ebook img

Environmental Hydrology PDF

487 Pages·1995·40.03 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Environmental Hydrology

ENN1RONMENTALHYDROLOGY Water Science and Technology Library VOLUME 15 Editor-in-Chief V. P. Singh, Louisiana State University, Baton Rouge, U.S.A. Editorial Advisory Board M. Anderson, Bristol, U.K. L. Bengtsson. Lund, Sweden A. G. Bobba, Burlington, Ontario, Canada S. Chandra, Roorkee, U.P., India M. Fiorentino, Potenza, Italy W. H. Hager, Zurich, Switzerland N. Harmancioglu, Izmir, Turkey A. R. Rao, West Lafayette, Indiana, U.S.A. M. M. Sherif, Giza, Egypt Shan Xu Wang, Wuhan, Hubei, P.R. China D. Stephenson, Johannesburg, South Africa The titles published in this series are listed at the end of this volume. ENVIRONMENT AL HYDROLOGY edited by VUAYP. SINGH Louisiana State University, Baton Rouge, U.S.A . ..... " SPRINGER-SCIENCE+BUSINESS MEDIA, B.V. Library of Congress Cataloging-in-Publication Data EnVlronmental hydrology I edIted by Vljay P. SIngh. p. Cill. Includes Index. ISBN 978-90-481-4573-7 ISBN 978-94-017-1439-6 (eBook) DOI 10.1007/978-94-017-1439-6 1. Hydrology. 2. Hydrology--Envlronmental aspects. V. P. '(VI jay P.) GB665.E58 1995 551.48--dc20 95-11259 CIP ISBN 978-90-481-4573-7 02-0897 -1 DO ts Printed on acid-free paper AU Rights Reserved © 1995 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 1995 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner. To the People of the United States of America Table of contents Preface xiii 1 What is environmental hydrology? 1 v.P. Singh 1.1 Environmental Continuum . . . 1 1.2 Integrated Environmental Management 1 1.3 Water Continuum ..... . 2 1.4 Integrated Water Management 3 1.5 Classification of Hydrology 7 1.5.1 Properties of Water . 7 1.5.2 Sources of Water .. 7 1.5.3 Scientific Content . 7 1.5.4 Solution Technique 7 1.5.5 Area of Emphasis . 8 1.5.6 Basin Size ..... 8 1.5.7 Basin-Type orLand Use 8 1.6 Definition of Environmental Hydrology 8 1.7 Scope of Environmental Hydrology 9 1.8 Role of Environmental Hydrology . . . 10 2 Watershed acidification modelling 13 A.G. Bobba. D.S. Jeffries. w.G. Booty and v.P. Singh 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.1 Watershed Acidification Modelling ...... . 15 2.1.2 Interaction between Lake and Terrestrial Systems 16 2.1.3 Flow Pathways in Watersheds . . . . . . . . . 18 2.l.4 Bio-geochemical Processes: Chemical Species. 22 2.1.5 Basic Mechanism of Leaching -Mobile Anions 23 2.1.6 Effect of Acid Rain on Leaching . 24 2.1.7 Soil Buffering Systems. 25 2.2 Watershed Acidification Models 27 2.2.1 ILWAS Model .. 27 2.2.2 Birkenes Model . . . . 30 2.2.3 TMWAM Model .... 33 2.2.4 Enhanced Trickle-Down Model 40 2.2.5 RAINS Model . . . . . . . . . 42 2.2.6 MAGIC Model. . . . . . . . . 44 2.4 Stochastic Analysis to Predict Acid Shocks 46 2.4.1 Number of Exceedances 47 2.4.2 Time of Exceedance .. . 47 2.4.3 Time of Events ..... . 48 2.4.4 Duration of Exceedances . 49 2.4.5 Magnitude of Exceedances . 49 viii 2.5 Application of Models to the Turkey Lake 49 2.5.1 Statistical Analysis. 51 2.5.2 Acidification Events 56 2.6 Discussion . 60 2.7 Conclusions 62 3 Climatic change 69 M.A. Mimikou 3.1 Introduction . . . . . . . . . . . . 69 3.2 A Brief Overview of the Literature. 70 3.3 Climatic Variability and Change . . 72 3.3.1 Global Greenhouse Warming - Past, Present and Future Conditions 72 3.3.2 Methods for Evaluating Global and Regional Climatic Changes 75 3.3.3 Impacts of Climatic Changes. . . . . . . . . . . . . . . . . . . . 76 3.4 Hydrological Effects of Climatic Change ................. 77 3.4.1 Hydrological System Response to Climatic Changes. . . . . . . . 77 3.4.2 Methods for Evaluating Regional Hydrological Effects of Climatic Changes .............................. 78 3.4.3 Sensitivity of Major Climatic and Hydrological Variables to Global Warming .............................. 82 3.5 Climatic Change Impacts on Water Resource Planning and Management . 88 3.5.1 Basic Considerations. . . . . . . . . . . . . . . . . . . . . . .. 88 3.5.2 Sensitivity of Some Critical Water Management Issues to Climatic Change. . . . . . . 90 3.6 Future Research Directions. . . . . . ................ " 97 4 Understanding river hydrology 107 B.L Finlayson and T.A. McMahon 4.1 Introduction . . . . . . . . . . . . . . . 107 4.2 Data .................. . 108 4.2.1 Types of Data and Their Sources. 108 4.2.2 Data Problems . . . . . . . . . 108 4.2.3 Synthetic Data . . . . . . . . . . 109 4.3 Characteristics of the River Hydrograph . 110 4.3.1 The Generation of the River Hydrograph 110 4.3.2 Hydrograph Separation 112 4.3.3 Flow Duration Curves 113 4.3.4 High Flows .. . 115 4.3.5 Low Flows ... . 118 4.4 Variability . . . . . . . . 118 4.4.1 Seasonal Regime. 120 4.4.2 Hydrograph Variability. 120 4.4.3 Interannual Variability 121 4.5 Catchments and Channels . 123 4.5.1 Fluvial Geometry . 123 4.5.2 Ungauged Streams. 124 4.6 Regulated Rivers ..... . 127 4.7 Waterways and Watersheds. 129 4.7.1 Influent and Effluent Streams 129 4.7.2 Environmental Aspects 130 4.8 Concluding Statement . . . . . . . . 131 ix 5 Transport of reacting solutes in rivers and streams 137 RL Runkel and K.E. Bencala 5.1 Introduction ........ . 137 5.2 Physical Transport Processes. 139 5.3 Sources of Solutes . . . . 147 5.4 Geochemical Processes. . . . 152 5.4.1 Rates of Reaction .. 153 5.4.2 PrecipitationlDissolution. 155 5.4.3 SorptionlDesorption ... ]57 5.4.4 pH, the Master Variable . 159 5.5 Coupling of Hydrologic and Geochemical Processes . 160 5.6 Summary ..................... . 163 6 Water and contaminant transport in the vadose zone 165 P.l. Wierenga and ML Brusseau 6.1 Introduction . . . . . 165 6.2 Water Storage ..... . . ]66 6.2.1 Water Content . . . ]66 6.2.2 Energy Relationships 166 6.3 Water Movement. . . . . . . 170 6.3.1 Steady Flow ..... 170 6.3.2 Hydraulic Conductivity 170 6.3.3 Transient Flow 17] 6.3.4 Infiltration... 172 6.3.5 Redistribution. 175 6.4 Contaminant Transport . 175 6.4.1 Equations For Nonreactive Solutes. 175 6.4.2 Equations for Reactive Solutes. . . 177 6.4.3 Transport in Uniform Soil: Steady flow 178 6.4.4 Transport in Uniform Soil: Transient flow ]80 6.5 Nonideal Contaminant Transport. 180 6.5.1 Heterogeneity ......... . 180 6.5.2 Preferential Flow ........ . 182 6.5.3 Nonlinear, Rate-Limited Sorption 183 6.5.4 Facilitated Transport ...... . 186 6.5.5 Vapor and Immiscible-Liquid Phase Transport. 186 6.5.6 Coupled Physical, Chemical, and Biological Processes 187 6.6 Conclusion......................... 188 7 Transport of moisture and solutes in the unsaturated zone by 193 preferential flow F Stagnitti. 1. -Y. Parlange. IS. Steenhuis. 1. Boll. B. Pivetz and D.A. Barry 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 194 7.2 Preferential Moisture and Solute Transport. . . . . . . 195 7.3 Sampling for Preferential Flow in the Unsaturated Zone 199 7.4 Characterisation of Soil Structure . 200 7.5 Modelling Preferential Transport. . . . . . . . . . . . . 203 7.6 Transport of Pesticides . . . . . . . . . . . . . . . . . . 210 7.7 Influence of Macropores on Biological Degradation of Pesticides . 213 7.7.1 Biodegradation of p-Nitrophenol (PNP) . . . . . . . . . . 213 7.7.2 Biodegradation of 2,4-D (2,4-dichlorophenoxyacetic acid) . . 216 7.8 Summary and Conclusions. . . . . . . . . . . . . . . . . . . . . . 218 x 8 Groundwater contamination modelling 225 A.G. Bobbaand v.P. Singh 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 225 8.2 Classification of Groundwater Contamination Models . 227 8.2.] Models ...... . 227 8.2.2 Model Development . . . . . . . . . . . . . . 227 8.3 Groundwater Modelling . . . . . . . . . . . . . . . . 228 8.3.1 Principles and Concepts used in Groundwater Modelling . 229 8.3.2 Darcy's Law . . . . . . . . 229 8.3.3 Hubbert's Force Potential . 231 8.3.4 Conservation of Mass . 232 8.4 Flow Models . . . . . . . . . . . . 232 8.4.1 Basic Assumptions. . . . . 232 8.4.2 Two Dimensional Horizontal Flow. . 233 8.4.3 Definition of boundary and initial conditions. . 233 8.4.4 Initial conditions ........ . 235 8.5 Contaminant Transport Models. . . . . . . . . . . . . 236 8.5.1 Advective Dispersion Phenomena . . . . . . . 236 8.5.2 Basic Assumptions. . . . . . . . . . . . . . . 236 8.5.3 Advective Dispersion Equation in Cartesian Coordinates . 238 8.5.4 Boundary and Initial conditions . 238 8.6 Hydrodynamic Dispersion . . . . . . . . . . . . . . . . . . . 239 8.6.1 Effects of Dispersion. . . . . . . . . . . . . . . . . . 24] 8.6.2 Quantification of Dispersion . . . . . . . . . . . . . . 242 8.6.3 Determination of Coefficient of Molecular Diffusion . 243 8.7 Chemical and Biological Activity . 244 8.7.1 Chemical Processes . 244 8.7.2 Linear Adsorption . . 246 8.7.3 Freundlich Isotherm . 246 8.7.4 Langmuir Isotherm . . 246 8.7.5 Biological Processes .247 8.8 Development of Contaminant Transport Models . 247 8.8.1 Analytical and Numerical Models . . 248 8.8.2 Types of models . . . . . . . . . . . 248 8.8.3 Analytical Models . . . . . . . . . . 250 8.8.4 Analytical Element Method Models . 25] 8.8.5 Finite Difference Models. . . . . . 252 8.8.6 Finite Element Models . . . . . . . 260 8.8.7 Application of Galerkin's method . 264 8.8.8 Application of Green's theorem . 265 8.8.9 Boundary Element Models. . 271 8.8.10 Velocity Based Modelling . 272 8.9 Accuracy of Numerical Models .. . 272 8.9.1 Numerical Dispersion . . . . 273 8.10 Available Numerical Models. . . . . 273 8.10.1 General Guidance for Groundwater Contamination Model Use . 274 8.10.2 Data Requirements. . 276 8.10.3 Physical Framework . . . . . . . . . . . . . . 276 8.11 Stresses on System . . . . . . . . . . . . . . . . . . . 277 8.11.1 Groundwater Flow . . . . . . . . . . . . . . . 277 8.11.2 Contaminant Transport (in addition to above) . 277 8.12 Physical Interpretation . . . . . . . . . . . . . . . . . 277 Xl 8.12.1 Effect of Velocity Ratios on Contaminant Transport Model . 278 8.12.2 Effect of Adsorption on Contaminant Concentration . . 279 8.12.3 Effect of Velocity Ratios on Concentration. . . . . 283 8.12.4 Effect of Dispersivity on Contaminant Transport. . . . 284 8.12.5 Contaminant Recovery Phase . . . . . . . . . . . . . 287 8.13 Application of Groundwater flow and Contaminant Transport Models . 288 8.13.1 Prot Granby Radioactive Disposal Site, Ontario, Canada. .. . 288 8.13.2 Application of SUTRA model to Lambton county, Ontario, Canada 295 8.13.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . 306 8.14 Limitations and Source of Error in Groundwater Contamination Models. . 310 8.14.1 Model Misuse . . . . 313 8.15 Improvements in Modelling . . . . 314 8.15.1 Output Formats ..... .314 8.15.2 Data Collection Methods. . 314 8.15.3 Further Development of Flow and Transport Models . 314 8.16 Further Research in Chemical Kinetics. . . . . . . 315 8.17 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 9 Modeling subsurface transport of microorganisms 321 Y. Tan and w.J. Bond 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 9.1.1 Development of Mechanistic Models of Transport . . . . 322 9.1.2 Approaches to the Pore-Scale Distribution of Bacteria . . 323 9.2 Processes Affecting Transport and Fate of Microorganisms . 324 9.2.1 Movement of Microorganisms . . . . . . 324 9.2.2 Growth and Decay of Microorganisms . . . . . . . . 327 9.2.3 Attachment and Detachment Processes ...... . 331 9.2.4 Mathematical Description of Attachment and Detachment. . 334 9.3 Transport of Microorganisms in Porous Media. . . . . . . . 337 9.3.1 General Transport Equation for Microorganisms. . . 337 9.3.2 Special Cases of the Microbial Transport Equation . 339 9.3.3 Simultaneous Transport of Substrates with Bacteria . 340 9.4 Comparison of Models with Experiments . 342 9.4.1 Transport of Bacteria. . . . . . . . 342 9.4.2 Transport of Viruses . . . . . . . . 346 9.4.3 Summary of Experimental Studies . 347 9.5 Summary and Conclusions . . . . . . . . . 347 10 Assessment and control of loading uncertainty for managing 357 eutrophication and toxic chemical fate in lakes T. C. Young and D.M. Dolan 10.1 Introduction . . . . . . . . . . . . . .357 10.2 Loadings and Sources of Uncertainty .359 10.2.1 Tradeoffs. . . . . . . . .360 10.3 Assessing Loading Uncertainty .360 10.3.1 Demonstration ..... .362 10.4 Managing Loading Uncertainty .363 10.4.1 Tributary Mouth Loadings .365 10.4.2 Point Sources ..... . .369 10.4.3 Non-Point Sources ... . .370 10.4.4 Data Handling Improvements .373 10.5 Conclusions . . . . . . . . . . . . . .373

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.