ebook img

Enzyme-Based Labeling Strategies for Antibody–Drug Conjugates and Antibody Mimetics PDF

19 Pages·2017·2.95 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Enzyme-Based Labeling Strategies for Antibody–Drug Conjugates and Antibody Mimetics

antibodies Review Enzyme-Based Labeling Strategies for Antibody–Drug Conjugates and Antibody Mimetics GeorgFalck ID andKristianM.Müller* ID CellularandMolecularBiotechnology,FacultyofTechnology,BielefeldUniversity,Universitätsstr.25, 33615Bielefeld,Germany;[email protected] * Correspondence:[email protected];Tel.:+49-521-1066323 Received:1November2017;Accepted:18December2017;Published:4January2018 Abstract: Strategiesforsite-specificmodificationofproteinshaveincreasedinnumber,complexity, andspecificityoverthelastyears. Suchmodificationsholdthepromisetobroadentheuseofexisting biopharmaceuticalsortotailornovelproteinsfortherapeuticordiagnosticapplications. Therecent questfornext-generationantibody–drugconjugates(ADCs)sparkedresearchintotechniqueswith site selectivity. While purely chemical approaches often impede control of dosage or locus of derivatization,naturallyoccurringenzymesandproteinsbeartheabilityofco-orpost-translational protein modifications at particular residues, thus enabling unique coupling reactions or protein fusions.Thisreviewprovidesageneraloverviewandfocusesonchemo-enzymaticmethodsincluding enzymessuchasformylglycine-generatingenzyme,sortase,andtransglutaminase. Applicationsfor theconjugationofantibodiesandantibodymimeticsarereported. Keywords: chemo-enzymaticlabeling;armedantibody;antibodycoupling;antibodyconjugation 1. Introduction 1.1. Antibody–DrugConjugates Inthefightagainstcancer,antibody–drugconjugates(ADC)havegainedconsiderableattention, especiallysincethemarketreleaseofKadcylaandAdcetris,whichhavedoubledinyearlysalessince 2013,closinginonabilliondollars[1,2]. AvastnumberofnewADCsareinthepipeline,withseven oftheminpivotalclinicaltrials[3]. AfactorfuelingthesuccessofADCsisthepromisingexpansion of the therapeutic window compared to “naked” therapeutic monoclonal antibodies (mABs) and classicalchemotherapy. Furthermore,thisapproachcouldreviveantibodieswithsuitableaffinities yetinsufficientcytotoxicity,andhighlypotentdrugsunfavorableforunspecificsystemicapplication. Improvement of therapeutic efficacy has been proven for the trastuzumab–maytansine conjugate T-DM1ontumormodelsrefractorytotrastuzumab[4]. However,saidpotentialtherapeuticwindowis limitedbytheheterogeneity,stability,andpharmacokineticsofcurrentADCsandcouldberestored bysite-specificconjugationstrategies[5,6]. Thedrugtoantibodyratio(DAR)emergedasakeyterm in thediscussionof theideal ADC,which hasto behigh enoughto provide sufficienttherapeutic potency as well as low enough to not generate heavily drug-modified conjugates with impaired bindingproperties,stability,andcirculationhalf-life[7,8]. Dependingonthepropertiesofthedrug, theidealDARformostADCsisbetween2and4[7,9]. CouplingstrategiesforfirstgenerationADCs havebeenexclusivelychemicalwithrandomcouplingofthiolgroupsonreducedcysteines,ofside chainaminegroupsonlysinesandaldehydegroupsonoxidizedglycostructures[10]. Theabundance ofsuchmodificationtargetsleadstoabroaddistributionofDARs. Subsequentstrategiestherefore focusedonalteringinterchaindisulfidebonds,changingrespectivecysteinestoserinesorintroducing newfreecysteines[11],asutilizedfortheTHIOMABconjugationstrategy[12,13],ormodulatingthe Antibodies 2018,7,4;doi:10.3390/antib7010004 www.mdpi.com/journal/antibodies Antibodies 2018,7,4 2of19 Antibodies 2018, 7, 4 2 of 18 rceyasctteiivniety reosfisdpueecsi fifocrc ythsete iπn-eclraemsipd usetrsaftoergyth [e1π4]-.c lIanm cponsttrraastte,g tyhi[s1 4r]e.vIinewco wntirlal sfto,ctuhsis ornev einewzywmiel-lbfaosceuds ostnraetnezgyiems eto-b carseeadtes htroamteoggieesnotousc raenattiebohdoym–odgruengo cuosnjaungtaibteosd (yF–igdurureg 1c)o. njugates(Figure1). FiFgiguurere1 1..D Deeppicictitoionno offu unnssppeecciifificc cchheemmiiccaall ccoouupplliinngg aanndd ccoonnttrroolllleedd cchheemmoo--eennzzyymmaatitci ccocouupplilningg. . 1.2. Antibody Fragments and Mimetics 1.2. AntibodyFragmentsandMimetics Antibody fragments and mimetics were created to generate economical and more convenient high- Antibodyfragmentsandmimeticswerecreatedtogenerateeconomicalandmoreconvenient affinity proteins with alternative properties, though in part similar to those of full antibodies. Intended high-affinityproteinswithalternativeproperties,thoughinpartsimilartothoseoffullantibodies. differences to full antibodies are their smaller size and the possibility to be produced in prokaryotic Intended differences to full antibodies are their smaller size and the possibility to be produced in cells. Some of these mimetics are directly derived from their full antibody counterparts, like antigen- prokaryoticcells.Someofthesemimeticsaredirectlyderivedfromtheirfullantibodycounterparts,like binding fragments (Fab), single-chain variable fragments (scFv) or domain antibodies, such as VHH antigen-bindingfragments(Fab),single-chainvariablefragments(scFv)ordomainantibodies,suchas domains (also termed Nanobodies). Nanobodies are derived from camelid heavy–chain–only V Hdomains(alsotermedNanobodies). Nanobodiesarederivedfromcamelidheavy–chain–only anHtibodies and have been used extensively for imaging and even therapeutic applications [15]. They antibodiesandhavebeenusedextensivelyforimagingandeventherapeuticapplications[15]. They inhibited antigen binding or were loaded with toxins and thereby delayed tumor growth [16,17]. ScFv inhibitedantigenbindingorwereloadedwithtoxinsandtherebydelayedtumorgrowth[16,17]. ScFv antibodies for therapy are human or humanized light and heavy chain variable fragments fused by a antibodiesfortherapyarehumanorhumanizedlightandheavychainvariablefragmentsfusedby flexible (glycine-serine) linker. They have shown increased distribution across tumors while retaining aflexible(glycine-serine)linker. Theyhaveshownincreaseddistributionacrosstumorswhileretaining antigen affinity. Their potential use for cancer therapy has been discussed [18–20] with Blincyto a(bnltiingaetnumafofimnaitby,. aTnhtie CirDp3o tsecnFtvi–aalnutsi eCfDor19c asncFcver) btheeinragp ayn haapspbroevenedd disrcuugs.s eOdth[e1r8 –a2n0ti]bwodityh mBilminectyictos (cbolninsaisttu omf ocmonasbe,ravnedti CprDo3tesincF svc–aaffnotlidCs Dw1i9ths cvFavr)iabbelien agffainniatyp prreogvioends dmruimg.icOktinhger tahnet icboomdpylemmimenetatircys cdoentesrismtionfincgo nrseegrvioends porof teainntisbcoadffioesld. sDwesitihgnveadr iaabnlkeyarfifin nirteypreeagt iopnrostmeinims ic(DkiAngRPthinesc) osmhpowleemde nhtiagrhy dspeteecrifmiciintyin agndr eggoioodn stuomfoarn ptiebnoedtriaetsi.onD deuseig tnoe tdheairn skmyrailnl srizeep eaantd psrtaobteiliintys [(2D1]A. RThPeiny sc)osnhsioswt oefd linhkigehr scpoencnifiecctietyd atunrdng–ohoeldixt–uhmeloixr pmeonteiftsra, ttiyopnicdaulley ttohrtheee iprlsums atwllosi zceapapnidngst daboimlitayin[s2,1 w].hTihchey focromns tihsteo afnltiingkeenr cboinndniencgte sdutrufarcne–.h Reelipxe–bhoedliixesm, soitmifsil,atry tpoi cDalAlyRtPhirnese, aprleu scotwmopocasepdp ionfg redpoemtiatiivnes ,mwohtiifcsh cfaolrlemd tlheeucainnt-irgicehn breinpdeiantsg osrugrafanciez.edR einp eab oβd–sietrsa,nsidm–tiluarrnt–oαD–hAeRlixP isntsr,uacrteurceo m[2p2]o. sDederoivferdep fertoimtiv tehme oαt-ihfselcicaallle Zd ldeoumciani-nri cohf rsetappehatysloocrogcacnuisz epdrointeainβ A–s, tArafnfidb–otduirens,– αth–eh esmlixalsltersut cotuf rtehe[2 a2n].tiDboedriyv emdifmroemticsth weiαth-h aerloicuanldZ 6d okmDaa,i naroef smtaopshtlyyl uocseodcc fuosr pimroatgeiinngA [2,3A].f fiAb loodt ioefs ,ththee psrmosa allnedst coofntsh oefa annttiibbooddyy mfraimgmeteincstsw mitihmaertiocus nadre6 ckoDmam,oanre, msuocsht laysu thseedir faobriliimtya tgoi npgen[2e3tr]a.tAe tluomtoofrtsh, ebuptr aolssoa nthdeciro nreslaotfivaenltyib sohdoyrtf hraaglfm-liefne tisnm bliomoedt iccisrcaurleactioomn manodn,, sduuceh taos tthhee liarcakb oilfi taynt oFcp penaertt,r athteeitru mmiosrssin,gb uatnatilbsoodthye-direrpeelantdivenelty csehllo-mrtehdailaft-elidfe ciyntobtlooxoidcitcyir (cAulDatCioCn) aanndd, dcoumeptoletmheenlat-cdkepoefnadneFnct pcyartot,tothxeiciirtym i(sCsDinCg a[2n4t,i2b5o]d. yW-dheiplee nthdee nsthcoerltle-rm ceidrciautleadtiocny totitmoxe icoift ya(nAtiDboCdCy) amnidmceotimcsp nleamrreonwt-sd tehpee tnhdeernaptecuyttioct owxiincidtoyw(C fDorC c[a2n4c,e2r5 ]t.hWerahpilye, tiht eiss hoothreterrwciisrec ubleanteiofincitailm foero dfiaangtniboostdicy mapimpreotaiccshensa, rarso wthse tphaetitehnetr’as peexuptoiscuwrein tdo oswubfsotarnccaensc seurcthh earsa rpayd,iiotliasboetlhs eisr wshisoertbeer.n Tehfiec ieanlhfoarndceiadg tnuomstoirc penetration, due to smaller size and typically lower affinities, can be advantageous in the treatment of approaches,asthepatient’sexposuretosubstancessuchasradiolabelsisshorter. Theenhancedtumor solid tumors. Whereas whole antibodies usually accumulate between tumor interstitium and tumor penetration,duetosmallersizeandtypicallyloweraffinities,canbeadvantageousinthetreatment surface cells, antibody fragments and mimetics are able to reach the inner tissue faster [24,26]. Antibody of solid tumors. Whereas whole antibodies usually accumulate between tumor interstitium and mimetics can benefit from modification, like PEGylation and fusion to an albumin-binding domain for tumorsurfacecells,antibodyfragmentsandmimeticsareabletoreachtheinnertissuefaster[24,26]. longer circulation and site-specific drug coupling for enhanced toxicity. Antibodymimeticscanbenefitfrommodification,likePEGylationandfusiontoanalbumin-binding domainforlongercirculationandsite-specificdrugcouplingforenhancedtoxicity. Antibodies 2018,7,4 3of19 2. Site-SpecificProteinModificationStrategies 2.1. Formylglycine-GeneratingEnzymes Firstfoundduringaninvestigationofthemultiplesulfatasedeficiency,formylglycine-generating enzymes(FGE)havetheabilitytoconvertcysteinessite-specificallytoformylglycines, presenting analdehyderesidueuniqueinproteinsandsuitableforbio-orthogonalcoupling(Figure2)[27,28]. Theirnaturalsubstratesaresulfatasesbearingahighlyconservedhexapeptide,inwhichthecysteineis convertedtoformylglycineintheendoplasmicreticulum(ER)[29,30]. FGEscanbefoundinavariety oforganisms,bothprokaryoticandeukaryotic,suggestingpossiblevariousinvivoaswellasinvitro applications. Since its discovery in 2003, human FGE (hFGE) has been predominantly employed informylglycineconversionintheeukaryoticcontext[31,32]. Whenoverexpressed,excesshFGEis truncatedandsecretedfromtheER.Thissecretedformisstillcatalyticallyfunctionalandutilizable forinvitroreactions[33]. Forprokaryoticsystems,differentFGEsareavailable,withMycobacterium tuberculosis, Streptomyces coelicolor, and Thermomonospora curvata leading the way. Formylglycine, asanovelposttranslationalmodification,hasdrawninterestinthefieldofsite-specificmodification. Carricoetal. coinedtheterm“aldehydetag”in2007fortheshortuniversalFGErecognitionmotif LCTPSR,latershortenedtoCXPXR[34,35].TheyusedthistagforN-orC-terminalproteinmodification inE.colico-expressedwithM.tuberculosisFGE[36]. ThetagwasalsointroducedinaCHO(Chinese HamsterOvary)cellsystemforIgG-Fcandwholeantibodymodification,showingthepreservationof binding functionalities, as well as for labelling of cytosolic and cell surface proteins [37]. For the generation of site-specific coupled antibodies and antibody fragments expression platforms for aldehydetaggedproteinsweretestedinbothE.coliandCHOcellswhilestablycoexpressinghFGE[38]. TheeffectofpositioningofthedruginADCshasbeenaddressedandaldehydetagfunctionalityat differentsitesofanIgG1antibodyhasbeenvalidated. Whileaggregationoccurredafterintroduction atcertainpositions,especiallyintheCH2andCH3domains,forthemostparttheimplementedtags wereapplicable. Theflexibilityofthetagsusewasthusextendedtoalmostallgenerallyaccessible areas of the antibody [39]. Formylglycine conversion rates of 75% to over 90% could be achieved, yettotalconversionstillremainsanissue. Inanattempttoenhanceconversion,differentmediaand copper(II) supplementation were tested yielding higher conversion rates even with 5 µM copper addition. Mediacompositionseemstoplayacrucialroleinconversionresultsaswell,butdetails remainelusive[40]. CoppersupplementationandreconstitutionofFGEinvitrohavebeendiscussed inthelightofnewfindingsregardingthemechanismoftheFGEcatalysis. HumanFGEconvertsthe substratecysteineafterdisulfideformationwiththeCys-341inanoxygenase-typereactionrequiring molecularoxygenandareductant[41,42]. Recentlycopper(I)wasproposedasacofactor[43]. Invitro reconstitutionwithcoppercouldsuccessfullyincreasethecatalyticefficiencyofbacterialFGEs[44,45]. TheoverallsimilarityofthemycobacteriumtuberculosisandS.coelicolorFGEtohFGEincludingthe two cysteines in the catalytic center suggests a common mechanism [46]. Setbacks of the method includingprecipitationinvitrohavebeenreported,especiallyinhighionicstrengthreactionbuffers, anddiolformationoftheformylglycine[44]. Atthesametime,thepossibilityofusingthisenzyme strategyineukaryoticandprokaryoticenvironments, aswellasbothinvitroandincells, andthe numberofaldehydegroup-basedcouplingchemistries,e.g.,hydrazino–iso–Pictet–Spengler,theWittig reactionortrapped-Knoevenagel,showitsflexibility. Antibodies 2018,7,4 4of19 Antibodies 2018, 7, 4 4 of 18 FFiigguurree 22.. SScchheemmee ooff aann aannttiibbooddyy mmooddiifificcaattiioonn wwiitthh tthhee ffrroommyyllggllyycciinnee--ggeenneerraattiinngg eennzzyymmee.. FFoorr ccllaarriittyy,, the reaction is only depicted in one heavy chain. R represents a moiety with an aldehyde reactive thereactionisonlydepictedinoneheavychain. Rrepresentsamoietywithanaldehydereactive function capable of coupling via, e.g., hydrazino-iso-Pictet-Spengler Ligation, trapped Knoevenagel functioncapableofcouplingvia,e.g.,hydrazino-iso-Pictet-SpenglerLigation,trappedKnoevenagel Ligation, or Wittig reaction. Ligation,orWittigreaction. 2.2. Sortases 2.2. Sortases Gram positive bacteria produce sortases for the attachment of surface proteins on pentaglycine Grampositivebacteriaproducesortasesfortheattachmentofsurfaceproteinsonpentaglycine structures of the peptidoglycane cell wall [47]. Staphylococcus aureus sortase A (srtA) is the most structures of the peptidoglycane cell wall [47]. Staphylococcus aureus sortase A (srtA) is the most frequently used enzyme for site-specific protein labelling with this transpeptidase reaction (Figure 3). frequentlyusedenzymeforsite-specificproteinlabellingwiththistranspeptidasereaction(Figure3). Its natural substrate recognition motif is the pentapeptide LPXTG, where X is usually glutamic acid, Its natural substrate recognition motif is the pentapeptide LPXTG, where X is usually glutamic besides aspartic acid or lysine [48]. In a ping-pong hydrolytic shunt-like mechanism, srtA binds the acid, besides aspartic acid or lysine [48]. In a ping-pong hydrolytic shunt-like mechanism, srtA LPXTG substrate, hydrolyzes the backbone between threonine and glycine, and generates an acyl- bindstheLPXTGsubstrate,hydrolyzesthebackbonebetweenthreonineandglycine,andgenerates enzyme intermediate. The terminal amine of the oligoglycine then acts as a nucleophile, resulting in an an acyl-enzyme intermediate. The terminal amine of the oligoglycine then acts as a nucleophile, amide bond formation with the C-terminal threonine of the substrate [49,50]. The nucleophilic tag can resulting in an amide bond formation with the C-terminal threonine of the substrate [49,50]. be as short as two or three glycines for the protein ligation to work, making it popular for protein– The nucleophilic tag can be as short as two or three glycines for the protein ligation to work, peptide ligation [51] with biologically as well as chemically synthetized compounds. This has been makingitpopularforprotein–peptideligation[51]withbiologicallyaswellaschemicallysynthetized successfully demonstrated by either using LPXTG or Gn at the N- or C-terminus with in vitro compounds. This has been successfully demonstrated by either using LPXTG or G at the N- or modification of purified recombinant proteins and on living cells [52–54]. Attempting to cnircumvent the C-terminuswithinvitromodificationofpurifiedrecombinantproteinsandonlivingcells[52–54]. limitation to either terminus Antos et al. introduced a dual labeling strategy featuring Streptococcus AttemptingtocircumventthelimitationtoeitherterminusAntosetal. introducedaduallabeling pyogenes sortase A. This sortase A is capable of accepting alanines as nucleophiles. The newly ligated C- strategyfeaturingStreptococcuspyogenessortaseA.ThissortaseAiscapableofacceptingalaninesas terminus of the protein will therefore be no substrate for srtA in the second modification step. In nucleophiles. ThenewlyligatedC-terminusoftheproteinwillthereforebenosubstrateforsrtAin combination with srtA twofold modifications via distinct reactions at N- and C-terminus can be thesecondmodificationstep. IncombinationwithsrtAtwofoldmodificationsviadistinctreactions conducted [55]. Most of srtA’s use in antibody systems has revolved around diagnostic approaches with atN-andC-terminuscanbeconducted[55]. MostofsrtA’suseinantibodysystemshasrevolved single chain antibody fragments derivatized with fluorescent or radioactive markers [56–61]. arounddiagnosticapproacheswithsinglechainantibodyfragmentsderivatizedwithfluorescentor Kornberger and Skerra fused a whole protein, the plant toxin gelonin, to the trastuzumab-Fab with an radioactivemarkers[56–61]. KornbergerandSkerrafusedawholeprotein,theplanttoxingelonin, srtA approach, yielding 50% conversion [62]. Nanobodies have likewise been effectively labeled with to the trastuzumab-Fab with an srtA approach, yielding 50% conversion [62]. Nanobodies have fluorophores and cytotoxic payloads [63,64]. Due to the limitation to modifications of either terminus olifk tehwei staerbgeeet nperoffteecitniv, serltyAla hbaesl endowt bitehenfl uthoero pprheoferrerseadn cdhcoyictoe tfooxri cApDaCyl goeandesr[a6t3io,6n4.] C.Donuseidtoerthinegl itmheit saoti ofanr ptoremfeordreifidc aDtiAonRs ooff efiothuerr, tBeremerilni uest oaflt.h ecotaurlgde tpprorodtueicne, sKrtaAdchyalsa-n oatnbde eAndthceetprirse-fseimrreildarc haonitciebofodrieAsD bCy sgeepnaerraatteiloyn f.uCsionngs imdaeyritnagnstihnee-s oanfdar apurreisfteartriend-oDligAoRgloyfcifnoeu rt,oB teheer lliigehtta aln. dco hueladvpyr cohdauince oKf tardacsytulaz-uamnadb Aanddc ebtrreisn-tsuimximilaarba [n6t5i]b. oTdhieeys baychsieepvaerda taerloyufnuds i8n0g%m taoyxitnan csoiunpe-lianngd, caourrriesstpaotinnd-oinligg otog lay cDinAeRt ooft hroeuligghhlyt 3a.n2d. Wheaagvnyerc ehta ainl. corfetartaesdtu bzisupmecaibfica nandtibbroedniteusx bimy laibga[t6i5n]g. tTwhoe yfualcl hanietvibeoddaierso uwnitdh 8a0 c%omtobxiinnedco sutrpaltienggy, ocof rsroerstpaosen dreinacgtitoona aDndA Rcliocfk rcohuegmhilsytr3y.2 [.6W6].a gInn ethree tmael.acnrteimatee,d thbeis preepceifirtcoiarnet iobfo tdhiee smbeythloigda thinasg btweeon efuxltlenandteidbo dbiye sdwivitehrsaifcyoinmgb itnheed tsatrga t[e6g7y] oafnsdo rtsaoslevrineagc tsioonluabnilditycl icisksuchese mainstdr ys[i6d6e] .rIenatchtieomnse a[n56ti,m68e],. Fthuertrheepremrtoorier,e doefptshipeempteidtheos dhahvaes bbeeeenn inetxrtoednudceedd bays sduivbestrrsaitfeysin fogrt Nhe-tteargm[i6n7a]l panrodtesionl vminogdisfioclautbioinli ttyo aisdsdureessas nrdevseirdseibrieliatcyt ioofn tsh[e5 r6e,6a8c]t.ioFnu [r6th9]e.r Tmhoorueg,dh ecposmippeaprtaibdleys hhiagvhe ebnezeynmine tcroondcuecnetdraatisosnusb asrter anteesedfoedr aNn-dte trhmei nmaeltphroodte iisn limmoitdeidfi ctaot iionn vtiotroad pdrroetsesinr emveordsiifbicilaittyioonfs,t hite hraesa cbteioenn [e6x9t]e.nTshivoeulyg husceodm fpoarr saubclycehssigfuhl benioz-ycomnejucgoantcioenn.t rationsareneededandthemethodislimitedtoinvitroproteinmodifications,ithas beenextensivelyusedforsuccessfulbio-conjugation. Antibodies 2018,7,4 5of19 Antibodies 2018, 7, 4 5 of 18 FFiigguurree 33.. SScchheemmee ooff aann aannttiibbooddyy mmooddiifificcaattiioonn wwiitthh ssoorrttaassee.. 2.3. Transglutaminases 2.3. Transglutaminases Transglutaminases catalyze an acyl-transfer reaction to the side chain of glutamine residues of their Transglutaminasescatalyzeanacyl-transferreactiontothesidechainofglutamineresiduesof protein substrate (Figure 4) [70]. Depending on the acyl donor, this can result in an amide bond between theirproteinsubstrate(Figure4)[70]. Dependingontheacyldonor,thiscanresultinanamidebond the glutamine and a primary amine, crosslinking between two proteins via a side chain lysine of the between the glutamine and a primary amine, crosslinking between two proteins via a side chain donor protein or the deamidation of glutamine [71]. For protein labelling purposes, the acyl-transfer lysine of the donor protein or the deamidation of glutamine [71]. For protein labelling purposes, reaction is preferred. While transglutaminases are specific for glutamine on the target protein, the the acyl-transfer reaction is preferred. While transglutaminases are specific for glutamine on the flexibility in terms of the amine containing acyl-donor offers diverse possibilities for modification. In targetprotein,theflexibilityintermsoftheaminecontainingacyl-donoroffersdiversepossibilities contrast to other protein-ligation strategies, the probe containing reactant is not required to be a peptide formodification. Incontrasttootherprotein-ligationstrategies,theprobecontainingreactantisnot and can simply be an alkylamine or an oligoamine as long as it contains a primary amine [72]. required to be a peptide and can simply be an alkylamine or an oligoamine as long as it contains Eukaryotic transglutaminases used for protein modification are derived from the guinea pig liver as aprimaryamine[72]. Eukaryotictransglutaminasesusedforproteinmodificationarederivedfrom well as the human transglutaminase 2. However, the bacterial transglutaminase from Streptomyces theguineapigliveraswellasthehumantransglutaminase2. However,thebacterialtransglutaminase mobaraensis (MTG) is the enzyme of choice due to its independency from calcium and its lower fromStreptomycesmobaraensis(MTG)istheenzymeofchoiceduetoitsindependencyfromcalcium deamidation activity [73]. Transglutaminases display a certain promiscuity when it comes to the and its lower deamidation activity [73]. Transglutaminases display a certain promiscuity when it glutamine containing recognition sequence, which has spawned a search for a universal minimal tag. comestotheglutaminecontainingrecognitionsequence,whichhasspawnedasearchforauniversal Besides phage display derived peptides, different heptapeptide tags with hydrophobic residues N- minimaltag. Besidesphagedisplayderivedpeptides,differentheptapeptidetagswithhydrophobic terminal to the central glutamine have been used [74–76]. Farias et al. shortened the tag to an LLQGA residues N-terminal to the central glutamine have been used [74–76]. Farias et al. shortened the motif [77]. A novel strategy was presented by Siegmund et al. by generating a disulfide bridge stabilized tag to an LLQGA motif [77]. A novel strategy was presented by Siegmund et al. by generating handle with an exposed glutamine modelled on a natural MTG substrate reaching ligation efficiencies adisulfidebridgestabilizedhandlewithanexposedglutaminemodelledonanaturalMTGsubstrate of 85% [78]. They successfully biotinylated the therapeutic antibody cetuximab, showing the reaching ligation efficiencies of 85% [78]. They successfully biotinylated the therapeutic antibody amenability of the tag for possible antibody–drug conjugation. The feasibility of the generation of cetuximab,showingtheamenabilityofthetagforpossibleantibody–drugconjugation. Thefeasibility antibody conjugates with the aid of MTG has been proven repeatedly at different surface accessible sites ofthegenerationofantibodyconjugateswiththeaidofMTGhasbeenprovenrepeatedlyatdifferent [6,79–81]. The product yields for the latter approaches vary between 80% and 90%. The promiscuity of surface accessible sites [6,79–81]. The product yields for the latter approaches vary between 80% the enzyme may generate side products, like deamidated glutamine or a transesteferification product, and90%. Thepromiscuityoftheenzymemaygeneratesideproducts,likedeamidatedglutamineor and the need for experimental verification of sites for tag introduction remains. MTG catalysis is mainly atransesteferificationproduct,andtheneedforexperimentalverificationofsitesfortagintroduction used in vitro, but has been done on cells as well [75]. By combining transglutaminase catalysis with remains. MTGcatalysisismainlyusedinvitro,buthasbeendoneoncellsaswell[75]. Bycombining engineered cysteine maleimide conjugation, Puthenveetil et al. created a dually labeled antibody transglutaminasecatalysiswithengineeredcysteinemaleimideconjugation,Puthenveetiletal. created reaching a DAR of 4 [82]. aduallylabeledantibodyreachingaDARof4[82]. Antibodies 2018,7,4 6of19 Antibodies 2018, 7, 4 6 of 18 FFiigguurree 44.. SScchheemmee ooff aann aannttiibbooddyy mmooddiifificcaattiioonn wwiitthh ttrraannssgglluuttaammiinnaassee.. 2.4. Inteins 2.4. Inteins Inteins are protein sequences that can cleave themselves off to form a mature protein. Since they Inteinsareproteinsequencesthatcancleavethemselvesofftoformamatureprotein. Sincethey bear an internal endoprotease activity, their application is not an enzyme strategy in the classical sense. bear an internal endoprotease activity, their application is not an enzyme strategy in the classical For site-specific protein modification, inteins are deployed in variations of two different ligation sense. Forsite-specificproteinmodification,inteinsaredeployedinvariationsoftwodifferentligation strategies, expressed protein ligation (EPL) (Figure 5) and protein trans-splicing (PTS) (Figure 6). The strategies, expressed protein ligation (EPL) (Figure 5) and protein trans-splicing (PTS) (Figure 6). reaction mechanism involves the formation of a thioester intermediate. It is formed by the N-terminal The reaction mechanism involves the formation of a thioester intermediate. It is formed by the cysteine of the intein. Subsequently, the transfer of the thioester to an intramolecular cysteine N-terminal cysteine of the intein. Subsequently, the transfer of the thioester to an intramolecular downstream of the intein sequence and the release of the intein, through the generation of a peptide cysteine downstream of the intein sequence and the release of the intein, through the generation bond between the exteins, completes the reaction. Muir et al. described EPL in 1998, therein exploiting of a peptide bond between the exteins, completes the reaction. Muir et al. described EPL in 1998, an intein mutation capable of inhibiting the reaction downstream of the thioester intermediate and thereinexploitinganinteinmutationcapableofinhibitingthereactiondownstreamofthethioester intercepting it with a synthetic peptide containing an N-terminal cysteine [83,84]. The synthetic peptide intermediateandinterceptingitwithasyntheticpeptidecontaininganN-terminalcysteine[83,84]. can in turn be a carrier for C-terminal site-specific protein modification. This has been successfully ThesyntheticpeptidecaninturnbeacarrierforC-terminalsite-specificproteinmodification. This applied for fluorescein coupling and PEGylation [85,86]. EPL has also been used to generate monoclonal has been successfully applied for fluorescein coupling and PEGylation [85,86]. EPL has also been antibody conjugates [87,88]. Unfavorably for ADC generation reducing conditions have to be usedtogeneratemonoclonalantibodyconjugates[87,88]. UnfavorablyforADCgenerationreducing maintained to prevent oxidation of the accepting cysteine. For antibodies, Möhlmann et al. could conditions have to be maintained to prevent oxidation of the accepting cysteine. For antibodies, maintain intact interchain disulfide bonds and retained binding properties [87], albeit with a product Möhlmannetal. couldmaintainintactinterchaindisulfidebondsandretainedbindingproperties[87], yield of 60%. PTS on the other hand is carried out by split inteins, first characterized in Synechocystis sp. albeit with a product yield of 60%. PTS on the other hand is carried out by split inteins, first PCC6803. This example consisted of separately expressed N- and C-inteins with high affinity towards characterized in Synechocystis sp. PCC6803. This example consisted of separately expressed N- each other fused to the N- and C-terminal half of the DnaE protein respectively. Once they assembled, andC-inteinswithhighaffinitytowardseachotherfusedtotheN-andC-terminalhalfoftheDnaE self-cleavage similar to inteins took place forming a DnaE fusion protein [89]. This strategy also has proteinrespectively. Oncetheyassembled,self-cleavagesimilartointeinstookplaceformingaDnaE been used in vitro and in the cellular environment with a protein transduction domain fused to the C- fusionprotein[89]. Thisstrategyalsohasbeenusedinvitroandinthecellularenvironmentwith intein to enter the cell for labeling of the intracellular protein equipped with the N-intein [90]. The aproteintransductiondomainfusedtotheC-inteintoenterthecellforlabelingoftheintracellular comparatively small size of the C-intein enables coupling of synthetic peptides similar to EPL. Product proteinequippedwiththeN-intein[90]. ThecomparativelysmallsizeoftheC-inteinenablescoupling yields of up to 80% could be achieved using PTS with antibodies. Discovery and engineering of shorter ofsyntheticpeptidessimilartoEPL.Productyieldsofupto80%couldbeachievedusingPTSwith C-intein (6 aa) and N-intein (12 aa) sequences has extended the applicability of the method to N-terminal antibodies. DiscoveryandengineeringofshorterC-intein(6aa)andN-intein(12aa)sequenceshas protein modification [91,92]. Faster acting split inteins and inteins less sequence dependent on the extein extendedtheapplicabilityof themethodtoN-terminalproteinmodification[91,92]. Fasteracting sequence have since emerged [93,94]. For comfortable labeling with thiol reactive probes the Cys-Tag splitinteinsandinteinslesssequencedependentontheexteinsequencehavesinceemerged[93,94]. (EAGSCS) has been employed with split inteins [95]. Recently Bachman et al. modified nanobodies N- ForcomfortablelabelingwiththiolreactiveprobestheCys-Tag(EAGSCS)hasbeenemployedwith terminally with the help of split inteins and the Cys-Tag [96]. Han et al. generated bispecific IgG splitinteins[95]. RecentlyBachmanetal. modifiednanobodiesN-terminallywiththehelpofsplit antibodies by producing full dimeric antibodies with a C-Intein instead of a second Fab-fragment. The inteinsandtheCys-Tag[96]. Hanetal. generatedbispecificIgGantibodiesbyproducingfulldimeric Fab-fragment of second specificity was engineered with an N-intein and fused to the first antibody via antibodieswithaC-InteininsteadofasecondFab-fragment. TheFab-fragmentofsecondspecificity PTS [97]. Downsides of both EPL and PTS are the long terminal inteins of approximately 100–150 aa wasengineeredwithanN-inteinandfusedtothefirstantibodyviaPTS[97]. DownsidesofbothEPL that have to be appended to the protein of interest. While this might not be an issue for whole antibodies, andPTSarethelongterminalinteinsofapproximately100–150aathathavetobeappendedtothe opr rhoatse ibneeonf isnhtoewrens tt.oW beh mileatnhaigsemabigleh ftonr oVtHbHe,a fnori sssoumeef oarntwibhoodlye amnitmibeotdicise sth,iosr choausldb eleeands thoo dwifnfictoulbtiees in production. manageableforV H,forsomeantibodymimeticsthiscouldleadtodifficultiesinproduction. H Antibodies 2018,7,4 7of19 AAnnttiibbooddiieess 22001188,, 77,, 44 77 ooff 1188 FFFiiiggguuurrreee 555... SSSccchhheeemmmeee ooofff aaannn aaannntttiiibbbooodddyyy mmmooodddiiififfiicccaaatttiiiooonnn b bbyyye eexxxppprrereessssseseedddp pprorrotoettieeniinnli glliiaggtaaiottiinoo.nnM.. MMESEENSSNNAAAis iitssh ttehhaeeb aabbbrbebvrreeiavvtiiiaaottniioonn fffooorrr 222---mmmeeerrrcccaaappptttoooeeettthhhaaannneeesssuuulllfffooonnnaaattteee... FFFiigigguuurrreee6 66...S SSccchhheeemmmeeeo oofffa aannna aannnttitbiibbooodddyyym mmooodddifiiiffciiccaaatittoiioonnnb bbyyyt rttraraannnss-ss--spspplillciicicniinnggg... 222...555... TTTuuubbbuuullliiinnn TTTyyyrrrooosssiiinnneee LLLiiigggaaassseee CCCaaatttaaalllyyyzzzeeeddd bbbyyy tttuuubbbuuulliilnnin ttytyyrrrooosssiinnineee lliilggigaaassseee ((TT(TTTTLLL)),,) ,ααα--tt-uutubbbuuulliilnnin iissi smmmooodddiiffiiifieedded pppoosostts--ttt-rrtaarnnasnsllsaalttaiiotoinnoaanllallyyll ybbyyb yCC-- ttCeerr-mmteriinnmaailln aaattlttaaacctthhammcheemnntte onofft aao fttyyarrtooyssriionnseei n[[99e88[]]9.. 8 BB].aannBeearrnjjeeeerej eeeett aaellt.. asslhh.ooswwhoeewdd ettdhhaattth TTatTTTLLT aaLccccaeecppctetssp tttyysrrtooyssriionnseein ddeeedrriievvraaivttiiavvteeivss ellisikkee fflooikrrmmeyyfoll--rttmyyrryoolss-itinnyeero aasssin aae ssauusbbassttsrruaattbees t[[r99a99t]]e.. [FF9oo9rr] .tthhFeeo ruusstehe eiinnu sooetthhienerr oppthrrooettreeiipnnrsso,, tSeSiccnhhsuu,mmScaahcchhueemrr aeectth aaellr.. ellaatbbaeell.leeddla baae 11le33d aaaa ppaeep1p3ttiiddaeae ((pVVeDDpSStiVVdEEeGG(VEEDEEEESGVGEEEEGE))E,, mEmEiimmGEiiccEkk)ii,nnmgg ttihhmeei cCCk--ittneerrgmmthiinneuuCss o-otffe ααrm--ttuuinbbuuuslliionnf,, wwα-iittthhu bTTuTTlLLin ((,FFwiiggiuuthrreeT 77T))..L TTh(hFiissig ssuoor--eccaa7llll)ee.dd TTTuuhbbis--TTsaaogg-c awwllaaesds Tiinnuttbrro-oTddauugccweedda siinninttotor oppdrruooctteeediinnissn tffooorrp reeofftffeiicciniieesnnftto rCCe--fttfieercrmmieniinntaaCll -tmmeroomddiiinffiiacclaatmtiiooonnd ioofiffc addtiiioffffneerroeefnndtt ifppferrrooettneeiitnnss iipnnrccolluuteddiniinnsggi n aaclnnu daainnnttgii--aGGnFFaPPn tnni-aaGnnFooPbboonddayny o [[b11o00d00y]],, [1aa0cc0hh]ii,eeavvciihnnigge vaainllmmgooaslsmtt offuustllllf uccloolnncovvneevrrsseiiroosnnio naaffattfeetrre r555 hhh ooofffi niicnnuccbuuabbtaaiottiinoo.nn.. SSSuuubbbssstttrrraaattteee fffllleeexxxiiibbbiiillliiitttyyy ooofff TTTTTTLLL wwwaaasss fffuuurrrttthhheeerrr i iilllllluuussstttrrraaatteteedddw wwitiihtthh,,,a aammmooonnngggo oothtthhereesrr,ssu,, ununnnanntaauttruuarrlaaall naadnnddb ibboiitoointtii-nnco--ccnootnnaittnaaiiinnngiinngg aaammmiiinnnooo aaaccciiidddsss bbbrrroooaaadddeeennniiinnnggg ttthhheee lllaaabbbeeellliiinnnggg c cchhheeemmmiisissttrtrryyys sspppeeeccctrtturruummm[ 1[[1010101]1.]]..A AAltllhtthhooouuuggghhhli lmliimmitieittdeeddto ttoom mmodooiddfiiicffaiicctaiaottiniooonnf ootfhf tethhee CCC---ttteeerrrmmmiiinnnuuusss aaannnddd nnnooottt yyyeeettt uuussseeeddd iiinnn cccooonnnttteeexxxttt ooofff fffuuullllll a aannntttiibibbooodddiieieesss,,,T TTTTTLLLb bbeeeaaarsrrsst htthheeep ppoootettneenntittaiilaafll o ffroorrA AADDDCCCg eggneeennreearrtaaiottiinoo.nn.. TTThhheee tttuuubbb tttaaaggg’’’sss ppprrreeedddooommmiiinnnaaannnttt pppooolllaaarrriiitttyyy cccooouuulllddd p pprrroooooofffa aadddvvvaaannntattaagggeeeooouuusssk kkeeeepeeppiniinngggin iinnm mminiidnnddth ttehheeso sslooullbuuibbliiitllyiittypy rpporrboolebbmlleemsmss wwwiiittthhh mmmaaaiiinnnlllyyy hhhyyydddrrroooppphhhooobbbiiiccc tttoooxxxiiinnnsss ddduuurrriiinnnggg AAADDDCCC gggeeennneeerrraaatttiiiooonnn... Antibodies 2018,7,4 8of19 Antibodies 2018, 7, 4 8 of 18 Antibodies 2018, 7, 4 8 of 18 Figure 7. Scheme of an antibody modification by tubulin tyrosine ligase. FFiigguurree7 7.. SScchheemmee ooff aann aannttiibbooddyym mooddiififcicaattioionnb byyt tuubbuulilnint ytyrroossinineel ilgigaassee.. 2.6. Proteases (Trypsiligase and Subtiligase) 22.6.6. .PPrrootteeaasseess ((TTrryyppssiilliiggaassee aanndd SSuubbttiilliiggaassee)) Proteases have been utilized for protein semi-synthesis for a long time and recently also for protein PPrrootteeaasseess hhaavve ebebeene nutuiltiizleizde fdorf oprroptreointe sinemsei-msyi-nstyhnetshise fsoisr afo lronagl otinmget aimnde raencdenrtelyc eanlstoly foarls porofoterin labeling. subtiligase, a variant of the serine protease subtilisin, though currently not used for ADC lpabroetliening. lasubebltiinligg.asseu, bat ilvigaraisaen,ta ovf atrhiaen steorifnteh eprsoetreinaseep sruobtetailsiseinsu, bthtioliusginh, cthuorruegnhtlycu nrroetn utlsyedn oftoru sAeDdC generation, is able to catalyze peptide formation, in addition to its hydrolytic activity [102]. Subtiligase gfeonreAraDtiCong,e ins earbalteio tno, ciastaablylezeto pceapttaildyez efoprmepattiidoenf, oinrm adatdioitnio,nin toa ditdsi thiyodnrtoolyittsich aycdtirvoiltyyt i[c10a2ct]i. vSiutybt[i1l0ig2a].se has been improved by phage display for ligase activity [103]. Nonetheless, the problem of increased hSausb btieleigna simehparosvbeede nbyim pphraogvee ddibspylpayh afgoer dliigsapslea yacftoirviltiyg a[s1e03a]c.t iNviotnye[t1h0e3l]e.sNs, otnheet hperolebslse,mth oefp irnocbrleeamsed hydrolysis compared to ligase activity persists. Liebscher et al. engineered trypsiligase, a trypsin variant hoyfdinroclryesaisse cdomhypdarroeldy stios lcigoamsep aarcetidvittoy lpigearssiestasc.t Livieitbyscpheerrs iestt sa.l.L einebgsincheeerreedt tarly.pesnigliignaeseer,e ad trtryyppssinil ivgaarsiea,nt capable of terminal modification of proteins by cutting the short recognition sequence YRH and ligating caaptraybplsei nofv taerrimanintacal pmaobdleifoicfatteiromn ionfa plmrootediinfisc batyi ocnutotfinpgr othteei nshsobryt cruecttoingngitthioens hseoqrtureenccoeg YniRtiHon asnedq luigenatcieng proteins or peptides with an N-terminal RH moiety under the requirement of Zn2+ (Figure 8) [104]. C- pYrRotHeinasn dor lpigeapttiindgesp wroittehi nasn oNr-pteerpmtiidneasl RwHit hmaonietNy- utenrdmeirn tahleR rHequmiroeimetyenut nodf eZrnt2h+ e(Friegquureir e8m) [e1n0t4]o. fC- terminal modification with PEG and fluorescein could also be achieved for an anti-Her2 Fab fragment, tZernm2+in(aFli gmuordei8fi)c[a1t0io4n]. wCi-tther PmEiGna alnmdo fdluifiocreasticoeninw ciotuhldP EaGlsoa nbde aflcuhoierevsecde ifnorc oaun ladnatil-sHoebre2 aFcahbi efvraegdmfoernt, as well as coupling of the DM1 toxin with a yield of approximately 70% via a successive click reaction aasn waenltli -aHs ecro2uFpalbinfgra ogfm theen tD,aMs1w teollxains cwoiuthp lain ygieolfdt hoef DapMp1rotxoixminawteiltyh 7a0y%ie vldiao af asupcpcreosxsiimvea tcelliyck7 0r%eacvtiiaon [105,106]. Though trypsiligase is only applicable to the C-terminus of the antibody, the only 3 aa long [a10s5u,1cc0e6s]s. iTvheoculigchk rtreyapctsiiolinga[1se0 5i,s1 0o6n]l.yT ahpopulgichabtrley ptosi ltihgea sCe-tiesromnilnyuasp opfl itchaeb laenttoibtohdeyC, -thteer moninlyu s3 oafa tlhoeng tag presents an advantage over most other mentioned enzyme strategies. taangt pibroedseyn,ttsh eano naldyv3anataalgoen ogvtearg mproesste ontthsearn maednvtaionntaegde eonvzeyrmmeo ssttraottehgeirems. entionedenzymestrategies. Figure 8. Scheme of an antibody modification by trypsiligase. FFiigguurree8 8.. SScchheemmee ooffa anna annttiibbooddyym mooddiififcicaattioionnb byyt rtryyppssiliilgigaassee.. 2.7. Phosphopantetheinyl Transferase 22.7.7. .PPhhoosspphhooppaanntteetthheeininyyl lTTrraannssffeerraassee Phosphopantetheinyl transferases transfer the phosphopantetheinyl moiety of coenzyme A to a PPhhoosspphhooppaannteteththeeininyyl ltrtraannssfeferraasseess ttrraannssfeferr tthhee pphhoosspphhooppaanntteetthheeininyyl lmmooiieettyy ooff ccooeennzzyymmee AA ttoo a specific serine residue in the target protein (Figure 9) [107]. Specifically, the Sfp Phosphopantetheinyl sapsepciefcicifi scesreinrien reerseisdiudeu einin ththe etatargrgeet tpprrootteeiinn ((FFiigguurree 99)) [[110077]].. SSppeecciifificcaallllyy,,t htheeS fSpfpP hPohsopshpohpoapnatnettehtehineiynlyl transferase (Sfp) from Bacillus subtilis is valued for protein labeling. Several peptide motives recognized ttrraannssffeerraassee ((SSffpp)) ffrroomm BBaacciilllluuss ssuubbttiilliiss iiss vvaalluueeddf foorrp prrooteteininl alabbeelilningg..S Seevverearlapl pepeptitdideem motoivtievserse rceocgonginzeizded by Sfp were found, among others the ybbR-tag (DSLEFIASKLA). The enzyme is able to transfer small bbyy SSffpp wweerree ffoouunndd,, aammoonngg ootthheerrss tthhee yybbbbRR--ttaagg( (DDSSLLEEFFIAIASSKKLLAA).).T Thheee nenzyzymmeeis isa balbeleto totr atrnasnfesfresrm smallall molecule CoA conjugates to the tag serine positioned at the N- and C-terminus and also in flexible loops molecule CoA conjugates to the tag serine positioned at the N- and C-terminus and also in flexible loops of the target protein [108–110]. Grünewald et al. recently generated antibody–drug conjugates site- of the target protein [108–110]. Grünewald et al. recently generated antibody–drug conjugates site- Antibodies 2018,7,4 9of19 AmAnntoitbilboeodcdieiuse sl2 e2001C188,o ,7 A7, ,4 4 c onjugatestothetagserinepositionedattheN-andC-terminusandalsoinflexi9b9 ol oef f1 188 loopsofthetargetprotein[108–110]. Grünewaldetal. recentlygeneratedantibody–drugconjugates ssspipeteecc-isfiifpciceaacllliylfiy cl aalabllbeyelelledadb a eatl ted ddififfaefterredeninftf tel olroeoonpptss li onino tp htshee icn cootnhnsestatacnnot ntr sretegaginoiotnnr o eofg fit ortranasstoutfuzzturumamsataubbz w uwmitihtah bt hthwee ih thheelpltph o eof fhd deilfipffeferorefennt t SdSfpfipf ft eatragegsns at anSndfdp a atcachghiseievaveneddd a aatc tlh elieaeasvste t9 d955a%%t lc ecoaonsnvtve9er5rs%sioioncno [ n1[1v11e11r].]s .i on[111]. FFiFiggiuguurreree 99 .9. S.S cSchchheememmeee oo fof faa nann aa nantntiitbbiobododdyyy mm moododdiififiicfciacatatiiotoinonnb b ybyyp p hphohosospsphphohopopapanantnteettethhteheieinniynylylt ltr rtaranansnsfsfeefrerarasasese.e. . 222.8..88. ..S SSpppyyyLLLigiiggaaassseee ZZZaaakkkeeerrri ii eeett t aaall.l. . eeennngggiininneeeeeerrreeeddd tththheee sssooo--cc-caaallllleeleddd S SSpppyyyTTTaagagg f frrforomomm th thteheeC CnCnanBaaB2B2d2 oddmoomamianainion f oofif fb frifboibrnroeoncneteicncti-tnbin-inb-bidninidndigningg ppprrroootteteeiniinn ffrfrrooommm SSSttrtrreeepppttotoocccoooccccccuuusss pppyyyooogggeeennneeesss [ [11[1111222]]..] .T TThhheee e enengngiginnineeeeerererededd S SpSpypyCyCCaatatccthchehererr is isias baableblelte o totmo memdeiedaditaieateitse o isipsoeopppetepipdtitedidee ffofoorrrmmmaaatittoiioonnn o oof ffa aa s sisdiiddeee c chchhaaianiinn l yllysysisniinnee ea anandnd da asaspspaparararagagigniniene e( F(F(iFgigiugurureer 1e 1010)0.) .)T .ThThisihs ip sprropotretoeitnien–i–npp–eepppetitpdidteied l ielgiglaiatgitoaiotnin om nmemeththeotodhd ow dwaass rwreefaifnisnereded fib bnyye Fd FieiberyreerFr ei eetr ta ealr.l .eb btyya s lsp.plbiltyittitsnipnggl it thtthiene ge entnzhzyeymmenee zi nyintmoto et htihnrreteoee tp hpararertests, p,S SapprytysTT,aSagpg ( yA(TAHaHgIVI(VAMMHVVIDVDAMAYVYKKDPPATTYKKK),) P,K TK-KT-Ta)a,gg, , (KA(A-TTTHaHgIKI,K(FAFSTSKKHRRIDKD)F )a SanKnddR S DSpp)yyaLLnigidgaaSsspee,y ,w Lwhighiacichshe i ,sisw a abhblielce ht otoi sf ufausbsele et hthteoe t fwtuwosoe t attahggess. t.Tw Thhoeeytya u gussse.edTd th htehiysis su stsrtreaadtetegthgyyi st otso tp rpoaoltyelygmmyeetrorizizee apafffoifbliybomoddieeiresis z[ e1[11a13f3]fi,] b,a aonndddi eS Ssiei[eg1ge1em3m]u,uannnddd e eSt tia ealg.l .ea ampppuplnileidedd ei tti taf oflo.rr at phthpee lg igeeednneiertrafatoitroiontnh o eof gfA eADnDeCrCsas t[ i1[o11n144]o.] f.B ABooDththC S sSpp[y1yT1Ta4ag]g. a Banondtdh K K-- TSTapagyg T aaarrgee a ssnmmdaaKlll,l- ,T sasogo tahtrhiesis s smstrtaralatle,tegsgoyy t hccaiasnns tereaaastsieligylyy bcbeae n aapepappsliilleiyeddb teotoa pbbpootlihteh d pptrorootbetoeinitnh tpeterrormmteiniinni.i t. eFFrumurrtihtnhei.errmFmuorortrehe,e ,r tmhtheoe r leolo,ww rtreheaaecctlitooiownn rteetaemmctpipoeernraatteutumrreepss,e ,r wawthuhirlieele s ,sswtitlihll li lrereeasactichlhlinirnegga c8h800i%n%g c8co0on%nvvecerorsnsioivonen r swiwoitnihthw wiwthhhowolelhe oaalnentitabinbotodidbyoy d ssyuubsbsustbrtrasatterteass,t e, asa,rree daderesesiridraaebbslielre a fbofolrer AfAoDrDCAC D pprCroodpduruocctditoiuoncnt. i. oTTnhh.ee T ehexxecceeesxsscs eeesnnszzyeynmmzeye m nneeeeenddeeeeddd efofdorr f tohtrheet h cceooncnvovenervrsesioirosnni o rnreemrmeamainiansis n asa taatartraggreget te ftoforr ofopoptritmiompizitziamatitioizonan.t .i on. FFiFiggiugurureree 11 010.0. S.S cSchchheememmeee oo fof afa nann aa nantntiitbbiobododdyyy mm moododidififiicfciacatatiiotoinonnb b ybyyS S pSpypyLyLiLiggiagasasese.e. T.T MTMMAAAOOO,, T,T rTrimrimimeetehthtyhylyalalmammininieneNe N N-o-o-xoxixdidiede.e. . 22.9.9. .O Oththeerr S Strtraateteggieiess TThheerree aarree sseevveerraal l fufurrththeerr eennzzyymmee sstrtraateteggieiess ththaat t wweerree aaddaapptetedd toto aanntitbibooddyy––ddrruugg ccoonnjujuggaatitoionn oorr ccoouuldld b bee u usseefuful li nin t hthisis c coonntetexxt tb baasseedd o onn t htheeirir v vaalildidaatetedd a abbiliiltiyty t oto l ilgigaatete p prrooteteininss. .L Leeee e et ta al.l .c coonnjujuggaatetedd a ann aanntit-iE-EGGFFRR r reeppeebbooddyy b byy p prreennyylalatitoionn o of fa a c cyyssteteininee i nin a a C CaaaaXX-m-mootitfi fw witihth g geerraannyyl lk keetotonnee p pyyrroopphhoosspphhaatete aanndd s suucccceessssivivee o oxximimee l ilgigaatitoionn w witihth a ammininooooxxyylalatetedd M MMMAAFF, ,r reeaacchhiningg a almlmoosst tf ufulll lc coonnvveerrssioionn [ 1[11155].] .L Lipipooicic aaccidid l ilgigaassee t atagggginingg o of fp prrooteteininss a anndd s sitiete-s-sppeeccifiifcic l alabbeelilningg w witihth b bioiotitnin l ilgigaassee c coouuldld b bee u usseefuful lf oforr a anntitbibooddyy-- Antibodies 2018,7,4 10of19 2.9. OtherStrategies There are several further enzyme strategies that were adapted to antibody–drug conjugation or could be useful in this context based on their validated ability to ligate proteins. Lee et al. conjugatedananti-EGFRrepebodybyprenylationofacysteineinaCaaX-motifwithgeranylketone pyrophosphate and successive oxime ligation with aminooxylated MMAF, reaching almost full conversion[115]. Lipoicacidligasetaggingofproteinsandsite-specificlabelingwithbiotinligase couldbeusefulforantibody-drugconjugationaswell[116–118]. EscherichiacolibiotinligaseBirA has been used for protein labeling by Chen et al. with yields of up to 50% [117]. Comparably smallamountsofenzymeareneeded,yetthe15aatagislongerthanthatusedinsimilarstrategies. Theligasecanattachabiotinanalogtoalysineinthetagandtheketonegroupcanthenbelabeled specifically. Heller et al. introduced a phosphocholination reaction for protein modification by AnkX. This Legionella pneumophila enzyme recognizes the peptide sequence TITSSYYR and adds aphosphocholinemoietyfromtaggedCDP-cholinetothesecondserine[119]. Conversionratesofup to70%couldbereachedwithAnkX,thoughithasnotbeenusedwithantibodiesorantibodyfragment andmimeticsthusfar. GlycoConnectisalabelingstrategydirectedatglycostructuresoftheantibody. DerivatizationisachievedbyfirstlytrimmingN-glycanswithendoglycosidasetoexposeanN-acetyl glucosamineandsecondlyattachaclickconjugatableN-acetylgalactosaminewithglycosyltransferase. UsingGlycoConnect,vanGeeletal.couldeffectivelygeneratenearlyfullyconvertedantibody–drug conjugates[120]. Eliminationoftheantibody’sN-glycosylationmighthaveaneffectonindividual antibodiesregardingbloodclearanceorADCC,buttheimpactisingenerallessimportantforADCs. Thelongincubationtimesat37◦Cand30◦Care,however,notidealforADCproduction. 3. Conclusions Thesheernumberandcontinuousdevelopmentofnewlabelingstrategiesforantibody–drug conjugates demonstrates the interest in and importance of the issue. Besides the enzyme-based strategiesdiscussedhere,manyparallelconjugationmethodsarebeingpursued,liketheincorporation ofunnaturalaminoacidsandthedesignofchemicallyspecificreactionsitesintheantibodyorantibody mimetic.Duetothevariousenzymesavailableforproteinconjugation,chancesaregoodthatasuitable approach for a given protein of interest can be found as described in Table 1. Different and often shorttagsmaybeincorporatedwithoutdisruptingstructureandfunction. Problematicpropertiesof antibodyconstructs,likestabilityorsolubility,canbeconsideredbytestingvariousmethods,which differinbuffercomposition,additionalchemicalsteps,oreventheoptiontogeneratetheconjugation readyantibodiesbyco-expressingtheenzyme. Mostoftheenzymesmentionedherehavealready been used to generate homogenous antibodies at the laboratory scale. Nonetheless, it should be mentioned that a perfect or one-size-fits-all strategy remains elusive. Possible drawbacks include thedemandforexcessenzyme,reversibleandincompletereactions,orexclusivelyterminalligation. Some of these issues have already been addressed and the different strategies could also go hand in hand for sequential labeling or labeling at different sites, e.g., with a toxin and a fluorophore orPEG.Onthetherapeuticside, acombinationofantibodiesandantibodymimetics, duetotheir individualcharacteristics,isconceivableaswell.WhilecurrentclinicallyinvestigatedADCsaremainly constructedusingengineeredcysteines,futuregenerationsofantibody–drugconjugateswilllikely includechemo-enzymaticstrategies.

Description:
Keywords: chemo-enzymatic labeling; armed antibody; antibody coupling; antibody conjugation. 1. Introduction. 1.1. Antibody–Drug Conjugates.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.