIR&R.R.SMITH 352 Numbertheoryandpolynomials, J.MCKEE&C.SMYTH(eds) 353 Trendsinstochasticanalysis, J.BLATH,P.MO¨RTERS&M.SCHEUTZOW(eds) 354 Groupsandanalysis, K.TENT(ed) 355 Non-equilibriumstatisticalmechanicsandturbulence, J.CARDY,G.FALKOVICH&K.GAWEDZKI 356 EllipticcurvesandbigGaloisrepresentations, D.DELBOURGO 357 Algebraictheoryofdifferentialequations, M.A.H.MACCALLUM&A.V.MIKHAILOV(eds) 358 Geometricandcohomologicalmethodsingrouptheory, M.R.BRIDSON,P.H.KROPHOLLER&I.J.LEARY(eds) 359 Modulispacesandvectorbundles, L.BRAMBILA-PAZ,S.B.BRADLOW,O.GARC´IA-PRADA& S.RAMANAN(eds) 360 Zariskigeometries, B.ZILBER 361 Words:Notesonverbalwidthingroups, D.SEGAL 362 Differentialtensoralgebrasandtheirmodulecategories, R.BAUTISTA,L.SALMERO´N&R.ZUAZUA 363 Foundationsofcomputationalmathematics,HongKong2008, F.CUCKER,A.PINKUS&M.J.TODD(eds) 364 Partialdifferentialequationsandfluidmechanics, J.C.ROBINSON&J.L.RODRIGO(eds) 365 Surveysincombinatorics2009, S.HUCZYNSKA,J.D.MITCHELL&C.M.RONEY-DOUGAL(eds) 366 Highlyoscillatoryproblems, B.ENGQUIST,A.FOKAS,E.HAIRER&A.ISERLES(eds) 367 Randommatrices:Highdimensionalphenomena, G.BLOWER 368 GeometryofRiemannsurfaces, F.P.GARDINER,G.GONZALEZ-DIEZ&C.KOUROUNIOTIS(eds) LondonMathematicalSocietyLectureNoteSeries:369 Epidemics and Rumours in Complex Networks MOEZ DRAIEF ImperialCollege,London LAURENT MASSOULIE´ ThomsonCorporateResearch,Paris cambridge university press Cambridge,NewYork,Melbourne,Madrid,CapeTown,Singapore,Sa˜oPaulo,Delhi CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9780521734431 (cid:1)C M.DraiefandL.Massoulie´2010 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2010 PrintedintheUnitedKingdomattheUniversityPress,Cambridge AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloguinginPublicationdata Draief,Moez,1978– Epidemicsandrumoursincomplexnetworks/MoezDraief,LaurentMassoulie´. p. cm.–(LondonMathematicalSocietylecturenoteseries;369) Includesbibliographicalreferencesandindex. ISBN978-0-521-73443-1(pbk.) 1.Computersecurity–Mathematics. 2.Epidemics–Computersimulation. 3.Biologically-inspiredcomputing. 4.Graphtheory. 5.Probabilities. I.Massoulie´,Laurent. II.Title. III.Series. QA76.9.A25D78 2010 004.6–dc22 2009032956 ISBN978-0-521-73443-1Paperback CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. Contents Introduction page1 PARTI SHAPELESSNETWORKS 5 1 Galton–Watsonbranchingprocesses 7 1.1 Introduction 7 1.2 Depth-firstexploration 9 1.3 Breadth-firstexploration 10 1.4 One-by-oneexploration 12 1.5 Chernoffboundsandtotalpopulationsize 15 1.6 Notes 17 1.7 Problems 17 2 Reed–FrostepidemicsandErdo˝s–Re´nyirandomgraphs 19 2.1 Introduction 19 2.2 Emergenceofthegiantcomponent 21 2.3 Thesubcriticalregime 23 2.4 Thesupercriticalregime 25 2.5 Thecriticalregime 29 2.6 Notes 33 3 ConnectivityandPoissonapproximation 35 3.1 Introduction 35 3.2 Variationdistance 35 3.3 TheStein–Chenmethod 37 3.4 EmergenceofconnectivityinE-Rgraphs 40 3.5 Notes 44 4 DiameterofErdo˝s–Re´nyigraphs 46 4.1 Introduction 46 vi Contents 4.2 DiameterofE-Rgraphs 48 4.3 Controlofneighbourhoodgrowth 49 4.4 Boundsforthediameter 51 4.5 Notes 53 5 Frommicroscopictomacroscopicdynamics 54 5.1 Introduction 54 5.2 Birthanddeathprocesses 55 5.3 Kurtz’stheorem 57 5.4 Notes 61 PARTII STRUCTUREDNETWORKS 63 6 Thesmall-worldphenomenon 65 6.1 Introduction 65 6.2 SmallworldaccordingtoStrogatzandWatts 66 6.3 SmallworldaccordingtoKleinberg 71 6.4 Notes 76 7 Powerlawsviapreferentialattachment 77 7.1 Introduction 77 7.2 Baraba´si-Albertrandomgraphs 78 7.3 Yuleprocess 83 7.4 Notes 86 8 Epidemicsongeneralgraphs 87 8.1 Introduction 87 8.2 Reed–Frostmodel 88 8.3 SISmodel 90 8.4 Epidemicsonspecificgraphs 100 8.5 Notes 107 9 Viralmarketingandoptimisedepidemics 108 9.1 Modelandmotivation 108 9.2 Algorithmichardness 109 9.3 Submodularstructureanditsconsequences 110 9.4 Viralmarketing 112 9.5 Notes 115 References 117 Index 122 Introduction Theideaofmimickingthepropagationofbiologicalepidemicstoachievedif- fusion of useful information was first proposed in the late 1980s, the decade that also saw the appearance of computer viruses. Back then, these viruses propagated by copies on floppy disks and caused much less harm than their contemporary versions. But it was already noticed that they evolved and sur- vived much as biological viruses do, a fact that prompted the idea of putting thesefeaturestogood(ratherthanevil)use.Thefirstapplicationtobeconsid- eredwassynchronisationofdistributeddatabases. Interest in this paradigm received new impetus with the advent of peer-to- peer systems, online social systems and wireless mobile ad hoc networks in the early 2000s. All these scenarios feature a complex network with poten- tially evolving connections. In such large-scale dynamic environments, epi- demicdiffusionofinformationisespeciallyappealing:itisdecentralised,and itreliesonrandomiseddecisionswhichcanproveasefficientascarefullymade decisions.Detailedaccountsofepidemicalgorithmscanbefoundinpapersby Birman et al. [12] and Eugster et al. [33]. Their applications are manifold. They can be used to perform distributed computation of global statistics in a spatially extended environment (e.g. mean temperature seen by a collection ofsensors),toperform real-timedelivery ofvideo data streams(e.g.tousers receivingliveTVviapeer-to-peersystemsovertheinternet)andtopropagate updatesofdynamiccontent(e.g.tomobilephoneuserswhosephoneoperating systemrequirespatchingagainstvulnerabilities). Thisbookismeantasanintroductionforappliedmathematiciansandcom- puterscientiststothestudyofepidemicpropagationovercomplexnetworks. The book’s firstpurpose istoprovide the reader withan accessible introduc- tiontotheelementarymodelsofepidemicpropagation,anddevelopanunder- standing of the basic phase transition phenomena (also called threshold phe- nomena) that are typical of epidemic behaviour. To this end it introduces the 2 Introduction relevantgenericmodels,analyticaltools,andmathematicalresults.Thisbook alsoaimstoexplaintheroleplayedbynetworktopologyinthepropagationof information. Thisbookcanbeusedbothtoaccompanycoursesforgraduatestudentsin computer science and applied probability and to provide an overview of the probabilistic techniques widely used to study random processes on complex networks.ItevolvedfromagraduatecoursegivenbytheauthorsatCambridge Universityfrom2005to2007.Themathematicalprerequisitesarereasonable maturity in probability theory at undergraduate level. The main tools intro- ducedinthetextconsistoflargedeviationsinequalities,couplingofstochastic processesandPoissonapproximation. Readerswhowanttodelvedeeperwillfindthoroughtreatmentsofrandom graphsinBolloba´s[13]andJansonetal.[42].TherecentbookbyDurrett[28] alsoexpandsonsomeofthematerialhere,inseveraldirections,inparticular onthebehaviourofrandomwalksongraphs.AnderssonandBritton[3]deals with epidemic modelling in the biological context. Specific suggestions for furtherreadingarealsoprovidedattheendofeachchapter. Atourof thebook Thetextisdividedintotwodistinctbutrelatedparts:shapelessnetworksand structurednetworks.Thefirstpart(Chapters1–5)presentstechniquesforan- alysing “homogeneous mixing” epidemic processes. In this setting the large population in which the disease spreads has no particular (or totally random, symmetric)topologicalstructure;thatis,eachindividualisthe“neighbour”of every other individual. The infection can therefore spread from any infected individual to any healthy one. In particular, this part of the book introduces branching processes, Erdo˝s–Re´nyi random graphs and so-called Reed–Frost epidemics. Issues such as ultimate outreach and time to global infection are considered. The second part (Chapters 6–9) covers recent results on the spread of epi- demics in structured networks wherein individuals interact with a limited set of neighbours, and where the corresponding topology can exhibit rich struc- ture.Itintroducesmodelsofsuchtopologicallystructurednetworks,including power-lawrandomgraphsandnavigablesmall-worldgraphs.Itgivesexplana- tory models for the emergence of such structures, and addresses the impact ofstructureonthebehaviour ofepidemics.Italsotouchesuponthealgorith- mic issue of maximising outbreak as a function of the initial infectives. In whatfollowswedescribethecontentofthebookinmoredetailandgivesome Introduction 3 perspectiveontherelevanceofeachtopictotheanalysisofepidemicprocesses onnetworks. Chapter1reviewselementaryresultsontheGalton–Watsonbranchingpro- cess. Branching processes arise naturally in the study of epidemics, as they provideanaccuratedescriptionofepidemicbehaviourinlarge,shapelesspop- ulations, at least in the early stages of dissemination. They are arguably the simplest class of model that exhibits a phase transition: the phenomenon by which an infinitesimal variation of microscopic characteristics (here, the off- spring distribution) can lead to a macroscopic change in system behaviour (here,infinitesurvivaloftheepidemic). TheresultsofChapter1arethenexploitedtoestablishasimilarphasetransi- tioninaclassicalepidemicmodel,namelytheReed–Frostmodel.Inparticular, Chapters 2–4 exploit a parallel between the Reed–Frost epidemic model and Erdo˝s–Re´nyi random graphs to gain insight into the behaviour of the former. Chapter 2 describes a phase transition appearing in the fraction of ultimately infectedindividuals.Chapter3identifiesunderwhichparameterrangesanepi- demic starting from one infected individual eventually spreads to the whole population.InChapter4wederiveanupperboundonthetimeneededforthe epidemictoreachthewholepopulation.Chapter5describesasettinginwhich the microscopic behaviour of the epidemic (how it spreads randomly in the population) canbeapproximated byasetofdifferentialequationsdescribing themacroscopicormean-fielddynamicsofthesystem.Italsointroducessome classicalmodelsofepidemicspread. The chapters of the second part of the book cover more advanced topics. Theseusesometechniquesintroducedinthefirstpart,inparticularlargedevia- tionsinequalities,butareotherwiselargelyself-contained.Chapter6proposes two models and corresponding analyses of the small-world phenomenon, in- troducingthenotionofnavigabilityofagraph.Chapter7focusesonanother phenomenon observed in many real-world networks, namely the power-law distribution of the degree sequence (or number of neighbours) of the graph. The most salient feature of a sequence with a power-law distribution is that ittypicallycontains sampleswithvery highvalues.Incontrast,classicalnet- work models such as the Erdo˝s–Re´nyi graph have degree sequences highly concentratedaroundtheirmean.Chapter7describesprocessesforgenerating such power laws together with their analysis. Chapter 8 covers recent results on the threshold behaviour of classical models of epidemics on general net- works,identifyingthresholdswithgraphpropertiesoftheunderlyingnetwork topology.Finally,Chapter9approachesthealgorithmicoptimisationproblem of maximising the spread of an epidemic on a general network by targeting nodesthatarelikelytoyieldalargecascadeofinfections.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.