ebook img

Environmentally safe molluscicides from two common euphorbiales PDF

9 Pages·2001·4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Environmentally safe molluscicides from two common euphorbiales

© SociedadEspañoladeMalacología Iberus, 19 (1): 65-73, 2001 Environmentally safe moUuscicides from two common eu- phorbiales Molusquicidas no perjudiciales para el medioambiente obtenidos a partir de dos euforbiáceas Ram P. YADAV* andAjay SINGH*' Recibidoel15-V-2000.Aceptadoel14-1I1-2001 ABSTRACT Aqueous extracts of látex and stem bark of Codiaeum variegatum and Crotón tiglium (Eup- horbiaceae) have a high molluscicidal activity. It was observed that the molluscicidal acti- vityofextracts of both the plants againsttwo harmful fresfiwater snails Lymnaea acuminata and Indoplanorbis exustus was time as well as dose dependent. There was a significant negative correlation between LC50 valúes and exposure periods thus increase in exposure time, the LC50 of Crotón tiglium and Codiaeum variegatum lotices were decreased from O.OóO mg DW/L (24h)> to 0.014 mg DW/L (9óh) and 0.381 mg DW/L (24h)> to 0.159 mg DW/L (96h), respectively ogoinst Lymnaea acuminata and 0.034 mg DW/L (24h)> to 0.009 mg DW/L (96h) and 0.246 mg DW/L (24h)> to 0.030 mg DW/L (96h), respectivelyagainst Indoplanorbis exustus. These plant part extracts at higher doses were olso lethol to freshwoter fish Channa punc- tatus, which shores the habitat with these snails, but the doses LC90, (24h) of snails are safe for fish. RESUMEN Los extractos acuosos de látex y corteza del tallo de Codiaeum variegatum y Crotón tiglium (Euphorbioceae) tienen una alta actividad molusquicida. Esto actividad, frente a dos caracoles de aguo dulce dañinos, Lymnaea acuminata y Indoplanorbis exustus , depende tanto del tiempo como de la dosis. Hoy uno correlación negativa significativa entre los valores LC50 y los periodos de exposición según se aumentan éstos, el LC50 de los látex de Crotón tiglium y Codiaeum variegatum fueron decrecientes 0.060 mg DW/L (24h)> hasta 0.014 mg DW/L (96h) y 0.381 mg DW/L (24h)> hasta 0.159 mg DW/L (9óh), respectivamente contra Lymnaea acuminata y 0.034 mg DW/L (24h)> hasta 0.009 mg DW/L (96h) y 0.246 mg DW/L (24h)> desde 0.030 mg DW/L (96h), respec- tivamente contra Indoplanorbis exustus. Estos extractos de partes de plantos o dosis mayores fueron también letales para el pez de agua dulce Channa punctatus, que comparte habitat con estos dos caracoles, pero la dosis LC90, (24h) ero inocua para los peces. KEYWORDS:Molluscicide, Codiaeumvariegatum. Crotóntiglium, Lymnaeaacuminata, Indoplanorbisexustus, Euphorbiaceae. PALABRAS CLAVE: Molusquicida, Codiaeum variegatum. Crotón tiglium, Lymnaeaacuminata, Indoplanorbis exustus, Euphorbiaceae. *DepartmentofZoology, D.D.U. GorakhpurUniversity, Gorakhpur-273009 U.P. INDIA 'Authortowhomcorrespondenceshouidbemade. 65 Iberus, 19 (1), 2001 INTRODUCTION Recent studies have indicated that versity, Gorakhpur and identified by there are a number of medicinal plants Prof. S.K. Singh (taxonomist), Botany which may be useful for control of snail Department, D.D.U. Gorakhpur Univer- population and henee control transmis- sity, Gorakhpur. sion of schistosomiasis and fascioliasis (Medina and Ritchi, 1980; Marston Preparation of aqueous extracts of AND Hostettman, 1987; Gopalsamy, StembarkandLátex GUEHO, JULIEN, OWADALLY AND HOS- Stem bark: The fresh stem bark TETTMAN, 1990; SlNGH, SlNGH AND (50mg/5ml) were minced with distilled SlNGH, 1996; SlNGH AND SlNGH, 1997; water homogenized for 5 min and cen- SuKUMARAN, Prashar AND Rao, 1994; trifuged at 1000 g for 10 minThe super- Marston, Dudan, Gupta, Salís, natant was used as a water extract for CorreaANDHostettman, 1996;Geerts, themolluscicidalactivity. Alard, Belot and Sidhom, 1992; Látex: The white látex from these Amusan, Msothi and Makhuba, 1997 plants was drained in glass tubes by and Laurens, Fournean, Hoaqnemi- cutting their stem ápices, this látex was ller,Care,BoriesandLoiseau, 1997). lyophilized at - 40 °C and lyophilized Molluscicides derived from plants powder was stored for further use. The that can be grown in endemic áreas of freeze-dried powder was mixed with fascioliasis transmission may provide a appropriate volume of distilled water to relatively low costmeans for controUing obtain the desired concentrations. The snail intermedíate hosts, since expenses wet weight of volume of 1 mi látex of of synthesis, marketing and transporta- Codiaeum variegatum and Crotón tiglium tion are reduced or eliminated. But, the was 810 mg and 800 mg respectively use of plant products as molluscicides and dry weight was 305 mg and 300 mg would be justified only, if it can be respectively. demonstrated that the effect of the dose Lymnaea acuminata (2.6±0.3 cm in needed as molluscicide is non-toxic to shell height), Indoplanorbis exustus otheraquaticanimáis, especiallyfish. (0.87±0.035 cm in shell height) and The present study reports the Channa punctatus (10.5±0.9 cm in total molluscicidal effect of the two euphor- length) were collected from Ramgarh biousplantsi.e. Codiaeumvariegatum and Lake of Gorakhpur district, and used as Crotón tiglium (whichisa commonly cul- test animáis. Toxicity experiments were tivated as an ornamental plant in performed using the method of Singh gardens, and is usually called a Crotón) and Agarwal (1988). Ten experimental against the harmful snails Lymnaea acu- animáis were kept in glass aquaria, con- minata and Indoplanorbis exustus. These taining3Lofdechlorinatedtapwaterfor snails are vectors of liver fluke, Fasciola both the snails. The experimental ani- hepática and Fasciola gigantica, which máiswereexposed continuously for96h causes endemic fascioliasis in Eastern to four different concentrations. Control Uttar Pradesh (SlNGH and Agarwal, animáis were kept under similar condi- 1981). Toxicity experiments have also tionswithoutanytreatment. carried out on freshwater fish Channa Toxic effect of aqueous extracts of punctatus (which shares the habitat with látex and stem bark of both the plants snails)forenvironmentaltoxicity,ifany. was also studied in mixed populations of fish and snails. In these experiments, a group of 10 snails Lymnaea acuminata MATERIALSAND METHODS and 10 fish Channa punctatus were put together in 6L dechlorinated tap water. Látex and stembarkofboththeeup- These mixed populations were exposed horbiales were collected from the Bota- to previously determined LC90 (24h) of nical garden ofD.D.U. Gorakhpur Uni- snailsfor24h. 66 Yadavand SinGH: Environmentallysafemolluscicides from two common euphorbiales Table I. Toxicity (LCIO, 50, 90) ofaqueous freeze-dried látex extracts of Crotón tiglium (Family Euphorbiaceae) against Lymnaea acuminataat different time intervals. Batches often snails were exposed to fourdifferentconcentrationsofaqueous extracts oflátexofCrotón tiglium. Concentra- tions (Dryweight oflátex) given are the final concentrationsW/V in aquarium water. Regression coefiPicient showed that there was significant (P<0.05) negative regression between exposure time anddifferentLCvalúes. LCL: lowerconfidencelimit. UCL: upperconfidencelimit.Therewas no mortalityincontrolgroups. TablaI. Toxicidaddeextractosacuososliofilizadosdelátex(LCIO, 50, 90)deCrotóntiglium (Familia Euphorbiaceae)frenteaLymnaeaacuminata endiferentesintervalosdetiempo. Gruposde 10caracoles fueronexpuestosa4diferentesconcentracionesdeextractosacuososdelátexdeCrotóntiglium. Lascon- centraciones indicadas (peso seco de látex) son concentracionesfinalesP/Ven elagua delacuario. Los coeficienesderegresión muestranquehayregresionesnegativassignificativas (P<0.05)entreeltiempode exposiciónydiferentes valoresdeLC. LCL: limite inferiorde confianza. UCL: limitesuperiorde con- fianza. Nohubomortalidadenlosgruposdecontrol Effecfive Limit Exposure dose(W/V) (mgDW/L) Slopevalué '\'ratio 'g'valué Heterogeneify periods (mgDW/L) LCL UCL 24h LCl0=0.015 0.011 0.017 LC50=0.06 0.03 0.07 3.98+0.78 5.05 0.15 0.22 LC90=0.19 0.14 0.42 48h LC10=0.0n 0.005 0.013 LC50=0.04 0.03 0.06 2.17±0.56 3.86 0.57 0.22 LC90=0.15 0.07 0.31 72h LCl0=0.007 0.004 0.01 LC50=0.02 0.017 0.025 2.69±0.50 5.36 0.13 0.77 LC90=0.0ól 0.043 0.13 96h LCl0=0.04 0.002 0.006 LC50=0.014 0.012 0.017 2.38±0.47 4.99 0.15 0.30 LC90=0.05 0.036 0.106 Mortality was recorded at24h inter- 30.5-31.5 °C and 27.0 -28.0 °C, respec- vals up to 96h. Lethal concentrations tively. pH of water was 7.3 - 7.5, while (LCIO, 50, 90)valúes, Upper and Lower dissolved oxygen, free carbón dioxide confidence limits (UCL, LCL) and slope and bicarbonate alkalinity were ranging valúes were calculatedby the Probit log from 6.8-7.6, 4.4-6.5 and 105.0- 109.0 method using POLO computer pro- mg/L, respectively for whole experi- gramme of Russell et al. (1977). The ments. regression coefficient was determined between exposure time and different (A) Effects on Behavioural changas valúesofLC50(SoKALandRohlf, 1973). andPoisoningSymptoms Exposure to the aqueous extracts of látex and stembark ofCodiaeum variega- RESULTS tum and Crotón tiglium caused signifi- cant behavioural changes in the fresh- Experimental conditions of water water snails Lymnaea acuminata and determined by the method of Indoplanorbis exustus. Behavioural APHA/WPCF (1980). Atmospheric and changes appear with 5 to 10 min of water temperature was ranging from exposure. The initial 30 - 45 min was a 67 . . Iberus, 19 (1), 2001 Table 11. Toxicity (LCIO, 50, 90) ofaqueous freeze-dried látex extracts of Crotón tiglium (Family Euphorbiaceae) against Indoplanorbis exustusat different time intervals. Other details are as given inTable 1 Tabla II. Toxicidadde extractos acuosos liofilizados de látex (ICIO, 50, 90) deCrotón tiglium (Familia Euphorbiaceae)frentea Indoplanorbis exustus en diferentes intervalos de tiempo. Resto de detallescomoenla TablaI Effective Limit Exposure dose(W/V) (mgDW/L) Slopevalué 'Mratio 'g'valué Heterogeneity periods (mgDW/L) LCL UCL 24h LCl0=0.009 0.006 0.018 LC50=0.034 0.026 0.063 2.36+0.53 4.50 0.18 0.28 LC90=0.117 0.063 0.549 48h LCl0=0.005 0.003 0.008 LC50=0.02 0.017 0.025 2.36±0.42 5.56 0.12 0.18 LC90=0.068 0.044 0.161 72h LCl0=0.004 0.002 0.006 LC50=0.015 0.012 0.017 2.42±0.40 6.04 0.10 0.26 LC90=0.050 0.035 0.095 96h LCl0=0.03 0.002 0.004 LC50=0.009 0.008 0.011 2.96±0.41 7.22 0.48 0.74 LC90=0.026 0.021 0.037 Table III. Toxicity (LClO, 50, 90) ofaqueous freeze-dried látex extracts ofCodiaeum variegatum (Family; Euphorbiaceae) against lymnaeaacuminataatdifferenttimeintervals. Otherdetailsareas giveninTable 1 TablaIII. Toxicidaddeextractosacuososliofilizadosdelátex(ICIO, 50, 90)deCodiaeumvariegatum (FamiliaEuphorbiaceae)frenteaLymnaeaacuminata endiferentesintervalosdetiempo. Restodedeta- llescomoenla TablaI. Effective Limit Exposure dose(W/V) (mgDW/L) Slopevalué 't'ratio 'g'valué Heterogeneity periods (mgDW/L) LCL UCL 24h LCl0=0.159 0.108 0.189 LC50=0.381 0.321 0.546 3.41±0.77 4.42 0.19 0.39 LC90=0.906 0.600 2.589 48h LC10=0.120 0.081 0.147 LC50=0.258 0.023 0.291 3.92±0.69 5.62 0.12 0.15 LC90=0.546 0.432 0.870 72h LCl0=0.099 0.066 0.120 LC50=0.195 0.171 0.213 4.37±0.69 6.26 0.98 0.20 LC90=0.381 0.330 0.501 96h LCl0=0.090 0.060 0.117 LC50=0.159 0.141 0.171 6.60±0.93 7.08 0.07 0.69 LC90=0.246 0.228 0.279 68 . Yadavand Singh: Environmentallysafe moUuscicides from two common euphorbiales Table IV. Toxicity (LCIO, 50, 90) ofaqueous freeze-dried látex extracts of Codiaeum variegatum (Family Euphorbiaceae) against Indoplanorbis exustusat different time intervals. Other details are asgiveninTable 1 TablaIV. Toxicidaddeextractosacuososliofilizadosdelátex (LClO, 50, 90)deCodiaeumvariegatum (Familia Euphorbiaceae)frenteaIndoplanorbis exustus en diferentes intervalos de tiempo. Resto de detallescomoenla TablaI. Effective Limit Exposure dose(W/V) (mgDW/L) Slopevalué 't'ratio 'g'vaiue Heterogeneity periods (mgDW/L) LCL UCL 24h LCl0=0.045 0.024 0.063 LC50=0.246 0.183 0.417 1.78±0.3 5.11 0.27 LC90=1.29 0.651 5.793 48h LC10=0.018 0.006 0.027 LC50=0.093 0.075 0.117 1.82±0.28 6.42 0.09 0.28 LC90=0.471 0.318 0.996 72h LCl0=0.009 0.003 0.018 LC50=0.048 0.036 0.060 1.98±0.28 6.42 0.09 0.92 LC90=0.222 0.165 0.248 96h LCl0=0.006 0.003 0.012 LC50=0.030 0.018 0.039 2.16±0.32 6.60 0.08 0.98 LC90=0.117 0.093 0.168 period of hyperactivity during which and Figure 1). Thusincreaseinexposure slugish snails moved rapidly in the time the LC50 of Crotón tiglium látex aquarium water. After some time they decreased from 0.06 mg DW/L (24h);> started crawling on each other. As the 0.04 mg DW/L (48h);> 0.02 mg DW/L poison enters in the snail'sbody, a mus- (72h);> to 0.014 mg DW/L (96h) and cular twitching and the snails become 0.034 mg DW/L (24h);> 0.02 mg DW/L spirally twisted, which resulted ataxia, (48h); 0.015 mg DW/L (72h);> to 0.009 convulsión, paralysis and finally death mg DW/L (96h) in case of Lymnaea acu- of snails. Prior to death, there was com- minata and Indoplanorbis exustus, respec- plete withdrawal of the body inside the tively (Tables I, II). Same trend of toxi- shellthatindicatesnervepoisoning. city was observed in case of stem bark extracts of Crotón tiglium and Codiaeum (B) Dose-mortalityresponse variegatum against both the snails at all LC valúes (LCIO, 50, 90) of aqueous theexposureperiods(Fig. 1). extracts oflátex and stembark ofCrotón Laboratory experiments also indica- tiglium and Codiaeum variegatum for tes that the látex and stem bark extracts period ranging from 24h to 96h for the of both the plants were more toxic snails, Lymnaea acuminata and Indopla- against Indoplanorbis exustus than norbis exustushavebeengivenin (Tables Lymnaea acuminata at all the exposure I-IV and Figure 1). In case of both the periods. snails toxicity was time as well as dose At higher dose, active moiety of dependent. There was a significant plants, which were effective against the negative correlation between LC50 snails, would also cause death amongst valúes and exposure time (Tables I-IV the fish. Consequently, a mixed popula- 69 Iberus, 19 (1), 2001 Table V. Per cent mortality (mean ±SE) ofLymnaea acuminataand Channapunctatuscaused by aqueous extracts oflátex and stem bark (i.e. 24h LC90 ofsnail) of Codiaeum variegatum and Crotón tiglium after 24h exposure period. Each aquarium contained ten fish {Channapunctatus) and ten snails {Lymnaeaacuminata) in 6Ldechlorinated tapwater.Therewas no mortalityin case ofcontrolgroup. Table V.Porcentajede mortalidad(media ±SE) deLymnaea acuminatayChanna punctatusprodu- cidaporextractosacuososdelátexycortezadetallos(i.e. 24hLC90decaracoles)deCodiaeumvariega- tumyCrotón tiglium después de24horas de exposición. Cada acuario contenia 10peces (Channa punctatus^j 10caracoles (Lymnaea acuminata^ en 61deaguadegrifodesclorada. No hubo mortali- dadenelgrupodecontrol Experimental Concentration % Plants PlantParts Mortality animáis (mgDW/L)(w/v) Codiaeum variegatum Látex L. acuminata 0.906 (LC90) 91.6±2.31 C. punctatus Zero Stem bark L. acuminata 50.14 (LC90) 93.3±1.15 C. punctatus Zero Crotón tiglium Látex L. acuminata 0.19 (LC90) 100 C. punctatus Zero Stem bark L. acuminata 35.52 (LC90) 95.0±2.45 C. punctatus - Zero tions of 10 snails {Lymnaea acuminata) of thesebehavioural responses indicates and 10 fish {Channa punctatus) were that, the látex perhaps contains some treated with the 24h, LC90 of látex and neurotoxins, which amongst other stem bark of Crotón tiglium and Codia- think, might be active at the neuromus- eum variegatum, upto theLC90 doses for cular system of the exposed animáis. snail Lymnaea acuminata there was no Similar behavioural responses were also mortalityamongstfish(TableV). observed Singh and Agarwal (1990), The slope valúes given in toxicity in their study on acute toxicity oflatices tables (I - IV) were steep and heteroge- ofEuphorbia royleana, Euphorbia antisyph- neity factor was less than 1.0 indicates liatica and ]atropha gossypifolia on snail the result found to be within the 95% Lymnaea acuminata. The behavioural confidence limits of LC valúes. The changes are indeed reminiscent to the regression test ('t' ratio) was greater response of snails to organophosphorus than 1.96 and the potency estimation and carbamate pesticides (Singh and test Cg' valué) was less than 0.5 at all Agarwal, 1981). probabilitylevéis. No such behavioural symptoms and death occurred in control groups indica- ting that no factor other than plant DISCUSSION moieties was responsible for altered behaviourandmortality. Data ofpresentstudy shows thatthe Mortality caused by the plant parts extracts ofboth the plants caused signi- preparation showed a clear significant ficant behavioural changes in both the positive correlation between dose and freshwater snails. The most obvious mortality. For example, for látex of signofdistressinthetreated snailswere Crotón tiglium present mortality of snail muscular twitching and spiral twisting Lymnaea acuminata after 24h was 10% at of the body, followed by crawling on 0.015 mg DW/L which increased up to each other. The nature and rapid onset 90% at 0.004 mg DW/L (Table I) which 70 Yadavand SinGH: Environmentallysafe molluscicides from two common euphorbiales 3,5-, " Crotóntiglium 3- 1 [ Codiaeumvariegatum 2,5 0,8 2 0,6- 1,5H 0,4- 1 0,5- 0,2- n 48h 96h Figure 1. Bar diagram showing the toxicity (LC50; ml/1) ofaqueous stem bark extraer of Crotón tigliumand Codiaeum variegatumagainst Lymnaeaacuminata (A) and Indoplanorbis exustus(B) at difFerent time intervals. Batches of 10 snails were exposed to four different dilutions ofaqueous extractofbarkofC tigliumand C. variegatum. Dosesareexpressedasfinalconcentration (V/V) of stembarkinaquarium.Therewasnomortalityincontrolgroup. Figura 1. Diagramadebarrasquemuestralatoxicidad(LC50)deextractosacuososdecortezadetallos de Crotón tigliumy Codiaeum variegatumfrente a Lymnaea acuminata (A)y Indoplanorbis exustus (B)a diferentes intervalosde tiempo. Seexpusierongruposde 10caracolesa 4concentraciones distintasdeextractosdecortezadeC. tigliumyC.variegatum. Lasdosisseexpresancomoconcentracio- nesfinales(V/V)decortezaenelacuarion. Nohubomortalidadenelgrupodecontrol in case of Codiaeum variegatum mortality (96h) in the case of Lymnaea acuminata it increased from 10% to 90%, when and Indoplanorbis exustus respectively dosesincreased from0.159mgDW/Lto (TablesI, II). 0.090 mg DW/L (Table III). Same trend Increased in mortality with increa- was also observed in case of stem bark sed in exposure periods could be affec- of both the plants at all the exposure ted by several factors, which may be periods. acting separately or conjointly. For The positive correlation between example, uptake ofactivemoietyis time dose and mortality in all cases was dependent, which leads progressive noted because increase concentration of increase the entrance ofthe drug and its pesticides inaquariumwaterresulted in effects in the snail body (SiNGH and more intake or entry ofpesticides in the Agarwal, 1988; 1993a; 1993b). Stability body ofanimáis. This trend is also inde- (life span) of active moiety of pesticides pendent upon several factors such as, in environment and the rate of their rate of penetration, nature of slope, detoxification in animal body also alter variability and maximal effects of active the mortality and exposure periods, moieties. relationships (Mitra, Sud and Mitra, Aqueous preparation of all the plant 1978; Koundinyaand Ramammurthy parts showed a significant negative 1979; Matsumura, 1985). This possibi- correlationbetween LC valué and expo- lity cannotbe ruled out in case of plant sure periods e. g LC50 of látex extracts originpesticidesalso. of Crotón tiglium were decreased from More important is the fact that the 0.06 mg DW/L (24h); > 0.04 mg DW/L látex of these plants is much more toxic (48h); > 0.02 mg DW/L (72h); > 0.014 than synthetic pesticides. The present mg DW/L (96h) and 0.034 mg DW/L study demonstrates that the látex of (24h); > 0.02 mg DW/L (48h); > 0.015 Crotón tiglium and Codiaeum variegatum mg DW/L (72h); > to 0.009 mg DW/L have higher molluscicidal activity than 71 Iberus, 19 (1), 2001 any of the prevalent synthetic pyreth- rapid absorption and onset of effects. roids. Thus, the24hLC50 ofmexacarba- Even though the slope alone is not a mate (3.5 ppm), aldicarb (30.00 ppm), very reliable indicator of toxicological farmothion (27.00 ppm), Cypermethrin mechanism, yet it is a useful parameter (2.5 ppm), permethrin (0.82 ppm) and (Randand Petrocelli, 1988) for such a fenavalerate (2.5 ppm) against the study. Since the LC50 of the latices of Lymnaea acuminata (Singh and different euphorbiales lay within the Agarwal 1981; Singh and Agarwal 95% confidence limits, it is obvious that 1986; 1987; 1988 and 1991; Sahay, Singh in replícate test of random samples, the ANDAgarwal, 1991) is higher than that concentration response Unes would fall ofthe Crotón tiglium (0.06ppm)whichis in the same range (Randand Petroce- about 196 times stronger the standard lli, 1988). molluscicides niclosamide (LC50 11.8 The doses, that can be, used for ppm) (SinghandAgarwal, 1984). killing the snails are safe for fish. This is Statistical analysis of the data on supported by our observations on a toxicity brings out several important mixedpopulationofsnailsandfish. points. The x^ test for goodness of fit In conclusión, it is believed that the (Heterogeneity) demonstrated that the extracts of above plants may be used as mortality counts were not found to be potent source of molluscicides, because significantly heterogeneous and other plant products are less expensive, easily variables, e.g. resistance etc. do not sig- available, easily soluble in water and nificantly affect the LC50 valúes, as lesshazardoustothenon-targetanimáis these were found to lie within the 95% thanthesyntheticmolluscicides. confidence limits. The dose mortality graphs exhibit steep slope valúes. The ACKNOWLEDGEMENTS steepness ofthe slope line indicates that there is a large increase in the mortality ofsnailswithrelativelysmallincreasein One ofthe authors (Ram R Yadav) is the concentration of the toxicant. The thankful to Department ofEnvironment slope is, thus an index ofthe susceptibi- andForestGovt.ofIndia(SanctionNo.F- lity ofthe target animal to the pesticides 14/35/96/MAB-RE dated 9.11.1999) for A used. steep slope is also indicative of financialassistance. BIBLIOGRAPHY Amusan, o. o. G., Msothi, J. D. and Mak- Koundinya, R. P. and Ramammurthy, R., HUBA,L.P.,1997.MoUuscicidalactlvityofUr- 1979. Effect of sumithion (Fentothion) on giniaepigea.Fitoterapia,68: 185-186. someselectedenzymessysteminthefish,Ti- APHA/AWWA/WPCF, 1985. Standard met- lapiamossambica(Reters).IndianJournalofEx- hodsfortheexaminationofwaterandzvasteswa- perimentalBiology, 16:808-811. ter.16*edition,AmericanPublicHealthAs- Laurens,a.,Fournean,C,Hoaqnemiller,R., sociation,NewYork,U.S.A. 1080pp. Care,a.,Bories,C.andLoiseau,P.M.,1997. Geerts,S.,Alard,F.,Belot,J.andSidhom,M., Antivectorialacfivitiesofcasheunutshellex- 1992. The toxicity ofAmbrosia marítima to tracts from Anacardium occidentale. L. Phy- snailsandnon-targetorganisms. In Symo- totherapyResearch, 11:145-146. ens,J.]., Geerts,S.andTerriest,L.(Eds.):Vec- Marston,a.andHostettman,K.,1987.An- torscontrolofschistosomiasisusingNative tifungal molluscicidal and cytotoxic com- Airicanplants.SeminarBrnsselsRoyalAcademy poundsfromplantsusedintraditionalme- ofOverseasSciences(Brussels):89-100. dicine.InHostettman,K.andLea,P.J. (Eds.): Gopalsamy,N.,Gueho,J.,Julien,H.R.,Owa- Biologically Active Natural Products. Oxford dally, a. W. and Hostettman, K., 1990. Science Publications, Clarendon Press Ox- MoUuscicidalsaponinsofPolysciasdichroos- fordpp.65-85. tachya.Phytochemistry,29:793-795. 72 Yadavand SingH: Environmentallysafemolluscicides from two common euphorbiales Marston,a..Dudan,G.,Gupta,M.F.,Salís, Singh, A. andAgarwal, R. A., 1993b. Effect P.N.,Correa,M.D.andHostettman,K., of Cypermethrin on lactate Succinic dehy- 1996. Screening of Panamanian plants for drogenaseandCytochromeoxidasesofsnail moUuscicidalactivity.InternationalJournalof and fish. Bulletin ofEnvironmental contami- Pharmacognosy,34: 15-18. nationandToxicology,51:445-452. Matsumura, F., 1985. Toxicity ofInsecticides. Singh,K.,Singh,A.andSinghD.K.,1996.Mo- 2ndg¿^pienumPress,NewYork.pp.47,74, Uuscicidalactivityofneem{Azadirachtaindica 78-80,163-165,446. A.Jus).JournalofEthnopharmacology,52:35- Medina,F.R.andRitchi,L.S.,1980.MoUus- 40. cicidalactivityofthePuretoRicanweedSo- Singh,D. K. andAgarwal, R. A., 1984. Co- lanum nodiflorum against snail host of Fas- rrelation ofthe anticholinesterase and mo- ciolahepática. EconomicBotany,34:368-375. UuscicidalactivityofthelátexofEuphorbiaroy- Mitra,P.K.,SudS.C.andMitra,H.C,1978. leanaBloss.onLymnaeaacuminata.Journalof Acuteoraltoxicityofmetasystoxininbuffalo NaturalProducts,47:702-705. calves.IndianJournalofExperimentalBiology, Singh,D.K.andAgarwal,R.A.,1986.Toxi- 16:813-815. city ofpesticides to fecundity, hatchability Rand,G.M.andPetrocelli,S.R.,1988.Fun- andsurvivalofyoungsnailLymnaeaacumi- damentáisofaquatictoxicology.Rand,G.M.and nata.ActaHydrochimicaetHydrobiologica,14: Petrocelli, S. R. (Eds.) Hemisphere Publis- 191-194. hingCorporation,NewYork.415pp. Singh,D.K.andAgarwal,R.A.,1987.Effect RUSE-S,E1L9L7,7.R.PMO.L,OR:OABEnReTSwOcNo,mJp.uLt.eArNpDroSegVrIaNi,nNm.e tofhethsenasiylntLhyemtniacepayraectuhmrionaitdas.pTehremeStchireincneoonf forprobitanalysis.BulletinoftheEntomolol- thetotalEnvironment,67:263-267. gicalSocietyofAm.erica, 23:209-213. Singh,D.K.andAgarwal,R.A.,1991.Action Sahay,N.,Singh,D.K.ANDAgarwal,R.a., sites of Cypermethrin a synthetic pyreth- 1991. Synergistic effect of piperonyl buto- roids in the snail Lymnaea acuminata. Acta xidethetoxicityofsyntheticpyrethroidsin HydrochimicaetHydrobiologica, 19:425-430. thesnailLymnaeaacuminata.JournalofMedi- Singh,O.andAgarwal,R.A.,1981.Toxicity calandAppliedMalacology,3: 107-111. ofcertainpesticidestotwoeconomicspecies SiNGH,A.ANDAgarwal,R.A.,1988.Possibi- ofsnailsinnorthemIndia.JournalofEcono- lity ofusinglátexofeuphorbiales forsnail micEntomology,74:568-571. control. TheScienceofthe total Environment, Singh,S.,Singh,V.K.andSinghD.K.,1997. 77:231-267. MoUuscicidalactivityofsomecommonspi- SiNGH,A.ANDAgarwal,R.A.,1990.MoUus- ces plants. Biological Agriculture and Horti- dcidalpropertiesofsyntheticpyrethroids.Jo- culture, 14:237-249. runal ofMedical and Applied Malacology, 2: SOKAL,R.R.andRohlfF.J.,1973.Introduction 141-144. toBiostatics.Fremon,W.H.SanFrancisco.365 Singh,A.andAgarwal,R.A.,1993a.Toxicity pp. ofthe synthetic pyrethroid fenvalerate, on Sukumaran,D.,Prashar,B.D.andRao,K. enzymesofthetargetsnailLymnaeaacumi- M., 1994. MoUuscicidalpropertiesofAgave nataandthenon-targetfishChannastriatus. americana and Balaenities aegyptica. Interna- JournalofMedicalandAppliedMalacology, 5: tionalJournalofPharmacognosy,31:232-238. 87-91. 73

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.