ebook img

Environmental Impacts of Arctic Oil Spills and Arctic Spill Response Technologies Arctic Oil Spill PDF

205 Pages·2015·53.92 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Environmental Impacts of Arctic Oil Spills and Arctic Spill Response Technologies Arctic Oil Spill

Arctic Oil Spill Response =Environmental Impacts of Arctic Oil Technology Spills and Arctic Spill Response Joint Industry Programme Technologies Literature Review and Recommendations December 2014 Principal Investigator: Jack Q Word   Contributing Authors   North America:  Dr.  Don  Stoekel,  Battelle  Memorial   Institute;   Dr.   Charles   Greer,   Biotechnology   Research   Institute  (BRI)/National  Research  Council  of  Canada;  Drs.   Gina  Coelho  and  James  Clark,  Mr.  James  Staves,  Ms.  Laura   Essex,  Ecosystem  Management  &  Associates  (HDR/EM&A);   Dr.  Benny  Gallaway,  (LGL  Ltd);  Mr.  William  Gardiner,  Ms.   Lucinda  Word,  ENVIRON;  Dr.  Will  Hafner  (NewFields)  Drs.   Robert   Perkins   and   Phillip   Loring,   University   of   Alaska   Fairbanks  (UAF).   Europe:    Dr.  Lionel  Camus,  Akvaplan  Niva;  Dr.  Janne  Fritt-­‐ Rasmussen  (ARTEK);  Mr.  Francois  Merlin,  Dr.  Stephane  Le   Floch,   Centre   of   Documentation,   Research   and   Experimentation  on  Accidental  Water  Pollution  (CEDRE);  Dr.   Morten  Hjorth,  COWI;  Dr.  Steinar  Sanni,  Dr.  Theirry  Baussant,   International   Research   Institute   of   Stavanger   (IRIS);   Dr.   Torgeir   Bakke,   Norwegian   Institute   for   Water   Research   (NIVA);  Drs.  CJ  Beegle-­‐Krause,  Odd  Brakstad,  Per  Daling,   Liv-­‐Guri  Faksness,  Bjørn  Henrik  Hansen,  Alf  Melbye,  Ida   Breathe  Øverjordet,  Ivar  Singsaas  (SINTEF).    Drs.  Oleg  Titov,   Andrei   Zhilin,   the   Polar   Research   Institute   of   Marine   Fisheries  and  Oceanography  (PINRO). Environmental Impacts of Arctic Oil Spills and Arctic Spill Response Technologies       Executive  Summary   Section  1.    The  Physical  Environment   Section  2.    Arctic  Ecosystems  and  Valuable  Resources   Section  3.    The  Transport  and  Fate  of  Oil  in  the  Arctic   Section  4.    Oil  Spill  Response  Strategies   Section  5.    Biodegradation   Section  6.    Ecotoxicology  of  Oil  and  Treated  Oil  in  the  Arctic   Section  7.    Population  Effects  Modeling   Section  8.    Ecosystem  Recovery   Section  9.    Net  Environmental  Benefit  Analysis  for  Oil  Spill  Response  Options  in  the  Arctic   Executive Summary Quick Links to Executive Summary Content Program  Objectives  and  Participants   The  Pan-­‐Arctic  Region:    Highlights  of  the   Literature  Review   Behavior  and  fate  of  oil  in  the  Arctic  VECs   and  ecotoxicity   Role  of  Ecosystem  Consequence  Analyses  in   NEBA  Applications  in  the  Arctic   Arctic  population  resiliency  and  potential  for   recovery   Priority  Recommendations  to  Enhance  NEBA   Applications  in  the  Arctic   Development  of  ARCAT  matrices   Influence  of  oil  on  unique  Arctic   communities       Biodegradation  in  unique  communities   Modeling  of  acute  and  chronic  population   effects  of  exposure  to  OSRs     Photo E-1. Summer storm in the Arctic Program  Objectives  and  Participants   The  International  Association  of  Oil  and  Gas  Producers  (OGP)  in  support  of  the  Arctic  Oil  Spill  Response   Technology   –   Joint   Industry   Programme   (JIP)   funded   this   review   of   available   information   on   the   environmental  impacts  from  oil  spills  in  the  Arctic  and  impacts  that  may  be  associated  with  the   application  of  specific  treatment  technologies  that  may  be  applied  during  an  oil  spill  response.    The   objective  of  the  review  was  to  compile  significant  findings  of  prior  investigations  and  suggest  priority   areas  of  work  needed  to  improve  assessment  of  the  consequences  of  the  various  treatment  strategies   prior  to  application  under  Arctic  conditions.  The  primary  outcome  is  development  of  a  process  to   integrate  ecological  consequence  assessments  within  net  environmental  benefit  analyses  (NEBA)  to better   evaluate   the   environmental   effects   to   valuable   ecosystem   components   (VECs)   within   key   environmental  compartments  (ECs)  c  that  would  result  from  using  different  response  actions  in  the   Arctic.    Specifically,  development  of  Arctic  response  consequence  analysis  table  matrices  (ARCAT)  and  a   semi-­‐quantitative  analytical  tool  will  optimize  decision-­‐making  and  lessen  environmental  impact  related   to  arctic  oil  spills  in  the  Arctic.    The  process  is  proactive  rather  than  responsive  to  a  spill  event  improving   the  ability  to  reduce  environmental  damage  by  chosing  mitigating  measures  with  the  minimized  effect   on  the  environment.    As  a  result  of  this  proactive  approach  there  will  also  be  broader  consensus  and   acceptance  of  decisions  among  regulators  and  stakeholders.     To  increase  confidence  in  evaluations  and  environmental  impact  statement  (EIS)  of  oil  spills  and  oil  spill   response  (OSR)  technologies  proposed  for  the  Arctic,  a  comprehensive  review  of  the  existing  literature   was  conducted  to  identify  priority  areas  for  future  research  efforts.    Because  of  the  breadth  of  topic   areas  supporting  consequence  analysis  approaches,  this  effort  called  for  a  multidisciplinary  team  with  an   understanding  of  food  webs  throughout  the  Arctic;  behavior  of  oil  in  surface  waters,  at  depth,  and  in  ice;   the  effectiveness  of  OSR  countermeasures  in  cold-­‐water  surface  and  subsurface  environments;  the   toxicity  of  petroleum  treatment  residues  on  Arctic  species;  and  models  used  to  predict  individual  and   population  effects  in  Arctic  ecosystems  based  on  the  concept  of  resilience.    This  literature  review   followed  a  pan-­‐arctic  approach  that  recognizes  regional  similarities  and  differences  based  on  peer-­‐ reviewed   literature   and   technical   reports   from   government   and   research   institutions   representing   circumpolar  interests.    The  review  is  based  on  more  than  960  literature  citations  and  the  personal   experience  of  the  work  group  participants.    To  best  utilize  the  expertise  assembled  on  this  team,   representatives  from  different  regions  and  disciplines  worked  in  subgroups  and  all  were  able  to  review   the  entire  document  since  many  of  the  investigators  have  multi-­‐disciplinary  research  backgrounds.  The   team  was  divided  into  nine  technical  working  groups,  each  with  a  focused  assessment  goal  and  each   with  the  assignment  to  identify  areas  of  priority  research:   The   Physical   Environment   –   Summarize   available   literature   to   describe   the   different   environmental  compartments  present  in  the  Arctic  and  the  physical  characteristics  of  those   compartments  that  could  potentially  affect  the  fate  and  effects  of  oil,  as  well  as  defining  what   response  measures  are  an  option  for  those  environment  compartments.    Seasonality  in  Arctic   eco-­‐regions  is  addressed  (ice  or  ice-­‐free  conditions)  as  well  as  unique  habitats  and  use  of  those   compartments  by  VECs  (e.g.  areas  with  significant  riverine  input).       Arctic  Ecosystems  and  Valuable  Resources  –  Identify  environmental  compartments,  food  web   connections  within  those  environmental  compartments,  key  Valuable  Ecosystem  Components   (VEC  species/taxa)  within  each  compartment  that  connects  those  food  webs  and  variations   among  VEC  species/taxa  between  sub-­‐regions  within  the  Arctic.   Transport  and  Fate  of  Oil  in  the  Arctic  –  The  various  treatment  strategies  may  enhance  or  reduce   the  amount  of  oil  that  is  transported  away  from  sites  of  surface  or  subsea  released  oil.    This   section  discusses  the  mechanisms  behind  short  and  long  term  transport  of  spilled  oil  in  the  Arctic.   Oil  Spill  Response  and  Related  Effects  –  Identify  the  implications  of  various  response  actions  to   increase   or   decrease   the   exposure   to   various   treatment   residuals   within   environmental   compartments.  Identify  alternative  response  options  for  surface  and  subsurface  spills  of  oil  under   Arctic  seasonal  conditions  and  describe  the  environmental  effects  of  those  response  actions.   Biodegradation  –  Identify  the  measurement  tools  that  can  quantify  the  use  of  oil  by  Arctic   microbes   including   direct   uptake   and   use   of   carbon   containing   petroleum   compounds,   mineralization  of  petroleum  hydrocarbons  to  CO  and  chemical  changes  of  parent  petroleum   2 compounds  to  other  compounds  under  different  treatment  options  and  how  those  changes  are   modified  in  different  ECs   Ecotoxicology  of  Oil  and  Treated  Oil  in  the  Arctic  –  The  four  lines  of  ecotoxicity  research  include   acute   and   chronic   response   assessments   and   biomarker   and   body   burden   assessments   of   exposure.    Evaluate  the  literature  to  establish  the  environmental  relevance  of  these  four  lines  of   evidence.    Identify  gaps  in  experimental  programs  to  address  the  ecotoxicology  of  oil  in  separate   environmental  compartments.   Population  Effects  Modeling  –  Petroleum  treatment  residuals  are  environmental  stressors  that   have  the  potential  to  produce  adverse  impacts  on  individuals  or  populations  of  VECs.    Determine   which  parameters  are  necessary  components  of  a  population  impact  model  for  VECs;  identify   models  useful  in  predicting  the  effects  of  treatment  options  on  these  species/taxa.    Parameters   of  interest  include  changes  in  the  toxicity  of  biodegraded  oil,  transfer  of  impact  related  effects  to   other  trophic  level  VECs,  or  consideration  of  the  resiliency  of  populations  to  recover  from  a   stress.   Ecosystem  Recovery  –  The  ecotoxicology  and  biodegradation  of  oil  spill  residuals  is  better   understood  than  the  ability  of  a  compartment  or  VEC  to  recover  from  the  impacts  of  a  spill.     Environmental  compartments  have  different  abilities  to  recover  from  oil  impacts.    Application  of   treatment  methods  need  to  account  for  and  minimize  the  movement  of  oil  to  locations  or  species   that  have  a  low  resiliency  to  respond  to  oil.    This  section  examines  the  duration  of  continued   impact  of  an  oil  release  and  expected  recovery  of  different  environmental  compartments  and   VECs.  Response  actions  need  to  minimize  encroachment  on  less  resilient  ECs  and  VECs.   Net   Environmental   Benefit   Analyses   for   Oil   Spill   Response   Options   in   the   Arctic   –   The   environmental  consequences  of  an  oil  spill  response  strategy  will  influence  the  overall  impact  of   an  oil  spill  (surface  or  subsurface).    In  typical  applications  of  net  environmental  benefit  analysis   (NEBA)  framework,  the  consequences  of  a  treatment  option  are  generally  associated  with  the   near-­‐term  impacts  and  less  so  with  consideration  of  the  longer  term  consequences  to  recovery   resulting  from  impacts  to  less  resilient  environmental  compartments  or  VECs.    As  an  example,   far-­‐field  impacts  can  result  from  not  selecting  a  dispersant  option  which  result  in  stranding  of   untreated  oil  on  cobble  shorelines  where  the  effects  can  be  observed  decades  after  a  spill.     Alternatively,  selection  of  the  dispersant  option  will  result  in  greater  impacts  to  the  more   resilient  zooplankton  community  while  reducing  the  effects  on  less  resilient  seabird  and  marine   mammals  that  might  contact  oil  on  the  sea  surface.    The  goal  of  this  workgroup  was  to  develop  a   preliminary  consequence  analysis  of  treatment  decisions  and  demonstrate  through  an  adaptive   NEBA  process  the  interrelationships  between  treatment  decisions  and  shortening  or  lengthening   of  recovery  from  all  forms  of  environmental  effects,  not  restricted  to  the  immediate  near-­‐field   impacts.     Recent  literature  was  reviewed  for  each  topic  area,  and  the  information  was  compiled  into  a  Microsoft   Access®  database.    Approximately  650  documents  have  been  cited  within  the  body  of  this  report,  and  at   this  time  there  are  over  1300  documents  represented  in  the  Access  database  that  has  been  produced   for  recent  JIP  programs.    The  database  is  searchable  and  can  generate  a  list  of  references  related  to   Arctic  ecology,  food  webs,  deep  water  food  webs,  petroleum-­‐related  fate  and  effects,  biodegradation,   and  ecosystem-­‐level  case  studies;  aquatic  toxicity  and  chemistry  data  can  be  queried  via  pivot  graphs  to   dynamically  represent  the  data  compiled  to  date.      Based  on  results  of  these  summary  investigations,   recommended  new  environmental  studies  are  identified  and  prioritized.  The  recommended  research   will  help  reduce  uncertainties  related  to  each  topic  area  and  strengthen  the  NEBA  approach  in  the Arctic.    The  organizations  and  team  members  participating  in  this  synergistic  effort  are  presented  in   Figure  ES-­‐1.     Principle  Investigator   Dr.  Jack  Q  Word   1.    The  Physical  Environment   2.    Arctic  Ecosystems  and  Valuable   3.    Transport  and  Fate  of  Oil  in   Resources   the  Arctic   Dr.  Jack  Word   Ms.  Lucinda  Word   Mr.  William  Gardiner,     Dr.  Alf  Melbye   Dr.  Robert  Perkins   Dr.  Ida  Beathe  Øverjordet   Dr.  Liv-­‐Guri  Faksness   Dr.  Oleg  Titov   Dr.  Torgeir  Bakke     Dr.  Andrei  Zhilin   Dr.  Janne  Fritt-­‐Rasmussen   Dr.  Thierry  Baussant   Dr.  Oleg  Titov   Dr.  Jack  Word   4.    Oil  Spill  Response  and  Related   5.    Biodegradation   6.    Ecotoxicology  of  Oil  and   Effects   Treated  Oil  in  the  Arctic   Dr.  Odd  Brakstad   Mr.  Francois  Merlin   Dr.  Donald  Stoeckel   Dr.  Lionel  Camus   Dr.  Stephane  Le  Floch   Dr.  Charles  Greer   Mr.  William  Gardiner     Dr.  Jack  Word   Dr.  Bjørn  Henrik  Hansen   Dr.  James  Clark   Dr.  James  Clark   Dr.  Liv-­‐Guri  Faksness   Dr.  Jack  Word   Dr.  Janne  Fritt-­‐Rasmussen     Dr.  Steinar  Sanni     Dr.  Oleg  Titov     7.    Population  Effects  Modelling   8.    Ecosystem  Recovery   9.    Review  of  NEBA   Dr.  Benny  Gallaway     Dr.  Bjørn  Henrik  Hansen   Dr.  Gina  Coelho   Dr.  Jack  Q  Word   Dr.  Jack  Q  Word   Dr.  James  Clark   Dr.  James  Clark     Dr.  James  Clark   Mr.  James  Staves   Dr.  Ivar  Singass   Dr.  Gina  Coelho   Ms.  Laura  Essex   Dr.  Will  Hafner   Dr.  Morten  Hjorth   Dr.  Per  Daling   Dr.  Oleg  Titov   Dr.  Torgeir  Bakke   Dr.  CJ  Beegle-­‐Krause     Mr.  Francois  Merlin   Dr.  Andrei  Zhilin       Figure E-1. Organizational matrix   (Workgroup  chairmen  and  co-­‐chairmen  are  noted  in  bold  text) The Pan-Arctic Region: Highlights of the Literature Review Currently   five   of   the   eight   countries   bordering   the   polar   region   are   pursuing   exploration   and/or   development  of  oil  and  gas  resources  in  the  Arctic  [Canada,  Greenland  (Denmark),  Norway,  Russia,  and   the   United   States].     The   changing   environmental   conditions   in   the   Arctic   may   provide   increased   opportunity  for  development  of  these  resources  that  were  less  accessible  due  to  presence  of  ice  in  past   decades  and  the  improved  technological  advances  for  extracting  petroleum  resources.    Activities  of  the   petroleum  industry  are  based  on  promulgated  regulations  set  by  each  sovereign  nation  but  there  has   been  a  move  toward  international  cooperation  and  sharing  of  knowledge  related  to  the  technological   development   required   to   ensure   safe   drilling   operations   as   well   as   spill   response   preparedness.     International,  federal,  and  local  agencies  from  North  America,  Northern  Europe,  and  Russia  are  in  the   process  of  developing  baseline  ecosystem  and  biodiversity  assessments  and  research  programs  in  order   to  better  understand  and  protect  the  Arctic  marine  ecosystem  and  the  communities  that  rely  on  these   resources.      For  example,  the  Arctic  Monitoring  and  Assessment  Program  (AMAP)  has  completed  a   significant  effort  in  publishing  comprehensive  baseline  information  on  Arctic    geo-­‐political  activities  and   regulations,   available   drilling   technologies,   spill   response   initiatives,   and   potential   environmental     impacts  (AMAP  2010).    Additional  cooperative  research  sponsored  by  joint  industry  programs  (JIP)  have   augmented  the  knowledge  base  associated  with  the  oil  and  gas  industry  activities  (Sørstrøm  et  al.  2010;   NewFields  2012).    These  efforts  and  convened  workshops  have  integrated  contributions  from  the   scientific  community,  governmental  agencies,  public  interest  groups,  and  indigenous  people  of  the   Arctic.       Additionally,  extensive  field  and  laboratory  studies  have  been  conducted  to  examine  the  behavior  and   fate  of  oil  and  its  potential  effects  on  Arctic  resources  under  the  disparate  seasonal  conditions.    Many   recent   studies   have   concentrated   on   understanding   the   influence   of   these   harsh   environmental   conditions  on  the  relative  sensitivity  of  Arctic  species  to  additional  stressors,  the  success  and  rates  of   microbial  degradation  of  oil  compounds,  and  more  recently  the  resilience  of  Arctic  populations  to   recover  from  responses  to  those  stressors.    Similar  to  other  parts  of  the  world  these  investigations  have   increased  our  understanding  of  the  basic  behavior  and  movement  of  oil,  its  potential  effects  on  VECs   and  the  ultimate  fate  of  released  oil  in  various  environmental  compartments.    The  Arctic  environment   has  added  complexities  resulting  from  seasonal  patterns  of  ice  and  light  that  need  to  be  considered  to   provide  the  foundation  for  development  of  strategic  spill  response  strategies  and  evaluation  of  the   environmental  consequences  of  released  oil  that  are  very  relevant  today.    Excellent  comprehensive   reviews  have  been  published  in  recent  years  (Potter  et  al.  2012,  SL  Ross  et  al.  2010,  and  USGS  2011).       The  fundamental  role  of  comparing  the  adverse  biological  effects  of  different  response  options  in  NEBA   requires  an  information  base  that  identifies  VECs  within  multiple  environmental  compartments.    The   potential   adverse   effects   and   resiliency   of   these   VEC   organisms   within   each   of   these   various   compartments  are  then  compared  as  a  consequence  of  the  OSR  actions.    These  comparisons  should   examine  the  acute  and  long-­‐term  effects  of  spilled  oil  resulting  from  the  impacts  of  various  response   options  such  as  natural  attenuation,  surface-­‐applied  or  subsea-­‐injected  dispersants,  in-­‐situ  burning,  and   mechanical  or  naturally  occurring  containment  methods  followed  up  by  recovery  of  spilled  petroleum  in   Arctic  ecosystems.    Review  and  tabulation  of  published  data,  such  as  toxicity  effect  concentrations  and   population  recovery  times,  is  a  key  component  of  this  review.    However,  the  overall  objective  related  to   exploration  and  production  projects  in  the  Arctic  is  not  only  to  tabulate  this  information  or  determine   the  most  sensitive  end-­‐points  that  might  be  considered  but  to  demonstrate  the  relative  differences  in   the  magnitude  and  duration  of  effects  that  might  be  observed  at  various  ecosystem  compartments associated   with   various   response   actions.     As   has   been   attempted   for   other   regions   where   new   exploration  and  production  activities  have  been  implemented,  demonstrating  these  relative  differences   will   require   additional   effort   aimed   at   bridging   the   gap   between   relatively   straightforward   measurements  of  toxicity  to  arctic  species  and  more  complex  investigations  to  assess  ecosystem-­‐level  or   population  level  impacts  and  recovery  dynamics.    This  report  considers  the  similarities  and  differences  in   species  sensitivity  between  arctic  and  non-­‐arctic  species.    To  effectively  monitor  habitat  recovery  and   identify  ecologically  relevant  endpoints  for  remediation  operations  in  Arctic  regions  there  is  a  need  to   increase  our  knowledge  on  natural  variability  among  populations  and  how  that  variability  relates  to   vulnerability  to  petroleum  exposure.     Prior  to  the  granting  of  approvals  for  exploration  and  production  activities,  the  public  seeks  increased   assurances  that  industry  and  the  various  governmental  entities  have  the  capability  to  ensure  safe   exploration  and  extraction  of  oil  as  well  as  the  capability  to  respond  to  oil  spills.  To  meet  these   challenges  a  number  of  current  and  emerging  oil  spill  countermeasure  technologies  have  been  identified   for  use  in  the  Arctic.    While  use  of  different  OSR  methods  can  potentially  reduce  the  impact  of  spills   within  the  Arctic  under  various  environmental  conditions,  not  all  options  have  been  readily  accepted  by   the  public  and  regulators.    Lack  of  endorsement  of  some  OSR  options  is  related  to  the  perceived  change   in  impacts  and  biodegradation  rates  that  the  use  of  these  options  in  the  Arctic  marine  ecosystem  may   bring.    Several  studies  have  been  undertaken  to  address  such  concerns  for  different  response  measures;   however,  conflicting  interpretations  and  conclusions  impact  stakeholders’  confidence.    For  example,  the   assumptions  that  dispersant  treated  oils  are  more  toxic  than  undispersed  oil,  dispersants  are  more  toxic   than  oil,  dispersants  reduce  the  ability  of  microbes  to  degrade  oil,  and  Arctic  species  are  more  sensitive   to  oil  than  non-­‐arctic  species  are  incorrect  although  all  of  these  assumptions  may  be  proposed  as  facts   by  multiple  stakeholders.       The  purpose  of  the  following  section  is  to  describe  those  key  areas  that  the  workgroup  recommended   for  further  evaluation  based  on  their  critical  review  of  available  information.    The  subjects  for  further   consideration  are  grouped  into  major  subject  headings  for  this  executive  summary.    Details  of  the   recommendations  will  be  found  in  each  of  the  sections  of  the  reports.       Behavior and Fate of Oil in the Arctic Arctic  conditions  influence  the  behavior  and  fate  of  untreated  surface  oil  due  to  the  low  temperatures   and  the  presence  of  different  types  of  ice.    Petroleum  is  generally  immiscible  in  seawater  and  more  so   under  colder  temperatures.    Surface  oils  with  lower  specific  gravity  accumulate  on  the  sea  surface  and   spread  horizontally  with  the  more  volatile  or  soluble  components  quickly  released  into  the  air  or  into   the  water,  respectively  (NRC  1989;  EPPR  2011).    The  surface  oil  also  encounters  disturbance  by  wind  and   wave  action  increasing  the  exposed  surface  area  of  the  oil  to  the  vertical  transport  processes  of   volatilization  and  solubilization.    The  wind  and  waves  also  adds  water  to  oil  creating  oil/water  emulsions   that  become  more  stable  with  time.    The  presence  of  broken  ice  with  wind  and  waves  enhances  the   disruption  of  the  surface  oil.  These  physical  processes  produce  small  globules  of  oil  that  may  undergo   further  physical,  chemical  and  biological  weathering,  creating  aggregations  of  the  heavier  residual   compounds  that  remain,  eventually  producing  tar  balls.    In  general,  slicks  formed  in  cold  water  are   thicker  with  less  exposed  surface  areas  with  reduced  spatial  coverage  than  the  same  oil  released  under   temperate  conditions.  Laboratory  trials  have  provided  Information  on  key  parameters  that  influence  oil   spreading  under  solid  ice  such  as  under-­‐ice  currents  and  ice  roughness  (Potter  et  al.  2012).  In  situations   that  the  pour  point  of  oil  is  above  ambient  temperature,  the  physical  characteristics  of  the  oil  change   dramatically  with  the  wax  components  of  the  oil  precipitating  and  forming  a  gel-­‐like  semi  solid  that  is resistant  to  flow  and  spreading  and  which  also  restricts  diffusion  of  volatiles  through  the  slick,  effectively   reducing  evaporation.       Untreated  surface  oils  form  slicks  that  are  transported  laterally  by  winds  and  currents  and  largely  remain   on  the  water  surface  and  in  the  upper  water  column.    The  oil  continues  to  spread  on  the  surface  of  the   ocean  forming  ribbons  of  slicks  that  rapidly  spread  to  approximately  1  mm  in  thickness  and  are  patchily   distributed.    Wind  and  waves  break  up  and  drive  some  of  this  surface  oil  into  the  water  column  in   relatively  large  globules  (>100  µm).    The  oil  slick  contains  all  of  the  chemical  components  of  the  spilled   oil  less  those  components  that  volatilize  into  the  atmosphere  or  solubilize  into  the  water  column  under   the  slick.    The  maximum  concentration  of  oil  is  therefore  contained  in  the  immediate  slick  area,   potentially  exposing  organisms  that  use  the  water  near  the  air-­‐water  interface  to  the  highest  petroleum   hydrocarbon  concentrations  that  immediately  follow  a  spill  event.     The  behavior  and  fate  of  released  petroleum  is  an  important  consideration  in  understanding  the   potential  effects  of  released  petroleum  and  in  evaluating  the  potential  OSR  options  in  the  arctic.    The   spreading  and  weathering  of  petroleum  in  the  arctic  is  complex,  influenced  by  factors  such  as  water   temperature,  local  currents  and  wind  conditions,  the  presence  and  absence  of  seasonal  and  multi-­‐year   ice,  effects  of  pressure  in  deep  water  environments  and  seasonal  changes  in  salinity  during  the  Arctic   spring.    The  presence  of  ice  has  been  shown  to  slow  the  rate  of  spreading  and  weathering  of  surface  oil,   as  well  as  affecting  predictions  of  spill  locations  and  trajectories.    Migration  of  petroleum  into  brine   channels  or  fissures  in  the  ice  can  not  only  alter  fate,  but  also  the  species  that  are  potentially  exposed   and  the  exposure  point  concentration.    At  depth,  petroleum  is  affected  by  increased  pressures  and   decreased  temperatures,  resulting  in  phase  shifts  and  changes  in  solubility  as  well  as  the  dynamics  of   deep  water  currents  and  bathymetry.    Key  considerations  included  in  the  review  were  as  follows:   • Cold  water  temperatures  and  the  presence  of  ice  can  dramatically  affect  the  weathering  and   natural  attenuation  of  oil  in  the  Arctic,  but  the  ice  can  also  trap  oil  so  that  OSR  options  and  time   available  to  implement  the  necessary  response  can  be  extended.     • Changes  in  behavior  and  fate  of  petroleum  in  deep  sea  environments  associated  with  seeps  and   well  blow-­‐outs  or  leakage  alter  the  bioavailability  of  oil  components  by  allowing  more  volatile   components   to   diffuse   into   the   water   where   they   may   form   clathrates   altering   the   biodegradation  potential  and  toxicity  of  those  structures.       • Adhesion  of  oil  to  particulate  matter  and  how  this  may  affect  the  potential  for  uptake  into   tissues;     • The  change  in  globule  size  and  bioavailability  of  physically  and  chemically/OMA  dispersed  oil   under  Arctic  conditions  and,   • The  behavior  of  oil  in  the  absence  and  presence  of  ice  and  how  it  influences  the  selection  of  OSR   options.   The  microbial  degradation  potential  of  oil  in  the  Arctic  has  been  demonstrated  and  is  as  effective  as  this   process  occurring  in  lower  latitudes  when  natural  communities  of  Arctic  microbes  respond  to  the   presence  of  oil.    Microbial  response  to  oil  in  the  Arctic  and  deep,  cold  and  dark  waters  are  emerging   areas  of  research.    While  microbial  degradation  in  temperate  waters  has  long  been  recognized,  recent   laboratory   and   field   studies   have   documented   microbial   degradation   of   petroleum   and   dispersed   petroleum  in  these  extreme  environments.    Current  research  is  using  analytical  chemistry,  respirometry,   genomics,  transcriptomics,  and  proteomics  assays  to  not  only  show  the  presence  of  oil-­‐degrading   species,  but  measure  the  response  and  results  of  microbial  activity  upon  being  exposed  to  oil.    Key   considerations  included  in  the  review  are  as  follows: • The  presence  and  effectiveness  of  microbial  communities  to  degrade  oil  in  the  Arctic  (in  open   waters,  in  the  presence  of  ice,  along  shorelines  and  in  subtidal  sediments);   • The  characterization  of  the  microbial  community  responses  and  gene  expression  associated  with   exposure   to   oil   and   aerobic   and   anaerobic   biodegradation   and   use   of   hydrocarbons   and   organosulfur  compounds  associated  with  the  unresolved  complex  mixture;  and,   • The  effects  of  biodegradation  on  the  toxicity  and  availability  of  metabolites  created  during   biological   use   of   oil   compounds   and   the   changes   that   occur   in   toxicity   and   further   biodegradation  resulting  from  the  more  recalcitrant  residual  compounds  of  oil     There  has  been  substantial  research  regarding  the  fate  and  effects  of  oil  in  the  Arctic  over  the  past  40   years;  studies  have  been  published  in  a  number  of  different  forums  including  peer-­‐reviewed  literature,   technical  reports,  government  studies  and  professional  symposia.    Additional  data  exists  in  a  number  of   different  languages,  since  research  has  been  conducted  throughout  the  North  American,  European,  and   Russian  Arctic.    Finally,  important  sources  of  data  include  emerging  datasets  from  current  research  and   older  datasets  that  may  not  be  as  readily  found  in  electronic  search  engines  but  nonetheless  contain   valuable  information  on  environmental  conditions  and  ecological  resources.    Consideration  must  also  be   given   to   the   quality   of   data   available   for   use.     However,   the   most   important   aspect   of   making   environmental  consequence  comparisons  for  OSR  options  is  the  appropriate  framing  of  questions  so  that   the   consequences   of   response   actions   can   be   compared   appropriately   among   all   environmental   compartments. VECs and Ecotoxicity The  physiological,  morphological,  and  behavioral  adaptations  of  Arctic  species  may  alter  their  sensitivity   to  petroleum  and  treated  petroleum.    To  address  this  concern  there  have  been  a  number  of  recent   efforts  to  characterize  the  sensitivity  of  Arctic  species  to  treated  and  untreated  petroleum.    Evaluations   have  included  pelagic  and  benthic  species,  as  well  as  those  in  close  association  with  the  ice.    Endpoints   that  have  been  evaluated  include  survival,  growth,  reproduction,  and  behavioral  effects,  as  well  as   molecular,  cellular,  physiological  responses.    Custom  experimental  facilities  have  been  developed  for   working  with  chemically  and  mechanically  dispersed  oil  and  water  soluble  fractions  (WSF)  of  differently   weathered  oil.    Methodologies  have  been  developed  by  project  team  members  to  capture  and  maintain   Arctic  species  of  interest  for  controlled  laboratory  studies.    The  VEC  species  that  have  been  evaluated  to   this  point  have  been  found  to  have  sensitivities  similar  to  non-­‐Arctic  species  for  oil  exposure.    Both  field   and   laboratory   data   have   also   been   integrated   with   population   models   to   provide   estimates   of   population-­‐level  effects  from  oil  exposures  (e.g.  SYMBIOSES  and  fishery  population  analysis).    Key   considerations  included  in  the  review  are  as  follows:   • Recent,  historic  and  ongoing  field  and  laboratory  studies  evaluating  toxicity  of  petroleum  and   treated  petroleum  provided  in  Species  Sensitivity  Distributions  to  compare  sensitivity  of  tested   species.   • Different  exposure  scenarios  facilitate  different  types  of  evaluations  and  can  dramatically  affect   comparability  of  data.    Spiked  exposures  followed  by  reducing  concentrations  of  oil  represent   the  exposures  of  stationary  species  or  those  present  in  the  water  column  when  oil  is  undergoing   the  initial  spreading  and  dilution  following  the  spill  event  or  after  application  of  dispersants  or   OMA.    Exposures  to  constant  concentrations  of  oil  represent  zones  of  concentrated  oil  observed   with  neuston  associated  species  and  life  stages  and  marine  mammals  and  seabirds  that  move  in   and  out  of  the  air/water  interface.    These  more  constant  higher  exposure  concentrations  can also   occur   when   oil  is   concentrated   at   edges   such   as   shorelines,   convergence   zones,   and   water/ice  edges.   • Endpoints  found  in  the  literature  review  range  from  body  burden  assessment  to  biomarker   responses  as  well  as  mortality,  growth,  reproductive,  developmental  and  behavioral  responses.     The  diversity  of  potential  end  point  assessments  range  from  exposure  assessment  to  end  points   that  have  a  direct  influence  on  estimating  population  level  response  to  the  oil  components.    For   the  purpose  of  this  review,  those  responses  that  are  better  predictors  of  effects  at  the  individual   and  population  levels  are  the  central  focus.    Mortality,  growth  and  reproductive  endpoints  are   those  most  closely  associated  with  population  level  effects.    Reviews  on  exposure  markers  will   concentrate  on  demonstrating  the  relationship  of  the  exposure  marker  to  mortality,  growth  or   reproductive  endpoints.   • All  toxicity  assessments  are  surrogate  measures  used  to  predict  the  potential  effects  of  oil  spills   on  living  resources.    As  such,  data  obtained  using  sub-­‐arctic  and  temperate  species  representing   different  groups  of  organisms  or  different  environmental  compartments  may  also  be  useful  in   augmenting  datasets  with  Arctic  species.    Recent  comparisons  of  the  relative  sensitivity  of  Arctic   and  non-­‐arctic  species  suggest  that  non-­‐arctic  species  have  similar  sensitivities  warranting  a   broader  evaluation  of  much  larger  data  sets.     • Additional  testing  of  species  that  are  long-­‐lived,  unique  to  selected  habitat  types  and  low  in   reproductive  capacity  that  have  not  been  evaluated  in  other  regions  have  been  identified  during   the  reviews.   The  toxicity  of  a  mixture  is  characterized  based  on  the  analytical  approach  used  to  characterize  the   exposure.    Variable  conclusions  regarding  the  relative  toxicity  of  oil  and  water  often  can  be  tracked  to   the  test  waters  being  produced  by  different  processes.    The  water  accommodated  fraction  (WAF)  is   designed  to  only  introduce  the  more  soluble  components  into  the  water  column  while  retaining  the  less   soluble  components  on  the  surface  of  the  water.    The  breaking  wave  water  accommodated  fraction   (BWWAF)  introduces  additional  physical  disturbance,  introducing  more  oil  into  the  water  as  droplets   with   increased   surface   area   exposure   than   occurs   with   the   WAF   allowing   more   of   the   soluble   components   to   diffuse   into   the   water   from   the   oil   droplets.     The   chemically   enhanced   water   accommodated  fraction  (CEWAF)  reduces  the  surface  tension  of  the  oil  and  produces  much  smaller   droplets  with  much  larger  available  surface  area  for  diffusion  of  the  soluble  components  of  the  oil.      One   of  the  objectives  of  the  ecotoxicology  section  was  to  evaluate  alternative  methods  of  characterizing   exposure.   Role of Ecosystem Consequence Analyses in NEBA Applications for the Arctic A  NEBA  evaluation  of  OSR  strategies  for  use  in  the  Arctic  must  consider  ecosystem-­‐level  consequences   of  the  selected  response.    First,  the  effectiveness  of  the  proposed  solution(s)  under  the  appropriate   conditions  to  determine  how  much  of  the  oil  can  be  treated  by  the  proposed  action.    Second,  the   consequences  to  various  compartment  VECs  resulting  from  exposure  to  the  untreated  oil  and  the   treated   oil.       Such   comparisons   must   be   made   for   resources   in   environmental   compartments   to   determine   the   relative   environmental   benefits   or   risks   of   different   response   options.     Third,   the   resilience  of  the  populations  of  organisms  that  are  being  exposed  as  a  result  of  no  action  or  a  response   treatment  needs  to  be  addressed  in  order  to  determine  the  long  term  consequences  of  the  decision.   Due  to  both  logistical  and  environmental  constraints,  responses  to  oil  spills  rely  on  combinations  of   remote  sensing  and  monitoring.    The  OSR  options  include  1)  natural  attenuation,  2)  containment

Description:
Spills and Arctic Spill Response. Technologies. Literature Review and Recommendations. December 2014. Principal Investigator: Jack Q Word.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.