ebook img

Environmental Modelling and Prediction PDF

486 Pages·2002·13.77 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Environmental Modelling and Prediction

Gcj . 0... P=<l) engOJ) ~ L.~ M. .....:l L-e<l) r/J sl.~ ie ~ Y. C/1 S...c h~ a0 o == ~ ~ Eann"0 d.> v 0... iP= ;... r0 o;... r<l) en.-"0 a dmi= u ce<l) ...... t.~ =ni-o...... t~ anl ~ M0 o"0 d-e1} ll.S ingOJ) Springer-Verlag Berlin Heidelberg GmbH Gongbing Peng Lance M. Leslie Yaping Shao (Eds.) Environmental Modelling and Prediction With 168 Figures Springer PPRROOFFEESSSSOORR GGOONNGGBBIINNGG PPEENNGG PPRROOFFEESSSSOORR LLAANNCCEE MM.. LLEESSLLIIEE UUnniivveerrssiittyy ooff NNeeww SSoouutthh WWaalleess SSyyddnneeyy 22005522 AAuussttrraalliiaa DDRR.. YY AAPPIINNGG SSHHAAOO DDeeppaarrttmmeenntt ooff PPhhyyssiiccss aanndd MMaatteerriiaall SScciieennccee CCiittyy UUnniivveerrssiittyy ooff HHoonngg KKoonngg KKoowwlloooonn HHoonngg KKoonngg ISBN 978-3-642-08685-4 ISBN 978-3-662-04868-9 (eBook) DOI 10.1007/978-3-662-04868-9 LLiibbrraarryy ooff CCoonnggrreessss CCaattaallooggiinngg--iinn--PPuubblliiccaattiioonn DDaattaa EEnnvviirroonnmmeennttaall mmooddeelllliinngg aanndd pprreeddiiccttiioonn II GGoonnggbbiinngg PPeenngg,, LLaannccee LLeesslliiee,, YYaappiinngg SShhaaoo ((eeddss..)).. pp.. ccmm.. IInncclluuddeess bbiibblliiooggrraapphhiiccaall rreeffeerreenncceess aanndd iinnddeexx.. 11.. EEnnvviirroonnmmeennttaall sscciieenncceess----MMaatthheemmaattiiccaall mmooddeellss.. II.. PPeenngg,, GGoonnggbbiinngg.. IIII.. LLeesslliiee,, LLaannccee,, 11994455--1I1I1I.. SShhaaoo,, YYaappiinngg.. TThhiiss wwoorrkk iiss ssuubbjjeecctt ttoo ccooppyyrriigghhtt.. AAllll rriigghhttss aarree rreesseerrvveedd,, wwhheetthheerr tthhee wwhhoollee oorr ppaarrtt ooff tthhee mmaatteerriiaall iiss ccoonncceerrnneedd,, ssppeecciiffiiccaallllyy tthhee rriigghhttss ooff ttrraannssllaattiioonn,, rreepprriinnttiinngg,, rreeuussee ooff iilllluussttrraattiioonnss,, rreecciittaattiioonn,, bbrrooaaddccaassttiinngg,, rreepprroodduuccttiioonn oonn mmiiccrrooffiillmm oorr iinn aannyy ootthheerr wwaayy,, aanndd ssttoorraaggee iinn ddaattaa bbaannkkss.. DDuupplliiccaattiioonn ooff tthhiiss ppuubblliiccaattiioonn oorr ppaarrttss tthheerreeooff iiss ppeerrmmiitttteedd oonnllyy uunnddeerr tthhee pprroovviissiioonnss ooff tthhee GGeerrmmaann CCooppyyrriigghhtt LLaaww ooff SSeepptteemmbbeerr 99,, 11996655,, iinn iittss ccuurrrreenntt vveerrssiioonn,, aanndd ppeerrmmiissssiioonn ffoorr uussee mmuusstt aallwwaayyss bbee oobbttaaiinneedd ffrroomm SSpprriinnggeerr--VVeerrllaagg.. VViioollaattiioonnss aarree lliiaabbllee ffoorr pprroosseeccuuttiioonn uunnddeerr tthhee GGeerrmmaann CCooppyyrriigghhtt LLaaww.. hhttttppllll::wwwwww..sspprriinnggeerr..ddee ©© SSpprriinnggeerr--VVeerrllaagg BBeerrlliinn HHeeiiddeellbbeerrgg 22000022 OOrriiggiinnaallllyy ppuubblliisshheedd bbyy SSpprriinnggeerr--VVeerrllaagg BBeerrlliinn HHeeiiddeellbbeerrgg iinn 22000022.. SSooffttccoovveerr rreepprriinntt ooff tthhee hhaarrddccoovveerr I1 ss tt eeddiittiioonn 22000022 TThhee uussee ooff ggeenneerraall ddeessccrriippttiivvee nnaammeess,, rreeggiisstteerreedd nnaammeess,, ttrraaddeemmaarrkkss,, eettcc.. iinn tthhiiss ppuubblliiccaattiioonn ddooeess nnoott iimmppllyy,, eevveenn iinn tthhee aabbsseennccee ooff aa ssppeecciiffiicc ssttaatteemmeenntt,, tthhaatt ssuucchh nnaammeess aarree eexxeemmpptt ffrroomm tthhee rreelleevvaanntt pprrootteeccttiivvee llaawwss aanndd rreegguullaattiioonnss aanndd tthheerreeffoorree ffrreeee ffoorr ggeenneerraall uussee.. PPrroodduucctt lliiaabbiilliittyy:: TThhee ppuubblliisshheerrss ccaannnnoott gguuaarraanntteeee tthhee aaccccuurraaccyy ooff aannyy iinnffoorrmmaattiioonn aabboouutt tthhee aapppplliiccaattiioonn ooff ooppeerraattiivvee tteecchhnniiqquueess aanndd mmeeddiiccaattiioonnss ccoonnttaaiinneedd iinn tthhiiss bbooookk.. IInn eevveerryy iinnddiivviidduuaall ccaassee tthhee uusseerr mmuusstt cchheecckk ssuucchh iinnffoorrmmaattiioonn bbyy ccoonnssuullttiinngg tthhee rreelleevvaanntt lliitteerraattuurree.. PPrroodduuccttiioonn:: ccaammeerraa--rreeaaddyy bbyy aauutthhoorrss CCoovveerr ddeessiiggnn:: EE.. KKiirrcchhnneerr,, HHeeiiddeellbbeerrgg PPrriinntteedd oonn aacciidd--ffrreeee ppaappeerr SSPPIINN 1100668855994411 3322//33113300//aass 55 44 33 22 1I 00 Preface The environment is the aggregate of the physical, geographical and biochem ical conditions under which we live. It significantly influences all aspects of human society, including agriculture, industry, human health, resources, etc. In recent history, we have been challenged not only by the impact of natural environmental variability, but also by human induced environmental changes, such as deforestation. destruction of the ozone layer, increased emission of greenhouse gases and pollution of air, water and soil. It is now increasingly understood that to better protect the environment is an essential task of hu man society. Environmental modelling and prediction, i.e., the modelling of environmental processes and the prediction of environmental changes, form a critical component of this task. The environment is a complex interactive system comprising five major components and numerous sub-components. The major components are the atmosphere, the hydrosphere, the cryosphere, the lithosphere and the bio sphere. Environmental modelling and prediction is concerned with both the behaviour of the individual components and their interactions, through the mathematical and numerical representation of the the physical, chemical and biological processes taking place within the environmental system. It is also concerned with the variability, stability and predictability of the environment as a dynamic system on a wide range of temporal and spatial scales. There is an increasing requirement throughout the world for a better understanding of environmental processes and an enhanced capability for predicting environmental changes resulting from natural variations or human interferences. Numerous studies dealing with the modelling and prediction of individual components have been carried out in the past with considerable success. In recent years. environmental research is more focused on integrated approaches in which the environment is treated as a cohesive dynamic system. However, so far there have been very few books dealing exclusively with the lat.ter subject. Our aim in this book is to bring together the collective efforts of scientists from several disciplines, to summarize recent developments in theories, methodologies and applications of integrated environmental mod elling and prediction. Our effort in achieving this aim is reflected in Chaps. 1, 2 and 11. In Chap. 1, the subject area is explored and the scope of the book is defined. In Chap. 2, we have attempted to establish a theoretical framework VI Preface for modelling and predicting the environment as a dynamic system, while in Chap. 11, examples of integrated environmental modelling and prediction are presented. For environmental modelling and prediction, the modelling and prediction of the weather and climate components are of great importance for two main reasons. First, the atmosphere is the most active part of the environmental system on short time scales (up to a year). Second, the methods used in atmospheric modelling and prediction are arguably the most highly developed and also have the most complete data sets for verification. Chap. 3 of this book is devoted to the modelling and prediction of the atmosphere on a wide range of time and space scales. The next most important component of the environment is the ocean which dominates the behaviour of the environment on time scales from annual to decadal and beyond. Recent developments in ocean modelling and prediction are presented in Chap. 4. A detailed treatment of the other environmental components is also pre sented because, although they interact with the atmosphere and the ocean, they have their own distinct dynamic features. It is important for success in environmental modelling and prediction that these individual components and their interactions are also well understood. We summarize the theo ries, methodologies and achievements in the modelling and prediction of the land-surface, the continental hydrosphere, the cryosphere and the continen tal biosphere (Chaps. 5, 6, 7 and 8, respectively). The interactions between the atmosphere, the ocean and these environmental components are also dis cussed. Some aspects of biological modelling and air quality modelling are discussed in Chaps. 9 and 10. The book also explores recent developments in the theory and applications of environmental prediction, including systems analysis, information theory and natural cybernetics. The further development and application of these theories are very important for environmental modelling and prediction. This book is a collective effort of many people. In particular, we wish to thank Drs. R. Morison, M. England, P. Oke, P. Irannejad, S. Liu, C. Ciret, Y. Tan, H. Duc, S. Zhao, M. Speer and L. Qi for their contributions to the various chapters. The assistance of Dr. S. Xia in the preparation of the manuscript and graphs is gratefully acknowledged. Sydney, May 2001 Gongbing Peng Lance M. Leslie Yaping Shao Contents 1. Environmental Science. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Gongbing Peng, Yaping Shao and Lance M. Leslie 1.1 The Environment and Environmental Challenges . . . . . . . . . . . 1 1.2 Environmental Modelling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Environmental Prediction ............................... 10 1.4 Recent Developments in Environmental Sciences. . . . . . . . . . .. 12 1.4.1 Earth Systematics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12 1.4.2 Natural Cybernetics. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 14 1.4.3 Geographic Information System. . . . . . . . . . . . . . . . . . .. 16 1.4.4 Non-Linear Dynamical System Analysis and Predictabil- ity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 17 1.4.5 Links of Environmental Science to Related Subjects .. 19 2. The Environmental Dynamic System .. . . . . . . . . . . . . . . . . . .. 21 Yaping Shao, Gongbing Peng and Lance M. Leslie 2.1 The Environment as a Dynamic System. . . . . . . . . . . . . . . . . .. 21 2.2 Mathematical Representations and Simplifications. . . . . . . . .. 30 2.2.1 Governing Equations for Atmosphere. . . . . . . . . . . . . .. 31 2.2.2 Governing Equations for the Oceans. . . . . . . . . . . . . . .. 33 2.2.3 Basic Equations for Land Surface. . . . . . . . . . . . . . . . . .. 34 2.2.4 Basic Equations for Ground Water ................. 35 2.2.5 Basic Equations for Ice. . . . . . . . . . . . . . . . . . . . . . . . . . .. 36 2.3 Predictability of the Environmental System. . . . . . . . . . . . . . .. 37 2.4 Methods for Environmental Prediction . . . . . . . . . . . . . . . . . . .. 45 2.5 Integrated Environmental Modelling Systems .............. 46 2.5.1 Atmosphere-Land Surface Interaction Scheme ........ 48 2.5.2 Atmosphere-Ocean Interaction Scheme. . . . . . . . . . . . .. 50 2.6 Ensemble Predictions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 52 2.6.1 Choosing the Initial Perturbations. . . . . . . . . . . . . . . . .. 53 2.6.2 Cell Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 54 2.7 Dynamic-Stochastic Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 56 2.7.1 Dissipative Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 56 2.7.2 Synergetics...................................... 58 2.7.3 Deterministic Chaos Theory. . . . . . . . . . . . . . . . . . . . . .. 59 VIn Contents 2.7.4 Interactive Chaos ................................. 62 2.8 Natural Cybernetics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 66 3. Atmospheric Modelling and Prediction ...... . . . . . . . . . . . .. 75 Lance M. Leslie, Russel P. Morison, Milton S. Speer and Lixin Qi 3.1 Introduction........................................... 75 3.1.1 Impact on Society of Severe Weather and Climate Events 76 3.1.2 Historical Background. . . . . . . . . . . . . . . . . . . . . . . . . . .. 78 3.1.3 The Role of the Atmosphere in the Environmental Sys- tern ............................................. 79 3.1.4 Numerical Weather Prediction and Modelling. . . . . . .. 80 3.2 Equations Governing Atmospheric Motion . . . . . . . . . . . . . . . .. 82 3.2.1 Some Commonly Used NWP Models. . . . . . . . . . . . . . .. 83 3.2.2 The UNSW HIRES Model. . . . . . . . . . . . . . . . . . . . . . . .. 84 3.3 Solving the Governing Equations. . . . . . . . . . . . . . . . . . . . . . . .. 85 3.3.1 The Shallow Water Equations. . . . . . . . . . . . . . . . . . . . .. 86 3.3.2 The Finite-difference Techniques ................... 87 3.3.3 Stability Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 88 3.3.4 Defining the Initial State for the Model Integration. .. 91 3.4 Applications........................................... 93 3.4.1 Very Short Range Forecasting (VSRF) . . . . . . . . . . . . .. 93 3.4.2 Short Range Forecasting (SRF) .................... 96 3.4.3 Medium Range Forecasting (MRF) ................. 99 3.4.4 Modelling the General Circulation of the Atmosphere. 101 3.5 Climate Modelling ...................................... 104 3.5.1 The GCM Model Numerics ........................ 105 3.5.2 The Model Physics ............................... 106 3.5.3 Ocean Model Coupling ............................ 107 3.6 Applications and Results ................................ 107 3.6.1 Medium range forecasting experiments .............. 107 3.6.2 Brief climatology of the model ..................... 108 3.6.3 Regional simulations .............................. 109 3.7 Statistical Models ...................................... 112 3.7.1 Deterministic and Statistical Models ................ 113 3.7.2 Analogue Retrieval Techniques ..................... 113 3.7.3 Combining Deterministic and Statistical Models ...... 114 3.7.4 Multiple Regression Markov Model ................. 115 3.8 Future Directions ....................................... 116 3.8.1 Impact of Cloud Microphysics ...................... 117 3.8.2 Ensemble Forecasting ............................. 117 3.8.3 Variational Data Assimilation ...................... 121 Contents IX 4. Ocean Modelling and Prediction .......................... 125 Matthew H. England and Peter R. Oke 4.1 Introduction ........................................... 125 4.1.1 What Is an Ocean Model? ......................... 125 4.1.2 Mean Large-scale Ocean Circulation ................ 126 4.1.3 Oceanic Variability ............................... 126 4.1.4 The Oceans, Climate, and Forcing .................. 129 4.2 A Brief History of Ocean Modelling ....................... 131 4.3 Anatomy of Ocean Models ............................... 132 4.3.1 Governing Physics and Equations .................. 132 4.3.2 Model Choice of Vertical Coordinate ................ 135 4.3.3 Subgrid-scale Processes and Dissipation ............. 136 4.3.4 Boundary Conditions and Surface Forcing ........... 141 4.4 Some Commonly Used Ocean Models ..................... 145 4.4.1 The GFDL Modular Ocean Model .................. 145 4.4.2 The Princeton Ocean Model ....................... 147 4.4.3 The Miami Isopycnic Coordinate Model (MICOM) ... 149 4.4.4 The DieCast Model ............................... 149 4.5 Ocean Model Applications ............................... 150 4.5.1 A Global Coarse Resolution Model ................. 150 4.5.2 Global Eddy-permitting Simulations ................ 153 4.5.3 Regional Simulations in the North Atlantic Ocean .... 154 4.5.4 ENSO Modelling ................................. 156 4.5.5 A Regional Model of the Southern Ocean ............ 157 4.5.6 A Coastal Ocean Model off Eastern Australia ........ 158 4.5.7 A Coastal Model of a River Plume ................. 159 4.6 Exploiting Ocean Observations ........................... 160 4.6.1 Model Assessment ................................ 160 4.6.2 Inverse Methods and Data Assimilation ............. 165 4.6.3 Applications of Data Assimilation to Coastal Ocean Models .......................................... 168 4.6.4 Application of Data Assimilation to Large-scale Models 169 4.6.5 Variational Data Assimilation, Example ............. 169 4.7 Concluding Remarks .................................... 171 5. Land Surface Processes ................................... 173 Parviz lrannejad and Yaping Shao 5.1 The Importance of Land-surface Processes ................. 173 5.2 Land-surface Parameterization Schemes ................... 176 5.3 Modelling Soil Hydrology in Land-surface Schemes .......... 179 5.3.1 Bucket Model .................................... 179 5.3.2 Force-restore Model ............................... 180 5.3.3 Multi-layer Soil Model ............................ 181 5.4 Soil Temperature ....................................... 185 5.5 Surface Energy Balance ................................. 187 X Contents 5.5.1 Surface Fluxes ................................... 188 5.5.2 Evaporation from Unsaturated Soil ................. 190 5.5.3 Transpiration .................................... 191 5.5.4 Bulk Transfer Coefficients ......................... 192 5.5.5 Canopy (Vegetation) Resistance .................... 194 5.5.6 Canopy Water Storage ............................ 195 5.5.7 Surface Albedo ................................... 196 5.6 Carbon-dioxide Budget .................................. 198 5.7 Verification of Land-surface Schemes ...................... 198 5.8 Land Surface Modelling over Heterogeneous Surfaces ........ 202 5.8.1 Models of Dynamic Effects ........................ 204 5.8.2 Models of Aggregation Effects ...................... 206 5.9 Land-surface Parameters ................................ 209 5.10 The Impact of Land Surface on Climate and Weather: Some Case Studies ........................................... 210 6. Hydrological Modelling and Forecasting .................. 215 Suxia Liu 6.1 The Hydrosphere ....................................... 215 6.2 Mathematical Representation and Simplification ............ 219 6.2.1 Water Vapour ................................... 219 6.2.2 Precipitation ..................................... 222 6.2.3 Soil Water ....................................... 224 6.2.4 Infiltration ...................................... 226 6.2.5 Depression Storage ............................... 229 6.2.6 Vegetation Water ................................. 230 6.2.7 Interception ..................................... 232 6.2.8 Evapotranspiration ............................... 233 6.2.9 Channel Flow .................................... 235 6.2.10 Overland Flow ................................... 236 6.2.11 Groundwater .................................... 237 6.2.12 Water Quality ................................... 239 6.3 Hydrological Modelling .................................. 244 6.3.1 Xinanjiang Model ................................ 245 6.3.2 TOPOMODEL .................................. 248 6.3.3 Integrated Hydrological Modelling System ........... 250 6.4 Hydrological Forecasting ................................ 254 6.4.1 Short-term Hydrological Forecasting ................ 255 6.4.2 Mid- and Long-term Hydrological Forecasting ........ 262 6.4.3 Water Quality Forecasting ......................... 264 6.4.4 Water Supply and Water Demand Forecasting ....... 267

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.